Computer Vision — TP11
Local Invariant Descriptors

Miguel Tavares Coimbra

Acknowledgement: Slides adapted from Kristen Grauman

[BAPORTO




Outline

* Detection of Iinterest points
* Local invariant descriptors
 Classification using visual words
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Topic: Detection of interest points

* Detection of Iinterest points
* Local invariant descriptors
 Classification using visual words
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Motivation: Same interest points

* We want to detect the same points in both
Images




Motivation: ‘"Unique’ descriptor per
Interest point

* We want to match the same interest points

* Need a descriptor invariant to geometric
and photometric differences
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Corners are distinctive interest
points

M =S wix y){l B lx'y} 2 X 2 matrix of image
L,I,|  derivatives (averaged in
neighborhood of a point)
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Gradient strength

Since M Is symmetric, we have M =X

The eigenvalues of M reveal the amount of
iIntensity change in the two principal orthogonal
gradient directions in the window
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Scoring ‘cornerness’

“‘edge’: ‘corner’: “flat” region
A >> A, A, and A, are large, A, and A, are
7\2 >2> 7\.1 7¥1 = 7&2; small;
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One way to score —
the cornerness: )\1 —+ )\2
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Harris corner detector

1) Compute M matrix for image window
surrounding each pixel to get its cornerness
score.

2) Find points with large corner response (f >
threshold)

3) Take the points of local maxima, I.e., perform
non-maximum suppression
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Properties of the Harris corner
detector

 Rotation invariant? Yes _ _
M =X

 Scale invariant?
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Properties of the Harris corner
detector

 Rotation invariant? Yes
« Scale invariant? NoO
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All points will be Corner !
classified as edges
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Automatic scale selection
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From edges to blobs

« Edge =ripple
« Blob = superposition of two ripples

Original signal
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Convolved with Laplacian (o = 1)
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- Spatial selection: the magnitude of the Laplacian Maximum
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob
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Blob detection in 2D
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« Laplacian of
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Gaussian: Circularly
symmetric operator
for blob detection in
2D
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Scale invariant interest points
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Interest points are local
maxima in both
position and scale




Example




Topic: Local invariant descriptors

* Detection of Iinterest points
* Local invariant descriptors
 Classification using visual words
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Geometric transformations

Multiple View
Geometry

0 COmnuler vision

e.g. scale,
translation,
rotation
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SIFT descriptor [Lowe 2004}

« Use histograms to bin pixels within sub-patches

according to their orientation

Why subpatches?

Why does SIFT have
some illumination
Invariance?
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Making descriptor rotation invariant
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 Rotate patch according to its dominant gradient
orientation

« This puts the patches into a canonical orientation
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SIFT descriptor [Lowe 2004}

« Extraordinarily robust matching technique
« Can handle changes in viewpoint
« Can handle significant changes in illumination
« Fast and efficient—can run in real time
» Lots of code available
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NASA Mars Rover images
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NASA Mars Rover images
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SIFT properties

* |nvariant to
— Scale
— Rotation

« Partially invariant to
— lllumination changes
— Camera viewpoint
— Occlusion, clutter
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Summary

* Interest point detection
— Harris corner detector
— Laplacian of Gaussian, automatic scale selection

 |nvariant descriptors
— Rotation according to dominant gradient direction

— Histograms for robustness to small shifts and
translations (SIFT descriptor)
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Topic: Classification using visual
words

* Detection of Iinterest points
* Local invariant descriptors
 Classification using visual words
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Visual words: main idea

 Extract some local features from a number
of images ...
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Visual words: main idea
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Visual words: main idea
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Visual words: main idea
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local descriptor, . ®
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Visual words

* Map high-dimensional descriptors to
tokens by quantizing the feature space

« Quantize via clustering,
let cluster centers be the
prototype “words”

 Determine which word to

/ assign to each new
] Descriptor’s image region by finding
feature space the closest cluster center
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Visual words
Example: each group uunnuuuuuu

of patches belongs to
the same visual word
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Bags of visual woyds

« Summarize entire image H
e -
based on its distribution e’
(histogram) of word
V'

occurrences

« Analogous to bag of words H

. 1 [] —

representation commonly TLw =

used for documents
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Comparing bags of words

 Rank frames by normalized scalar product between their
(possibly weighted) occurrence counts---nearest
neighbor search for similar images

T 71 1 ~ sim(d;,q) = |<d 1l

_ V 1d'(i) q(i)
Jzy d,(i)? + Jz L 4()?

for vocabulary of V words
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Bags of words: pros and cons

flexible to geometry / deformations / viewpoint
compact summary of image content

provides vector representation for sets

very good results in practice

+ + + +

- basic model ignores geometry — must verify
afterwards, or encode via features

- background and foreground mixed when bag covers
whole image

- optimal vocabulary formation remains unclear
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Resources

« Szeliski, “Computer Vision: Algorithms and
Applications”, Springer, 2011
— Chapter 4 — "Feature Detection and Matching”

[BAPORTO




