VC 19/20 - TP6 Frequency Space

Mestrado em Ciência de Computadores
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- Fourier Transform
- Frequency Space
- Spatial Convolution

Topic: Fourier Transform

- Fourier Transform
- Frequency Space
- Spatial Convolution

How to Represent Signals?

- Option 1: Taylor series represents any function using polynomials.

$$
\begin{aligned}
& f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!} \\
& \quad(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(x)}(a)}{n!}(x-a)^{n}+\ldots
\end{aligned}
$$

- Polynomials are not the best - unstable and not very physically meaningful.
- Easier to talk about "signals" in terms of its "frequencies" (how fast/often signals change, etc).

Jean Baptiste Joseph Fourier (1768-1830)

- Had a crazy idea (1807):
- Any periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies.
- Don't believe it?
- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!
- But it's true!
- called Fourier Series
- Possibly the greatest tool used in Engineering

\square

A Sum of Sinusoids

- Our building block:

$$
A \sin (\omega x+\phi)
$$

- Add enough of them to get any signal $f(x)$ you want!
- How many degrees of freedom?
- What does each control?
- Which one encodes the coarse vs. fine structure of the signal?

Fourier Transform

- We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x :

- For every ω from 0 to inf, $\boldsymbol{F}(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine
- How can F hold both? Complex number trick!

$$
\begin{aligned}
& F(\omega)=R(\omega)+i I(\omega) \\
& A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}}
\end{aligned}
$$

$$
A \sin (\omega x+\phi)
$$

$$
\phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}
$$

Time and Frequency

- example : $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Time and Frequency

- example : $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Frequency Spectra

- example : $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

U. PORTO VC 1920 - Tp6 - Freauenery Space

Frequency Spectra

- Usually, frequency is more interesting than the phase

Frequency Spectra

Fourier Transform - more formally

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$
\begin{aligned}
& F(u)=\int_{-\infty}^{\infty} f(x) e^{-i 2 \pi u x} d x \\
& \quad \text { Note: } e^{i k}=\cos k+i \sin k \quad i=\sqrt{-1}
\end{aligned}
$$

Arbitrary function \longrightarrow Single Analytic Expression
Spatial Domain $(x) \longrightarrow$ Frequency Domain (u) (Frequency Spectrum F(u))

Inverse Fourier Transform (IFT) $\quad f(x)=\int_{-\infty}^{\infty} F(u) e^{i 2 \pi u x} d x$

Fourier Transform

- Also, defined as:

$$
F(u)=\int_{-\infty}^{\infty} f(x) e^{-i u x} d x
$$

Note: $e^{i k}=\cos k+i \sin k \quad i=\sqrt{-1}$

- Inverse Fourier Transform (IFT)

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u) e^{i u x} d x
$$

Properties of Fourier Transform

Linearity

$$
c_{1} f(x)+c_{2} g(x)
$$

Scaling

$$
\begin{array}{l|l|}
f(a x) & \begin{array}{l}
\text { Spatial } \\
\text { Domain }
\end{array} \\
\hline
\end{array}
$$

Shifting
Symmetry $\quad F(x)$
Conjugation $\quad f^{*}(x)$
Convolution $\quad f(x) * g(x)$
Differentiation $\frac{d^{n} f(x)}{d x^{n}}$

$$
\begin{aligned}
& c_{1} F(u)+c_{2} G(u) \\
& \frac{1}{|a|} F\left(\frac{u}{a}\right) \quad \begin{array}{c}
\text { Frequency } \\
\text { Domain }
\end{array}
\end{aligned}
$$

$e^{-i 2 \pi u x_{0}} F(u)$
$f(-u)$
$F^{*}(-u)$
$F(u) G(u)$
$(i 2 \pi u)^{n} F(u)$

Topic: Frequency Space

- Fourier Transform
- Frequency Space
- Spatial Convolution

How does this apply to images?

- We have defined the Fourier Transform as

$$
F(u)=\int_{-\infty}^{\infty} f(x) e^{-i u x} d x
$$

- But images are:
- Discrete.
- Two-dimensional.

What a computer sees

2D Discrete FT

- In a 2-variable case, the discrete FT pair is:

$$
\begin{aligned}
& F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \exp [-j 2 \pi(u x / M+v y / N)] \\
& \text { For } u=0,1,2, \ldots, M-1 \text { and } v=0,1,2, \ldots, N-1 \\
& \text { New matrix } \\
& \text { with the } \\
& \text { same size! }
\end{aligned}
$$

AND: $\quad f(x, y)=\sum_{u=0}^{M-1 N-1} F(u, v) \exp [j 2 \pi(u x / M+v y / N)]$
For $x=0,1,2, \ldots, M-1$ and $y=0,1,2, \ldots, N-1$

Frequency Space

- Image Space
$-f(x, y)$
- Intuitive

- Frequency Space
- F(u,v)
- What does this mean?

Power distribution

An image (500×500 pixels) and its Fourier spectrum. The super-imposed circles have radii values of $5,15,30,80$, and 230 , which respectively enclose 92.0, 94.6, 96.4, 98.0, and 99.5% of the image power.

Power distribution

- Most power is in low frequencies.
- Means we are using more of this:

And less of this:

To represent our signal.
-Why?

Horizontal and Vertical Frequency

- Frequencies:
- Horizontal frequencies correspond to horizontal gradients.
- Vertical frequencies correspond to vertical gradients.
- What about diagonal lines?

Why bother with FT?

- Great for filtering.
- Great for compression.
- In some situations: Much faster than operating in the spatial domain.
- Convolutions are simple multiplications in Frequency space!

Topic: Spatial Convolution

- Fourier Transform
- Frequency Space
- Spatial Convolution

Convolution

Convolution - Example

$$
\begin{aligned}
& f \\
& -g \\
& -f * g
\end{aligned}
$$

Eric Weinstein's Math World

VC 19/20-TP6 - Frequency Space

Convolution - Example

$$
\downarrow c=a * b
$$

Convolution Kernel - Impulse Response

- What h will give us $g=f$?

Dirac Delta Function (Unit Impulse)

$$
g=f * h
$$

Point Spread Function

- Ideally, the optical system should be a Dirac delta function.

- However, optical systems are never ideal.
 $\underset{\substack{\delta(x) \\ \delta(x)}}{\longrightarrow} \begin{gathered}\text { Optical } \\ \text { System }\end{gathered} \rightarrow P$ point spread function
- Point spread function of Human Eyes.

Point Spread Function

normal vision

myopia

hyperopia

Properties of Convolution

- Commutative

$$
a * b=b * a
$$

- Associative

$$
(a * b) * c=a *(b * c)
$$

- Cascade system

$$
\begin{aligned}
f & \longrightarrow h_{1} \longrightarrow h_{2} \longrightarrow g \\
& =f \longrightarrow h_{1} * h_{2} \longrightarrow g \\
& =f \longrightarrow h_{2} * h_{1} \longrightarrow g
\end{aligned}
$$

Fourier Transform and Convolution

$$
\begin{aligned}
& \text { Let } g=f * h \quad \text { Then } \quad G(u)=\int_{-\infty}^{\infty} g(x) e^{-i 2 \pi u x} d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) h(x-\tau) e^{-i 2 \pi u x} d \tau d x \quad \\
& \left.=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[f(\tau) e^{-i 2 \pi u \tau} d \tau\right] h(x-\tau) e^{-i 2 \pi u(x-\tau)} d x\right] \\
& =\int_{-\infty}^{\infty}\left[f(\tau) e^{-i 2 \pi u \tau} d \tau\right] \int_{-\infty}^{\infty}\left[h\left(x^{\prime}\right) e^{-i 2 \pi u x^{\prime}} d x^{\prime}\right] \quad=F(u) H(u)
\end{aligned}
$$

Convolution in spatial domain \Leftrightarrow Multiplication in frequency domain

Fourier Transform and Convolution

$$
\begin{array}{c:cc}
\text { Spatial Domain }(x) & \text { Frequency Domain (u) } \\
g=f * h & \longleftrightarrow & G=F H \\
g=f h & \vdots & G=F * H
\end{array}
$$

So, we can find $g(x)$ by Fourier transform

Example use: Smoothing/Blurring

- We want a smoothed function of $f(x)$

$$
g(x)=f(x) * h(x)
$$

- Let us use a Gaussian kernel

$$
h(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}\right]
$$

- Then

$$
\begin{aligned}
& H(u)=\exp \left[-\frac{1}{2}(2 \pi u)^{2} \sigma^{2}\right] \\
& G(u)=F(u) H(u)
\end{aligned}
$$

Resources

- Russ - Chapter 6
- Gonzalez \& Woods - Chapter 4

