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e Artificial neural networks
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* Biomedical application examples
— Image classification
— Image segmentation
— Image reconstruction

* Application challenges
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Deep learning:
did you hear about that?

« (Google image recognition
« Facebook face recognition
« (Google translator

 DeepMind AlphaGo player

* Netflix, Amazon, Spotify
recommendation engines

« Image colorization

« Image caption generation
« Sentiment analysis

« Efc...
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What Is deep learning?

* Itis a specific area of machine learning
— Supervised learning
— Unsupervised learning
— Reinforcement learning

* |ldea (supervised learning): learn how to make
decisions, perform a task, from examples

dog cat dog or cat?
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How to extract information from
the raw data?

Acquire the data, observations to be classified or described

Compute numeric or symbolic information starting from the data:
e.g., color, shape, texture, etc.

Classify or describe the observation, relying on the extracted features
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More specifically

* Deep learning refers to a class of learning
algorithms

* They are based on the use of a specific
kind of classifiers: neural networks (NNs)
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Biological Neural Networks

* Neuroscience:

— Population of
physically inter-
connected neurons.

* Includes:

— Biological Neurons

— Connecting Synapses
* The human brain:

— 100 billion neurons

— 100 trillion synapses
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Biological Neuron

* Neurons:
— Have K inputs (dendrites).
— Have 1 output (axon).

— If the sum of the input
signals surpasses a
threshold, sends an action
potential to the axon.

* Synapses

— Transmit electrical signals
between neurons.
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Artificial Neuron

* Also called the McCulloch-Pitts neuron.

» Passes a weighted sum of inputs, to an
activation function, which produces an

output value.
3 Z WijTj
4=}

Ip = —I—l
W. McCulloch, W. Pitts, (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 7:115 - 133.

PORTO VC 19/20 - Deep Learning




Sample activation functions

* Rectifled Linear Unit (ReLU)
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Artificial Neural Network

« Commonly refered as

Hidden
Neural Network. .
e Basic principles: Output
— One neuron can
perform a simple

decision.
— Many connected

neurons can make
more complex
decisions.
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Characteristics of a NN

* Network configuration
— How are the neurons inter-connected?

— We typically use layers of neurons (input,
output, hidden).

* Individual neuron parameters

: : L ™
— Weights associated with inputs. How do we
— Activation function. find these
— Decision thresholds. values? y
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Learning paradigms

* We can define the network configuration.

 How do we define neuron weights and
decision thresholds?
— Learning step.
— We train the NN to classify what we want.

— (Supervised learning): We need to have
access to a set of training data for which we
know the correct class/answer
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Learning

« \We want to obtain an optimal solution
given a set of observations.

A cost function measures how close our
solution Is to the optimal solution.

* Objective of our learning step:
— Minimize the cost function.

Backpropagation
Algorithm
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In formulas

Network output: Out(x Z wh (. Z w, Z wiy v

nput el

Training set: {(zi,¥:)}i—1 . N

Optimization: find [w'}),w?, ..., w)] such that
N
minimize Z Loss(Out(x;), y;)

1=1
It is solved with (variants of) the gradient descent, where
gradients are computed via the backpropagation algorithm
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Warnings!

* |s the NN too simple for the data?
— Underfitting: cannot capture data behavior

* Is the NN too complex for the data?

— Overfitting: fit perfectly training data, but will
not generalize well on unseen data
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Feedforward neural network

mn

Simplest type of NN.
Has no cycles.
Input layer

— Need as many
neurons as
coefficients of my
feature vector.

Hidden layers.
Output layer

— Classification results.

[BAPORTO
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Deep learning = Deep neural
networks

* Deep = high number of hidden layers
— Learn a larger number of parameters!

* It has been recently (~ in the last 6 years)
possible since we have:
— Access to big amounts of (training) data

— Increased computational capabillities (e.g.,
GPUSs)
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Convolutional neural networks
(CNNSs)

 Feedforward neural networks

* Weight multiplications are replaced by
convolutions (filters)

 Change of paradigm: can be directly
applied to the raw signal, without
computing first ad hoc features

* Features are learnt automatically!!
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End-to-end learning

Acquire the data, observations to be classified or
described

Classify or describe the observation,
automatically extracting (learnt) features
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Convolution
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PORTO VC 19/20 - Deep Learning |- Goodfellow, Y. Bengio, and A. Courville. Deep learning. Vol. 1.
. Cambridge: MIT press, 2016.




CNN example

C| feature C2 feature
maps maps

S| feature
maps

S2 feature
maps

Output

Full

Connection

\

Convolutions

\

Subsampling

Convolutions

Subsampling

Convolutions

« Convolutional layers, followed by nonlinear activation and
subsampling

« Output of hidden layers (feature maps) = features learnt by the CNN
» Before classification, fully connected layers (as in “standard” NN)
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Automatically learnt features

Retain most information (edge detectors)

Towards more abstract representation

block4_conv1

2

Encode high level concepts

r

block5_conv1

Sparser representations:
Detect less (more abstract) features
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CNN - Properties

* Reduced amount of parameters to learn (local
features)

« More efficient than dense multiplication

« Specifically thought for images or data with grid-
like topology

« Convolutional layers are equivariant to
translation (useful for classification!)

« Currently state-of-the-art in several tasks
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Image/signal classification

* ODbjective: given an image/signal, produce
a label

« Computer Aided Decision (CAD) systems:
— Help human operator in taking decision
— Continuous monitoring

— Screening:
« Reduce number of unnecessary exams
« Reduce number of missed detections
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Successful biomedical
application

* Diabetic retinopathy detection

« Tumor detection from MRI, CT,
X-rays, etc

« Skin lesion classification from
clinical and dermoscopic
Images

« Heart sound classification:
normal vs. abnormal, murmur
classification

 Parkinson’s disease detection
from voice recording
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AlexNet
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* Winner of ILSVRC 2012
« Marked the beginning of recent deep learning revolution

U PORTO VC 19/20 - Deep Learning A. Krizhevsky, I. Sutskever, and G. Hinton. "ImageNet
- Classification with Deep Convolutional Neural." In NIPS, pp. 1-9.
2014.




VGG-16

FC
Prediction
(————— =]

, K. Simonyan and A. Zisserman, “Very deep convolutional
VC 19/20 - Deep Learning networks for large-scale image recognition,” in Proc. Int.
Conf. Learn. Representations, 2015.

* Very small filters (3x3)
* Deeper than AlexNet:16 layers
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50 layers cfg=13,4,6,3]
101 layers cfg=[3,4,23,8]
152 layers cfg=13,8,36,3]
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From: https://www.codeproject.com/Articles/1248963/Deep-Learning-using-Python-plus-Keras-Chapter-Re

* Increase the number of layers by introducing a residual
connection

* Blocks are actually learning residual functions: easier!

. K. He, X. Zhang, S. Ren, and J. Sun. "Deep residual learning for
PORTO VC 19/20 - Deep Learning image recognition.” In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 770-778. 2016.




Image/signal semantic
segmentation
* ODbjective: partition an image/signal in
multiple segments, sets of pixels/samples

« Similar to classification, but a label is
assigned to each pixel of the image

* Used for understanding and interpretation:
— Highlight region of interest

— Compute volume
— Surgery planning
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Successful biomedical

applications

* MRI tumor
segmentation

« X-Ray image
segmentation

« Electron and light
mICcroscopy
segmentation

» Heart sound .
segmentation

 Etc.
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U-Net
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 Encoder-decoder structure

O. Ronneberger, P. Fischer, and T. Brox. "U-net: Convolutional
networks for biomedical image segmentation.” In International

PORTO VC 19/20 - Deep Learning  conference on Medical image computing and computer-assisted
< intervention, pp. 234-241. Springer, Cham, 2015.




Image reconstruction/acquisition

* Recover a full image of interest from
nartial measurements/observations

 Increase de quality/resolution of acquired
Image

* Reduce the impact of reconstruction
artifacts

* Reduce acquisition time/dose
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Example: Computer
Tomography

Hi

llllll

CT measurements

Direct reconstruction Reconstruction with CNN
from downsampled sinogram

M. McCann, K. Jin, and M. Unser. "A review of convolutional

PORTO VC 19/20 - Deep Learning neural networks for inverse problems in imaging." arXiv

preprint arXiv:1710.04011 (2017).




Remarks

 Itis aregression problem, not a classification
problem
— The CNN output Is not a class label, but a
collection of real numbers (the recovered image)

* Loss function: usually different from
classification problems (e.g., L2-norm, in space
or frequency domain)

* Training set: pairs of ground truth images (fully
sampled) and downsampled measurements
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Modified U-Net
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FBP (full views)

FBP
i - — 2

. \
[1 64 64 64 < # of channels 12864 64 1 1
U-net
o i d e e d md s +®+ -
. spatial dimension :512x512
. v
(64" 128128 256 128 128
L 256 x 256 }
128 256 256 512 256 2156\ » 3x3conv. + BN
- > » > + RelLU
128x 128" _ v 2x 2 max pooling
,+ k- .
— S skip connection
(256 512 512 512 512 .
and concatenation
saxca H-H-N N DI
512+ 1024 |1024\‘| + BN + RelLU
32 x 32\ 1N - 1x1conv.

[BAPORTO

VC 19/20 - Deep Learning

K. Jin, M. McCann, E. Froustey, and M. Unser. "Deep
convolutional neural network for inverse problems in
imaging.” IEEE Transactions on Image Processing 26, no. 9
(2017): 4509-4522.



Application challenges

* Great results! But...
— Difficult to select best architecture for a problem
— Require new training for each task/configuration

— (Most commonly) require a large training dataset to
generalize well

« Data augmentation, weight regularization, transfer
learning, etc.

— Still not fully understood why it works so well
« Robustness against adversarial examples
» Approval from government agencies (ex. FDA)?
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To know more...

* Theory

— |. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Vol. 1.
Cambridge: MIT press, 2016. (https://www.deeplearningbook.org/)

e Survey papers

— "Deep Learning for Visual Understanding,” in IEEE Signal Processing
Magazine, vol. 34, no. 6, Nov. 2017.

— A. Lucas, M. lliadis, R. Molina and A. K. Katsaggelos, "Using Deep
Neural Networks for Inverse Problems in Imaging: Beyond Analytical
Methods," in IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 20-
36, Jan. 2018.

 Tutorial

— Oxford Visual Geometry Group: VGG Convolutional Neural Networks
Practical (http://www.robots.ox.ac.uk/~vgg/practicals/cnn/)
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To start coding

« Coding frameworks for deep learning

— TensorFlow (https://www.tensorflow.org/),
PyTorch (https://pytorch.org/),

Theano (http://deeplearning.net/software/theano/),

MatConNet (http://www.vlfeat.org/matconvnet/),
etc.

« High-level wrappers

— Keras (https://keras.io/),

TensorLayer (https://tensorlayer.readthedocs.io/en/stable/),

Lasagne (https://lasagne.readthedocs.io/en/latest/),
etc.

 GPU strongly recommended!

PORTO VC 19/20 - Deep Learning




