Computer Vision – TP13 Statistical Classifiers

Miguel Tavares Coimbra

Outline

- Statistical Classifiers
- Neural Networks
- Support Vector Machines

Topic: Statistical Classifiers

- Statistical Classifiers
- Neural Networks
- Support Vector Machines

Statistical PR

- I use statistics to make a decision
 - I can make decisions even when I don't have full a priori knowledge of the whole process
 - I can make mistakes
- How did I recognize this pattern?
 - I learn from previous observations where I know the classification result
 - I classify a new observation

Features

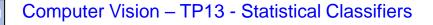
- Feature F_i $F_i = [f_i]$
- Feature *F_i* with *N* values.

$$F_i = [f_{i1}, f_{i2}, ..., f_{iN}]$$

 Feature vector F with M features.

$$F = \left[F_1 \mid F_2 \mid \dots \mid F_M\right]$$

- Naming conventions:
 - Elements of a feature
 vector are called
 coefficients
 - Features may have one or more coefficients
 - Feature vectors may have one or more features



Classifiers

A Classifier C maps a class into the feature space

$$C_{\text{Spain}}(x, y) = \begin{cases} true & , y > K \\ false & , otherwise \end{cases}$$

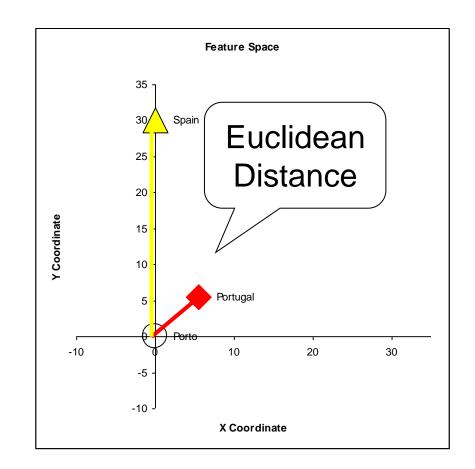
- Various types of classifiers
 - Nearest-Neighbours
 - Neural Networks
 - Support Vector Machines
 - Etc...

Distance to Mean

 I can represent a class by its mean feature vector

$$C = F$$

- To classify a new object, I choose the class with the closest mean feature vector
- Different distance measures!



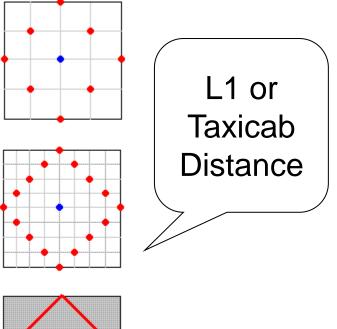
Possible Distance Measures

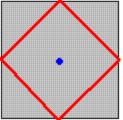
L1 Distance

L1 =
$$\frac{1}{N} \sum_{x=1}^{N} |S(x) - v(x)|$$

 Euclidean Distance (L2 Distance)

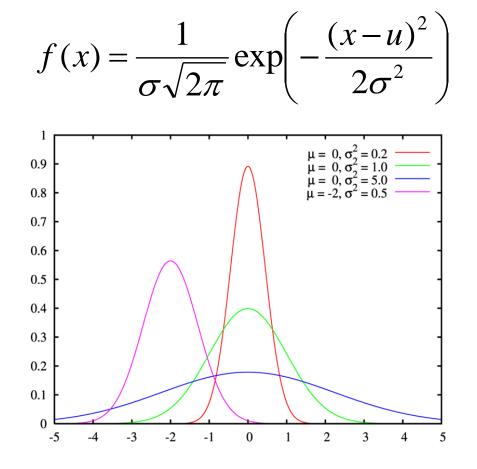
L2 =
$$\frac{1}{N} \sum_{x=1}^{N} (S(x) - v(x))^2$$





Gaussian Distribution

- Defined by two parameters:
 - Mean: µ
 - Variance: σ^2
- Great approximation to the distribution of many phenomena.
 - Central Limit Theorem



Multivariate Distribution

• For N dimensions:

$$f_X(x_1,\ldots,x_N) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)\right)$$

• Mean feature vector:

$$\mu = \overline{F}$$

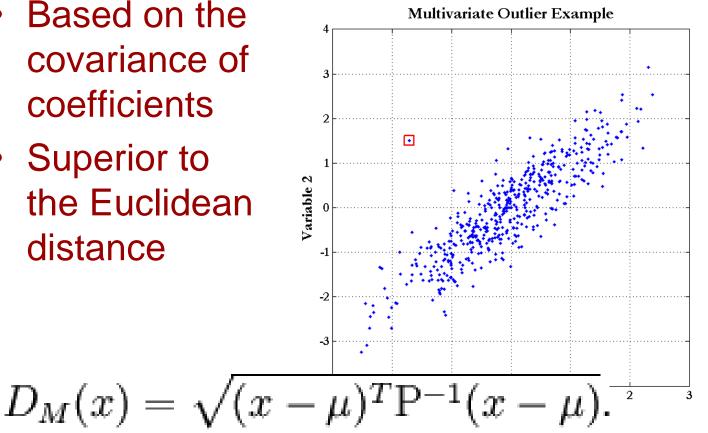
Covariance Matrix:

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \quad \mu_i = \mathcal{E}(X_i) \quad \Sigma_{ij} = \mathcal{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

Computer Vision – TP13 - Statistical Classifiers

Mahalanobis Distance

- Based on the covariance of coefficients
- Superior to the Euclidean distance

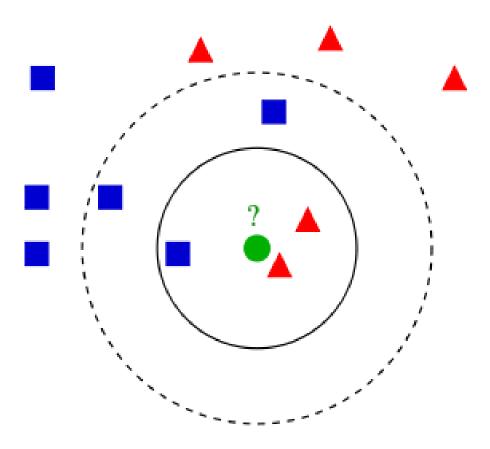


Computer Vision – TP13 - Statistical Classifiers

K-Nearest Neighbours

Algorithm

- Choose the closest K neighbours to a new observation
- Classify the new object based on the class of these K objects
- Characteristics
 - Assumes no model
 - Does not scale very well...



Topic: Neural Networks

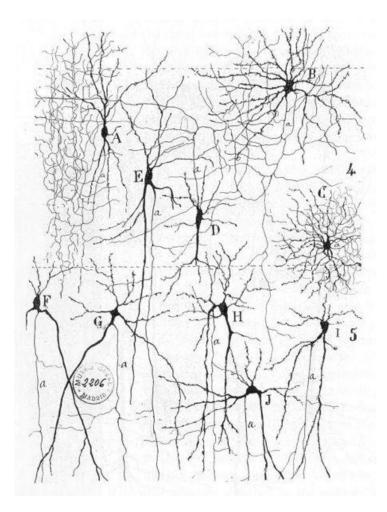
- Statistical Classifiers
- Neural Networks
- Support Vector Machines

If you can't beat it.... Copy it!

14

Biological Neural Networks

- Neuroscience:
 - Population of physically interconnected neurons
- Includes:
 - Biological Neurons
 - Connecting Synapses
- The human brain:
 - 100 billion neurons
 - 100 trillion synapses



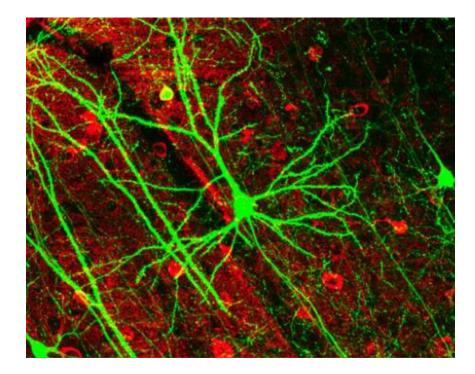
Biological Neuron

• Neurons:

- Have K inputs (dendrites)
- Have 1 output (axon)
- If the sum of the input signals surpasses a *threshold*, sends an *action potential* to the axon

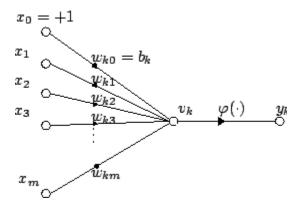
Synapses

 Transmit electrical signals between neurons



Artificial Neuron

- Also called the McCulloch-Pitts neuron
- Passes a weighted sum of inputs, to an activation function, which produces an output value



$$y_k = \varphi\left(\sum_{j=0}^m w_{kj} x_j\right)$$

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7:115 - 133.

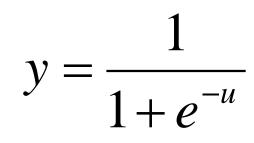
Computer Vision – TP13 - Statistical Classifiers

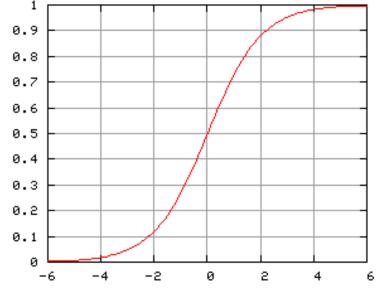
Sample activation functions

Rectified Linear Unit (ReLU)

$$y = \begin{cases} u, & \text{if } u \ge 0\\ 0, & \text{if } u < 0 \end{cases}, \ u = \sum_{i=1}^{n} w_i x_i$$

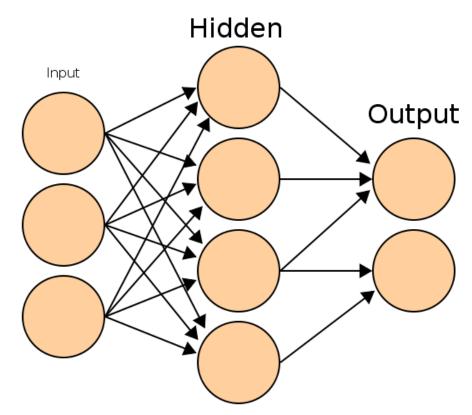
Sigmoid function





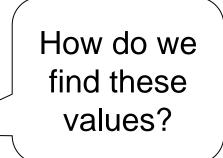
Artificial Neural Network

- Commonly referred as Neural Network
- Basic principles:
 - One neuron can perform a simple decision
 - Many connected neurons can make more complex decisions



Characteristics of a NN

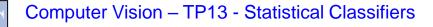
- Network configuration
 - How are the neurons inter-connected?
 - We typically use *layers* of neurons (input, output, hidden)
- Individual Neuron parameters
 - Weights associated with inputs
 - Activation function
 - Decision thresholds



Learning paradigms

- We can define the network configuration
- How do we define neuron weights and decision thresholds?
 - Learning step
 - -We train the NN to classify what we want
- Different learning paradigms
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

Appropriate for Pattern Recognition.

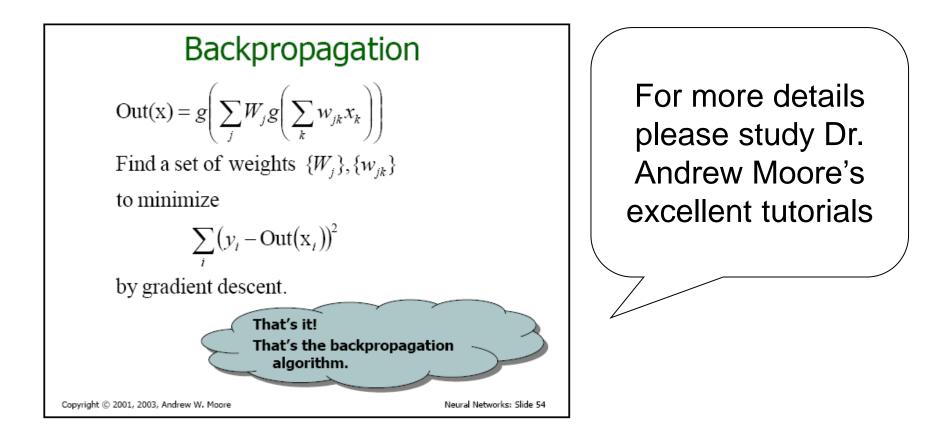


Learning

- We want to obtain an optimal solution given a set of observations
- A cost function measures how close our solution is to the optimal solution
- Objective of our learning step:
 - Minimize the **cost function**

Backpropagation Algorithm

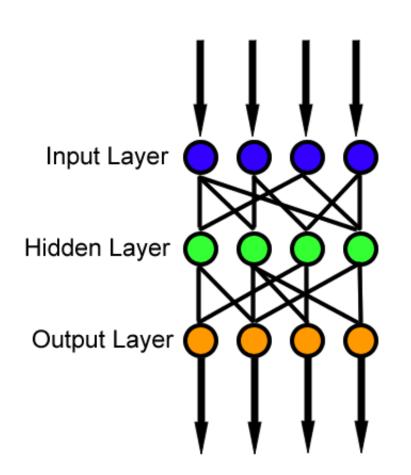
Backpropagation

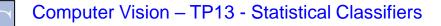


http://www.cs.cmu.edu/~awm/tutorials.html

Feedforward neural network

- Simplest type of NN
- Has no cycles
- Input layer
 - Need as many neurons as coefficients of my *feature vector*
- Hidden layers
- Output layer
 - Classification results



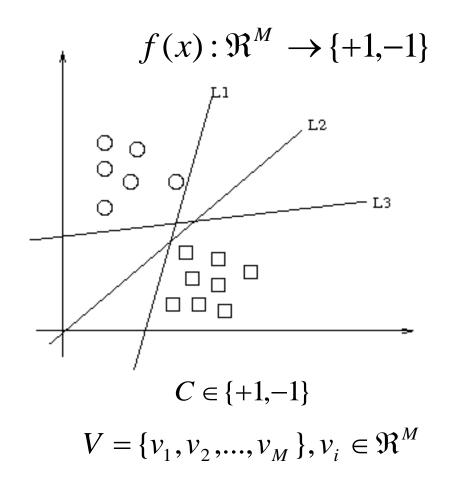


Topic: Support Vector Machines

- Statistical Classifiers
- Neural Networks
- Support Vector Machines

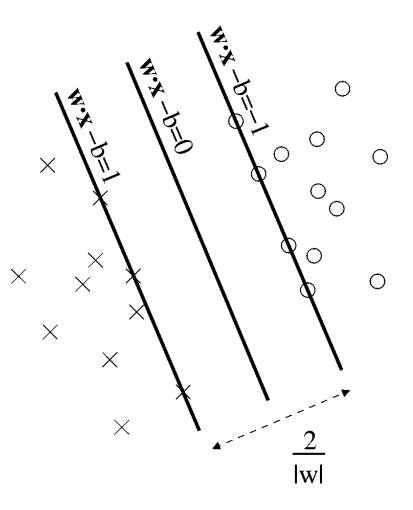
Maximum-margin hyperplane

- There are many planes that can separate our classes in feature space
- Only one maximizes the separation margin
- Of course that classes need to be separable in the first place...



Support vectors

- The maximummargin hyperplane is limited by some vectors
- These are called
 support vectors
- Other vectors are irrelevant for my decision



Decision

- I map a new observation into my feature space
- Decision hyperplane:

 $(w.x) + b = 0, w \in \Re^N, b \in \Re$

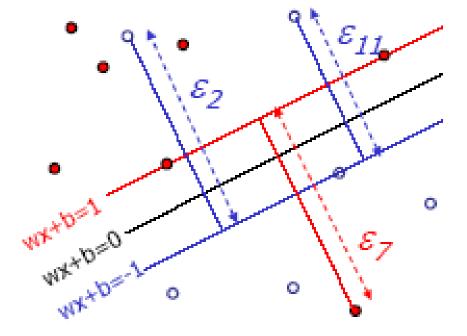
• Decision function:

$$f(x) = sign((w.x) + b)$$

A vector is either **above** or **below** the hyperplane

Slack variables

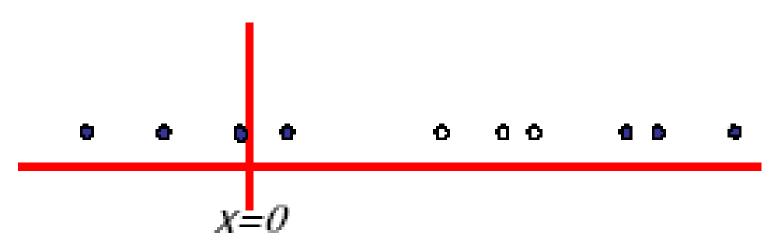
- Most feature spaces cannot be segmented so easily by a hyperplane
- Solution:
 - Use slack variables
 - 'Wrong' points 'pull' the margin in their direction



– Classification errors!

But this doesn't work in most situations...

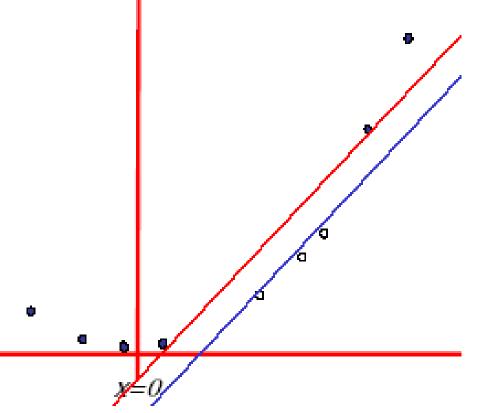
 Still, how do I find a Maximum-margin hyperplane for some situations?



• Most real situations face this problem...

Solution: Send it to hyperspace!

- Take the previous case: f(x) = x
- Create a new higherdimensional function:
 g(x²) = (x, x²)
- A kernel function is responsible for this transformation



https://www.youtube.com/watch?v=3liCbRZPrZA

Typical kernel functions

Linear	$K(x, y) = x \cdot y + 1$
Polynomial	$K(x, y) = (x.y+1)^p$
Radial-Base Functions	$K(x, y) = e^{-\ x-y\ ^2/2\sigma^2}$
Sigmoid	$K(x, y) = \tanh(kx.y - \delta)$

Classification

- Training stage:
 - Obtain kernel parameters
 - Obtain maximum-margin hyperplane
- Given a new **observation**:
 - Transform it using the kernel
 - Compare it to the hyperspace

Resources

- Andrew Moore, "Statistical Data Mining Tutorials", <u>http://www.cs.cmu.edu/~awm/tutorials.htm</u>
- C.J. Burges, "A tutorial on support vector machines for pattern recognition", in Knowledge Discovery Data Mining, vol.2, no.2, 1998, pp.1-43.

