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Outline 

• Today: Tracking 

– Tracking as inference 

– Linear models of dynamics 

– Kalman filters 

– General challenges in tracking 



Tracking: some applications 

Body pose tracking, 

activity recognition 

Surveillance 

Video-based 

interfaces 

Medical apps 

Censusing a bat 

population 
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Why is tracking challenging?  

 



Optical flow for tracking? 

If we have more than just a pair of frames, we could 

compute flow from one to the next: 

 

 

 

 

 

 

 

 

But flow only reliable for small motions, and we may have 

occlusions, textureless regions that yield bad estimates 

anyway… 

 

… 

… 



Motion estimation techniques 

• Direct methods 
• Directly recover image motion at each pixel from spatio-temporal 

image brightness variations 

• Dense motion fields, but sensitive to appearance variations 

• Suitable for video and when image motion is small  

 

• Feature-based methods 
• Extract visual features (corners, textured areas) and track them 

over multiple frames 

• Sparse motion fields, but more robust tracking 

• Suitable when image motion is large (10s of pixels) 

 
 



Feature-based matching for motion 

Interesting point 
Best matching 

neighborhood 
Time t Time t+1 

Search 

window 

Search window is centered at the point 

where we last saw the feature, in image I1. 

 

Best match = position where we have the 

highest normalized cross-correlation value. 
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Example: A Camera Mouse 

Video interface: use feature tracking as mouse 

replacement 

• User clicks on the feature to 

be tracked  

• Take the 15x15 pixel square 

of the feature  

• In the next image do a 

search to find the 15x15 region 

with the highest correlation  

• Move the mouse pointer 

accordingly  

• Repeat in the background 

every 1/30th of a second  

 
James Gips and Margrit Betke 

http://www.bc.edu/schools/csom/eagleeyes/ Kristen Grauman 



Example: A Camera Mouse 

Specialized software for communication, games 

James Gips and Margrit Betke 

http://www.bc.edu/schools/csom/eagleeyes/ 
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A Camera Mouse 

Specialized software for communication, games 

James Gips and Margrit Betke 

http://www.bc.edu/schools/csom/eagleeyes/ 
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Feature-based matching for motion 

• For a discrete matching search, what are the 

tradeoffs of the chosen search window size? 

 

 

 

 

• Which patches to track? 
• Select interest points – e.g. corners 

• Where should the search window be placed? 
• Near match at previous frame 

• More generally, taking into account the expected 

dynamics of the object 
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Detection vs. tracking 

… 

t=1 t=2 t=20 t=21 
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Detection vs. tracking 

… 

Detection: We detect the object independently in 

each frame and can record its position over time, 

e.g., based on blob’s centroid or detection 

window coordinates 
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Detection vs. tracking 

… 

Tracking with dynamics: We use image 

measurements to estimate position of object, but 

also incorporate position predicted by dynamics, 

i.e., our expectation of object’s motion pattern. 
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Tracking with dynamics 

• Use model of expected motion to predict where 

objects will occur in next frame, even before seeing 

the image. 

• Intent:  

– Do less work looking for the object, restrict the search. 

– Get improved estimates since measurement noise is 

tempered by smoothness, dynamics priors. 

• Assumption: continuous motion patterns: 

– Camera is not moving instantly to new viewpoint 

– Objects do not disappear and reappear in different 

places in the scene 

– Gradual change in pose between camera and scene 
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Tracking as inference 

• The hidden state consists of the true parameters 

we care about, denoted X. 
 

• The measurement is our noisy observation that 

results from the underlying state, denoted Y. 

 

• At each time step, state changes (from Xt-1 to Xt ) 

and we get a new observation Yt. 
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State vs. observation 

Hidden state : parameters of interest 

Measurement : what we get to directly observe 
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Tracking as inference 

• The hidden state consists of the true parameters 

we care about, denoted X. 
 

• The measurement is our noisy observation that 

results from the underlying state, denoted Y. 
 

• At each time step, state changes (from Xt-1 to Xt ) 

and we get a new observation Yt. 
 

• Our goal: recover most likely state Xt  given 

– All observations seen so far. 

– Knowledge about dynamics of state transitions. 
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Time t Time t+1 

Tracking as inference: intuition 

Belief 

Measurement 

Corrected prediction 
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old belief 

measurement 

Belief: prediction 

Corrected prediction 

Belief: prediction 

Tracking as inference: intuition 

Time t Time t+1 
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Independence assumptions 

• Only immediate past state influences current state 

 

 
• Measurement at time t depends on current state 

dynamics model 

observation model 

   110 ,,   tttt XXPXXXP 

   tttttt XYPXYXYXYP  ,,,, 1100 
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• Prediction: 

– Given the measurements we have seen up to 

this point, what state should we predict? 

 

 

• Correction: 

– Now given the current measurement, what 

state should we predict? 

 

 

Tracking as inference 

 10 ,, tt yyXP 

 tt yyXP ,,0 
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Questions 

• How to represent the known dynamics that govern the 

changes in the states? 
 

• How to represent relationship between state and 

measurements, plus our uncertainty in the measurements? 
 

• How to compute each cycle of updates? 

Representation: We’ll consider the class of linear 

dynamic models, with associated Gaussian pdfs. 

 

Updates: via the Kalman filter. 
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Notation reminder 

• Random variable with Gaussian probability 

distribution that has the mean vector μ and 

covariance matrix Σ. 

• x and μ are d-dimensional, Σ is d x d. 

),(~ Σμx N

d=2 d=1 

If x is 1-d, we 

just have one 

Σ parameter -

 the 

variance: σ2 
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Linear dynamic model 

• Describe the a priori knowledge about  

– System dynamics model: represents evolution 

of state over time. 

 

 

 

– Measurement model: at every time step we 

get a noisy measurement of the state. 

);(~ 1 dtt N ΣDxx 

);(~ mtt N ΣMxy

n x n n x 1 n x 1 

m x n n x 1 m x 1 
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Example: randomly 

drifting points 

• Consider a stationary object, with state as position 

• Position is constant, only motion due to random 
noise term. 

• State evolution is described by identity matrix D=I 

 

 

);(~ 1 dtt N ΣDxx 



Example: Constant 

velocity (1D points) 

time 

measurements 

states 1
 d

 p
o

s
it

io
n

  
1 d position  
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• State vector: position p and velocity v 

 

 

 

 

 

 

• Measurement is position only 

Example: Constant 

velocity (1D points) 
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Questions 

• How to represent the known dynamics that govern the 

changes in the states? 
 

• How to represent relationship between state and 

measurements, plus our uncertainty in the measurements? 
 

• How to compute each cycle of updates? 

Representation: We’ll consider the class of linear 

dynamic models, with associated Gaussian pdfs. 

 

Updates: via the Kalman filter. 
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The Kalman filter 

• Method for tracking linear dynamical models in 

Gaussian noise 

• The predicted/corrected state distributions are 

Gaussian 

– Only need to maintain the mean and covariance 

– The calculations are easy 

Kristen Grauman 



Kalman filter 

Know prediction of 

state, and next 

measurement  

Update distribution over 

current state. 

Know corrected state 

from previous time step, 

and all measurements up 

to the current one   

Predict distribution over 

next state. 

Time advances: t++ 

Time update 

(“Predict”) 

Measurement update 

(“Correct”) 

Receive 

measurement 

 10 ,, tt yyXP 



tt  ,

Mean and std. dev. 

of predicted state: 

 tt yyXP ,,0 



tt  ,

Mean and std. dev. 

of corrected state: 
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1D Kalman filter: Prediction 

• Have linear dynamic model defining predicted state 

evolution, with noise 

 
 

• Want to estimate predicted distribution for next state 

 

 

• Update the mean: 

 

 

• Update the variance: 
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1D Kalman filter: Correction 

• Have linear model defining the mapping of state 

to measurements: 
 

 

 

• Want to estimate corrected distribution given 

latest meas.: 

 

• Update the mean: 

 

 

• Update the variance: 
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Prediction vs. correction 

• What if there is no prediction uncertainty 

 

 

 
 

• What if there is no measurement uncertainty 
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The prediction is ignored! 
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Kalman filter processing 

time 

o state 

x measurement 

*  predicted mean estimate 

+ corrected mean estimate 

bars:  variance estimates 

before and after measurements 

Constant velocity model 
p

o
s
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io
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Time t Time t+1 Kristen Grauman 
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Kalman filter processing 

time 

o state 

x measurement 

*  predicted mean estimate 

+ corrected mean estimate 

bars:  variance estimates 
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A bat census 

http://www.cs.bu.edu/~betke/research/bats/ 
Kristen Grauman 



Video synopsis 

• http://www.vision.huji.ac.il/video-synopsis/ 
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Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 



Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 

– Which measurements go with which tracks? 



Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 

• Deformable and articulated objects 



Recall:  

tracking via deformable contours 

1. Use final contour/model extracted at frame  t  as 

an initial solution for frame t+1 

2. Evolve initial contour to fit exact object boundary 

at frame t+1 

3. Repeat, initializing with most recent frame. 

Visual Dynamics Group, Dept. Engineering Science, University of Oxford. 

http://www.robots.ox.ac.uk/~vdg/~vdg/


Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 

• Deformable and articulated objects 

• Constructing accurate models of dynamics 

– E.g., Fitting parameters for a linear dynamics model 

• Drift 

– Accumulation of errors over time 



Drift 

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 

Appearance. PAMI 2007. 

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Summary 

• Tracking as inference 

– Goal: estimate posterior of object position given 
measurement 

• Linear models of dynamics 

– Represent state evolution and measurement 
models 

• Kalman filters 

– Recursive prediction/correction updates to refine 
measurement 

• General tracking challenges 

 


