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Deep learning:
did you hear about that?

« Google image recognition  Smimnri e
« Facebook face recognition e

« Google translator lgl m LQ‘-:I
+ DeepMind AlphaGo player = |

* Netflix, Amazon, Spotify
recommendation engines

* Image colorization

« Image caption generation
« Sentiment analysis

« Efc...
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What Is deep learning?

* Itis a specific area of machine learning
— Supervised learning
— Unsupervised learning
— Reinforcement learning

* |dea (supervised learning): learn how to make
decisions, perform a task, from examples

dog cat dog or cat?
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Remember!

Acquire the data, observations to be classified or described

Compute numeric or symbolic information starting from the data:
e.g., color, shape, texture, etc.

Classify or describe the observation, relying on the extracted features
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Remember: Neural Networks

 Basic principles:
— One neuron can
perform a simple Output

decision
— Many connected Q—O
neurons can make

more complex

decisions Q/
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Learning paradigms

* We can define the network configuration

 How do we define neuron weights and
decision thresholds?
— Learning step
— We train the NN to classify what we want

— (Supervised learning): We need to have
access to a set of training data for which we
know the correct class/answer
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Learning

« We want to obtain an optimal solution
given a set of observations

« A cost function measures how close our
solution Is to the optimal solution

* Objective of our learning step:
— Minimize the cost function

Backpropagation
Algorithm
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In formulas

Network output: Out(x Z wh (. Z w, Z wiy

nput el

Training set: {(zi,¥:)}i—1 . N

Optimization: find [w §k),”¢U§j)>--- wiH] such that
N
minimize Z Loss(Out(x;), y;)
1=1

It is solved with (variants of) the gradient descent, where
gradients are computed via the backpropagation algorithm
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Warnings!

* |s the NN too simple for the data?
— Underfitting: cannot capture data behavior

* |s the NN too complex for the data?

— Overfitting: fit perfectly training data, but will
not generalize well on unseen data
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Feedforward neural network

mn

Simplest type of NN
Has no cycles
Input layer

— Need as many
neurons as
coefficients of my
feature vector

Hidden layers
Output layer

— Classification results
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Deep learning = Deep neural
networks

* Deep = high number of hidden layers
— Learn a larger number of parameters!

* It has been recently (~ in the last 6 years)
possible since we have:
— Access to big amounts of (training) data

— Increased computational capabillities (e.g.
GPUSs)
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Topic: Convolutional neural

networks

 What is deep learning?
« Convolutional neural networks
* Deep neural network architectures
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Convolutional neural networks
(CNNSs)

 Feedforward neural networks

* Weight multiplications are replaced by
convolutions (filters)

 Change of paradigm: can be directly
applied to the raw signal, without
computing first ad hoc features

* Features are learnt automatically!
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End-to-end learning

Acquire the data, observations to be classified or
described

Classify or describe the observation,
automatically extracting (learnt) features
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Convolution

Input
Kernel
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|. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Vol. 1. Cambridge: MIT press, 2016.
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CNN example

C| feature C2 feature
maps maps

S| feature
maps

S2 feature
maps

Output

Full

Connection

\

Convolutions

\

Subsampling

Convolutions

Convolutions Subsampling

« Convolutional layers, followed by nonlinear activation and
subsampling
» Output of hidden layers (feature maps) = features learnt by the CNN

» Before classification, fully connected layers (as in “standard” NN)
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Automatically learnt features

Retain most information (edge detectors)

Towards more abstract representation

block4_conv1

2

Encode high level concepts

F

block5_conv1

Sparser representations:
Detect less (more abstract) features
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CNN - Properties

 Reduced amount of parameters to learn (local
features)

« More efficient than dense multiplication

« Specifically thought for images or data with grid-
like topology

« Convolutional layers are equivariant to
translation (useful for classification!)

* Currently state-of-the-art in several tasks
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Topic: Deep neural network

architectures

 What is deep learning?
» Convolutional neural networks
* Deep neural network architectures
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AlexNet

224
25 dense dense
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A. Krizhevsky, I. Sutskever, and G. Hinton.
"ImageNet Classification with Deep Convolutional

e Winner of ILSVRC 2012 Neural." In NIPS, pp. 1-9. 2014,
« Marked the beginning of recent deep learning revolution
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FC
Prediction
(————— =]

° Very Sma” fllte IS (3X3) K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
° Deeper than AIEXN et: 16 Iayers recognition,” in Proc. Int. Conf. Learn.

Representations, 2015.
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K. He, X. Zhang, S. Ren, and J.

Sun. "Deep residual learning for
image recognition." In Proceedings
of the IEEE conference on

computer vision and pattern
recognition, pp. 770-778. 2016. 50 layers

101 layers

152 layers
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From: https://www.codeproject.com/Articles/1248963/Deep-Learning-using-Python-plus-Keras-Chapter-Re

* Increase the number of layers by introducing a residual

connection

* Blocks are actually learning residual functions: easier!
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O. Ronneberger, P. Fischer,
and T. Brox. "U-net:
Convolutional networks for
biomedical image
- et segmentation.”
In International Conference
on Medical image computing
128 64 64 2 and computer-assisted

intervention, pp. 234-241.
Springer, Cham, 2015.
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=» conv 3x3, RelL,U
copy and crop

§ max pool 2x2

4 up-conv 2x2
= conv 1x1

 Encoder-decoder structure
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- WF
FBP (sparse views) Subsampled Sinogram

Modified U-Net

FBP !

Skip connection

FBP (full views)

1 64 64 64 < # of channels 12864 64 1 T
U-net
o i d e e d md s +®+ -
. spatial dimension :512x512
. S
(64" 128128 256 128 128
K. Jin, M. McCann, E.
~ 256 x 256 I Froustey, and M. Unser.
(128 256 256 512 256 256| > 3x3conv.+ BN "Deep convolutional
N N ﬂ‘I }I J + ReLU neural network for inverse
128x 128\ ! * 2x2max pooling problems in
(956" F— skip connection imagina." IEEE
256 512 512 1024 . 512* 512 ‘ and concatenation ging
64x64 . - ‘ [ R ) * 3x3 up-conv 2. Transactions on Image
5124 024 ]‘1024x +BN + RelLU Processing 26, no. 9
32 x 32\ 1N | - 1x1conv. (2017): 4509-4522.
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Application challenges

« Great results! But...
— Difficult to select best architecture for a problem
— Require new training for each task/configuration

— (Most commonly) require a large training dataset to
generalize well

« Data augmentation, weight regularization, transfer
learning, etc.

— Still not fully understood why it works so well
« Robustness against adversarial examples
» Approval from government agencies (ex. FDA)?
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Resources

* Theory

— |. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Vol. 1.
Cambridge: MIT press, 2016. (https://www.deeplearningbook.org/)

e Survey papers

— "Deep Learning for Visual Understanding,” in IEEE Signal Processing
Magazine, vol. 34, no. 6, Nov. 2017.

— A. Lucas, M. lliadis, R. Molina and A. K. Katsaggelos, "Using Deep
Neural Networks for Inverse Problems in Imaging: Beyond Analytical
Methods," in IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 20-
36, Jan. 2018.

e Tutorial

— Oxford Visual Geometry Group: VGG Convolutional Neural Networks
Practical (http://www.robots.ox.ac.uk/~vgg/practicals/cnn/)
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Coding Resources

* Coding frameworks for deep learning

— TensorFlow (https://www.tensorflow.org/),
PyTorch (https://pytorch.org/),

Theano (http://deeplearning.net/software/theano/),

MatConNet (http://www.vlfeat.org/matconvnet/),
etc.

« High-level wrappers

— Keras (https://keras.io/),

TensorLayer (https://tensorlayer.readthedocs.io/en/stable/),

Lasagne (https://lasagne.readthedocs.io/en/latest/),
etc.

 GPU strongly recommended!
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