VC 19/20 – TP6 Frequency Space

Mestrado em Ciência de Computadores

Mestrado Integrado em Engenharia de Redes e

Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- Fourier Transform
- Frequency Space
- Spatial Convolution

Topic: Fourier Transform

- Fourier Transform
- Frequency Space
- Spatial Convolution

How to Represent Signals?

Option 1: Taylor series represents any function using polynomials.

$$f(x) = f(\alpha) + f'(\alpha)(x - \alpha) + \frac{f''(\alpha)}{2!}$$
$$(x - \alpha)^2 + \frac{f^{(3)}(\alpha)}{3!}(x - \alpha)^3 + \dots + \frac{f^{(n)}(\alpha)}{n!}(x - \alpha)^n + \dots$$

- Polynomials are not the best unstable and not very physically meaningful.
- Easier to talk about "signals" in terms of its "frequencies" (how fast/often signals change, etc).

Jean Baptiste Joseph Fourier (1768-1830)

- Had a crazy idea (1807):
- Any periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies.
- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's true!
 - called Fourier Series
 - Possibly the greatest tool used in Engineering

A Sum of Sinusoids

Our building block:

$$A\sin(\omega x + \phi)$$

- Add enough of them to get any signal f(x) you want!
- How many degrees of freedom?
- What does each control?
- Which one encodes the coarse vs. fine structure of the signal?

Fourier Transform

• We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x:

- For every ω from 0 to inf, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine
 - How can F hold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

$$A\sin(\omega x + \phi)$$

$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

Time and Frequency

• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

Time and Frequency

• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

Usually, frequency is more interesting than the phase

Fourier Transform – more formally

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

Arbitrary function
$$\longrightarrow$$
 Single Analytic Expression Spatial Domain (x) \longrightarrow Frequency Domain (u)

(Frequency Spectrum *F(u)*)

Inverse Fourier Transform (IFT)
$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} dx$$

Fourier Transform

Also, defined as:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-iux}dx$$

Note: $e^{ik} = \cos k + i \sin k$ $i = \sqrt{-1}$

Inverse Fourier Transform (IFT)

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u)e^{iux} dx$$

Properties of Fourier Transform

 $c_1 f(x) + c_2 g(x)$ Linearity

f(ax)**Scaling**

Spatial Domain

 $f(x-x_0)$ **Shifting**

F(x)**Symmetry**

 $f^*(x)$ Conjugation

f(x)*g(x)Convolution

 $\frac{d^n f(x)}{}$ Differentiation

$$c_1F(u)+c_2G(u)$$

$$\frac{1}{|a|}F\left(\frac{u}{a}\right)$$
 Frequency Domain

$$e^{-i2\pi u x_0}F(u)$$

$$f(-u)$$

$$F^*(-u)$$

$$(i2\pi u)^n F(u)$$

Topic: Frequency Space

- Fourier Transform
- Frequency Space
- Spatial Convolution

How does this apply to images?

 We have defined the Fourier Transform as

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-iux}dx$$

- But images are:
 - Discrete.
 - Two-dimensional.

What a computer sees

2D Discrete FT

In a 2-variable case, the discrete FT pair is:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \exp[-j2\pi(ux/M + vy/N)]$$
For u=0,1,2,...,M-1 and v=0,1,2,...,N-1

With the same size!

AND:
$$f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) \exp[j2\pi(ux/M + vy/N)]$$

For
$$x=0,1,2,...,M-1$$
 and $y=0,1,2,...,N-1$

Frequency Space

- Image Space
 - f(x,y)
 - Intuitive

- Frequency Space
 - -F(u,v)
 - What does this mean?

Power distribution

An image (500x500 pixels) and its Fourier spectrum. The super-imposed circles have radii values of 5, 15, 30, 80, and 230, which respectively enclose 92.0, 94.6, 96.4, 98.0, and 99.5% of the image power.

Power distribution

- Most power is in low frequencies.
- Means we are using more of this:

And less of this:

To represent our signal.

Why?

Horizontal and Vertical Frequency

Frequencies:

- Horizontal frequencies correspond to horizontal gradients.
- Vertical frequencies correspond to vertical gradients.
- What about diagonal lines?

Why bother with FT?

- Great for filtering.
- Great for compression.
- In some situations: Much faster than operating in the spatial domain.
- Convolutions are simple multiplications in Frequency space!
- •

Topic: Spatial Convolution

- Fourier Transform
- Frequency Space
- Spatial Convolution

Convolution

$$g(x) = \int_{-\infty}^{\infty} f(\tau)h(x-\tau)d\tau \qquad g = f * h$$

Convolution - Example

Eric Weinstein's Math World

Convolution - Example

Convolution Kernel – Impulse Response

$$g = f * h$$

• What h will give us g = f?

Dirac Delta Function (Unit Impulse)

Point Spread Function

 Ideally, the optical system should be a Dirac delta function.

 However, optical systems are never ideal.

 Point spread function of Human Eyes.

Point Spread Function

myopia

hyperopia

Properties of Convolution

Commutative

$$a*b=b*a$$

Associative

$$(a*b)*c = a*(b*c)$$

Cascade system

$$f \longrightarrow h_1 \longrightarrow h_2 \longrightarrow g$$

$$= f \longrightarrow h_1 * h_2 \longrightarrow g$$

$$= f \longrightarrow h_2 * h_1 \longrightarrow g$$

Fourier Transform and Convolution

Let
$$g = f * h$$
 Then $G(u) = \int_{-\infty}^{\infty} g(x)e^{-i2\pi ux}dx$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)h(x-\tau)e^{-i2\pi ux}d\tau dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau}d\tau \right] h(x-\tau)e^{-i2\pi u(x-\tau)}dx$$

$$= \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau}d\tau \right] \int_{-\infty}^{\infty} \left[h(x')e^{-i2\pi ux'}dx' \right] = F(u)H(u)$$

Convolution in spatial domain

Multiplication in frequency domain

Fourier Transform and Convolution

Spatial Domain
$$(x)$$
 Frequency Domain (u)

$$g = f * h \qquad \longleftrightarrow \qquad G = FH$$

$$g = fh \qquad \longleftrightarrow \qquad G = F * H$$

So, we can find g(x) by Fourier transform

Example use: Smoothing/Blurring

• We want a smoothed function of f(x)

$$g(x) = f(x) * h(x)$$

Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \frac{x^2}{\sigma^2}\right]$$

Then

$$H(u) = \exp\left[-\frac{1}{2}(2\pi u)^2\sigma^2\right]$$

$$G(u) = F(u)H(u)$$

Resources

- Russ Chapter 6
- Gonzalez & Woods Chapter 4