
<u>Teste – Visão Computacional</u>

Data: 28/10/2011 Docente: Miguel Tavares Coimbra Duração: 2 horas

1. Sinal Digital

- a) Descreva as operações de amostragem e quantização, necessárias à conversão de um sinal analógico em sinal digital. (2 valores)
- **b**) Considere um sinal analógico f com o espectro de frequências F representado na Figura 1.
 - i. Qual a frequência mínima de amostragem necessária para representar correctamente o sinal no domínio digital? (1 valor)
 - **ii.** Explique o que acontece quando a frequência de amostragem é inferior a este valor. (1 valor)
- c) Defina o conceito de cor em termos de radiação electromagnética, e descreva uma solução tecnológica a nível de sensores que permita capturar imagens a cor. (2 valores)
- **d**) O que nos referimos quando falamos da *saturação* de uma cor? (2 valores)

- **2. Imagem Digital.** Considere a imagem representada na Figura 2. Os valores estão representados no espaço (R,G,B) e foi usada uma quantização de 8 bits.
 - a) Desenhe o histograma de *intensidade* da imagem. (2 valores)
 - **b**) Aplique a técnica de equalização de histograma ao resultado da alínea anterior. Caso não a tenha conseguido resolver, crie um histograma da *intensidade* de uma imagem à sua escolha, garantindo que seja relevante a aplicação da técnica pedida. Apresente os cálculos efectuados. (2 valores)

(0,0,0)	(50,20,80)	(100,100,100)	(60, 30, 60)
(0, 0, 0)	(55,25,70)	(100, 100, 100)	(100, 100, 100)
(0, 0, 0)	(100, 100, 100)	(100, 100, 100)	(255, 255, 255)
(0, 0, 0)	(100, 100, 100)	(100, 100, 100)	(255, 255, 255)

Figura 2

3. Filtros Digitais

a) Aplique um dos filtros de Sobel (Gx - Figura 3.b) à imagem de *intensidade* representada na Figura 3.a). Calcule apenas o resultado dos pontos marcados a cinzento. (2 valores)

10	10	4	0
10	10	4	0
10	10	2	0
10	10	2	0

-1 0 1 -2 0 2 -1 0 1

Figura 3.a)

Figura 3.b)

- **b**) Este filtro é um dos passos necessários para a obtenção de um *detector de fronteiras*. Descreva o resto de um algoritmo que permita obter uma imagem binária onde uma fronteira equivale a um valor 1 (um), sendo o valor dos outros pontos igual a 0 (zero). (2 valores)
- c) O que acontece quando tenta aplicar o filtro da Figura 3.b) aos pontos não marcados a cinzento da Figura 3.a)? Descreva duas formas distintas para lidar com este problema, argumentado os seus pontos positivos e negativos. (2 valores)
- **d**) Descreva por palavras suas a propriedade da convolução da transformada de Fourier. Explique a importância desta propriedade para algoritmos de visão computacional. (2 valores)