Computer Vision – TP3 Frequency Space

Miguel Tavares Coimbra

Outline

- Fourier Transform
- Frequency Space
- Spatial Convolution

Topic: Fourier Transform

- Fourier Transform
- Frequency Space
- Spatial Convolution

How to Represent Signals?

Option 1: Taylor series represents any function using polynomials.

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}$$
$$(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

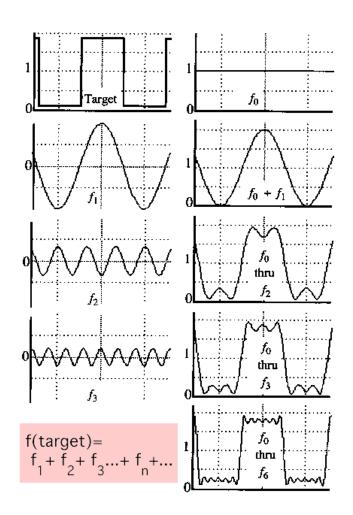
- Polynomials are not the best unstable and not very physically meaningful.
- Easier to talk about "signals" in terms of its "frequencies" (how fast/often signals change, etc).

Jean Baptiste Joseph Fourier (1768-1830)

- Had a crazy idea (1807):
- **Any** periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies.
- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's true!
 - called Fourier Series
 - Possibly the greatest tool used in Engineering

A Sum of Sinusoids

- Our building block: $A\sin(\omega x + \phi)$
- Add enough of them to get any signal *f(x)* you want!
- How many degrees of freedom?
- What does each control?
- Which one encodes the coarse vs. fine structure of the signal?



Fourier Transform

We want to understand the frequency ω of our signal.
 So, let's reparametrize the signal by ω instead of x:

- For every ω from 0 to inf, *F(ω)* holds the amplitude A and phase φ of the corresponding sine
 - How can F hold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

$$A \sin(\omega x + \phi)$$

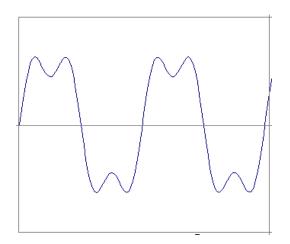
$$A \sin(\omega x + \phi)$$

$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

11

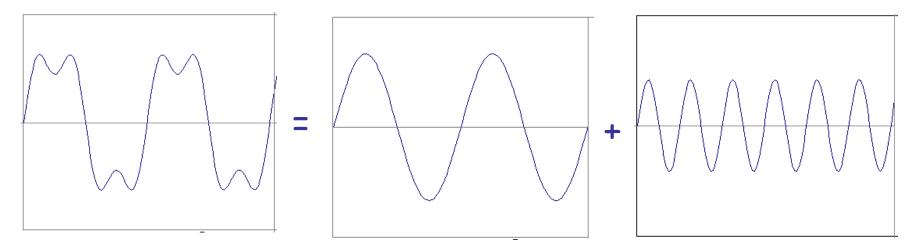
Time and Frequency

• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

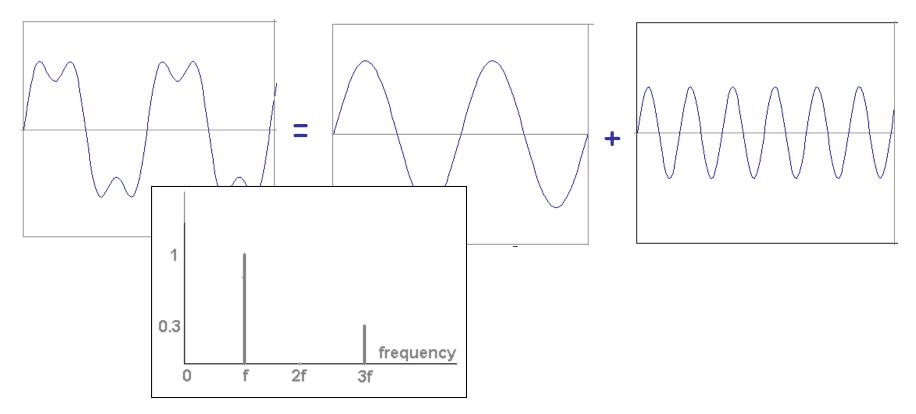


Time and Frequency

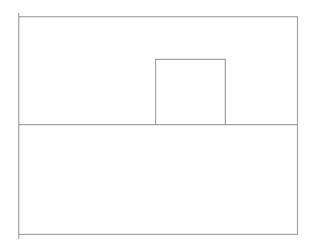
• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

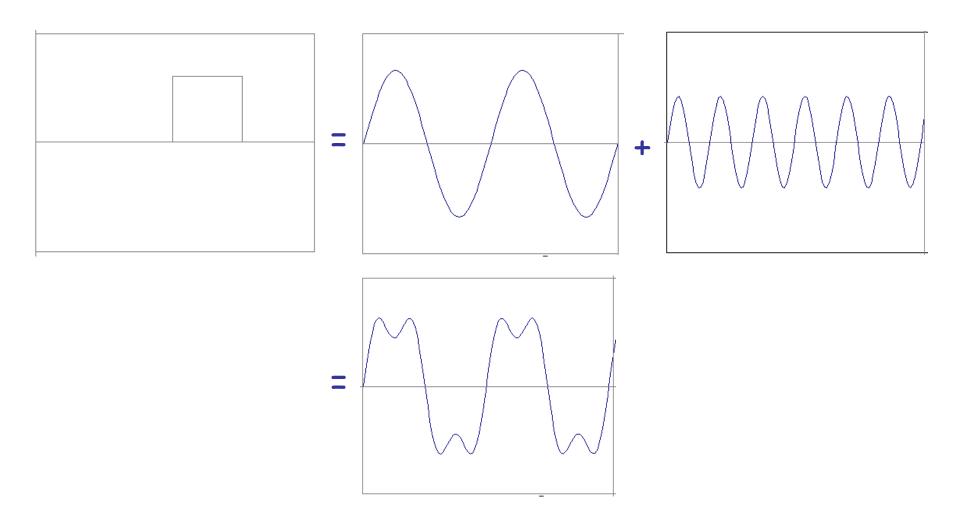


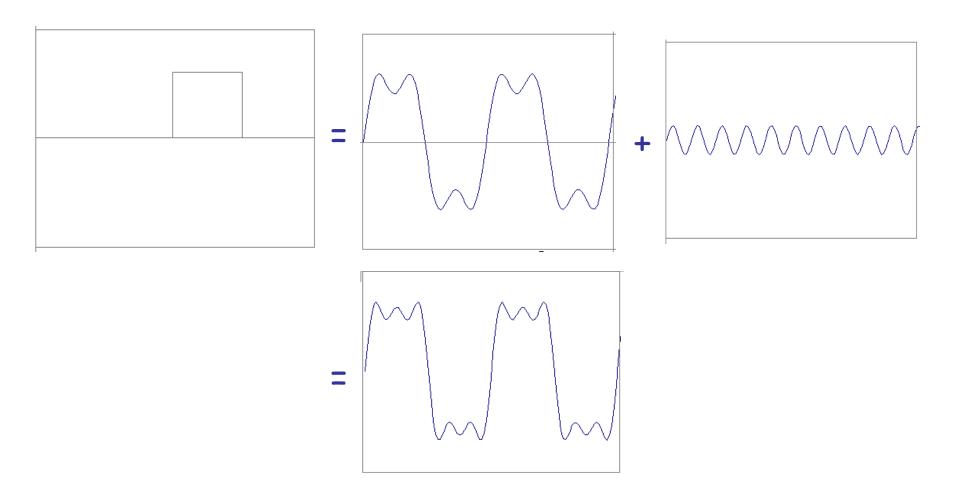
• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

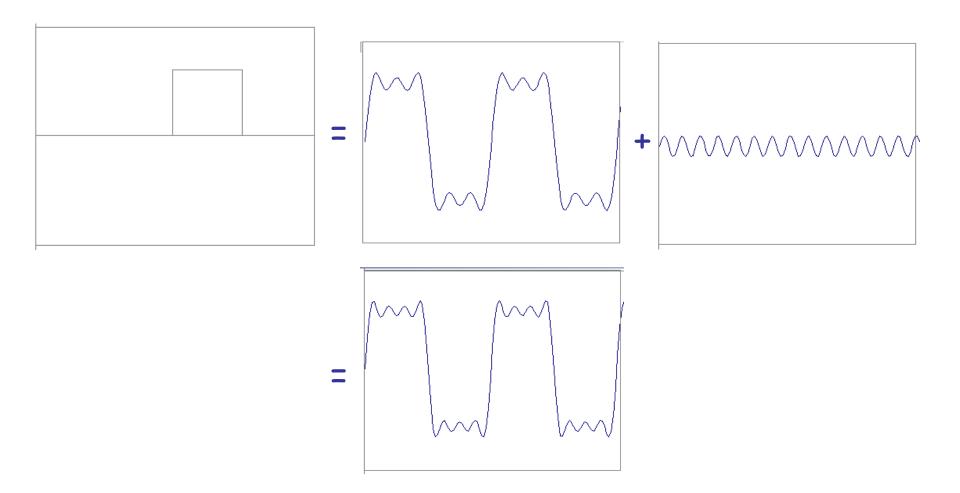


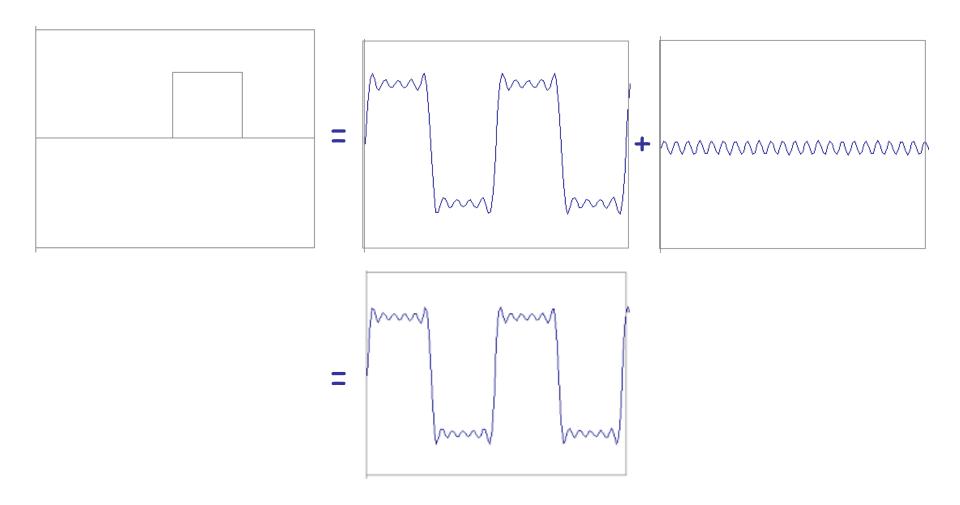
• Usually, frequency is more interesting than the phase

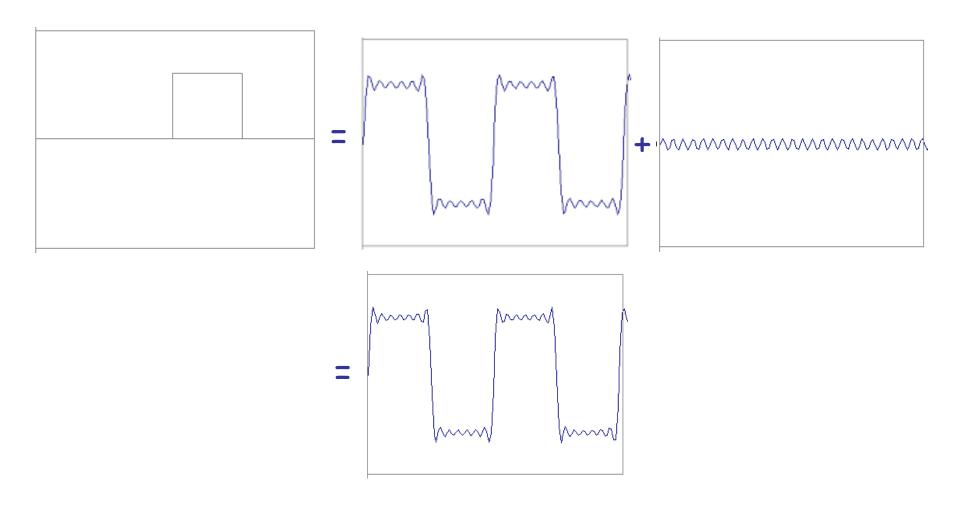


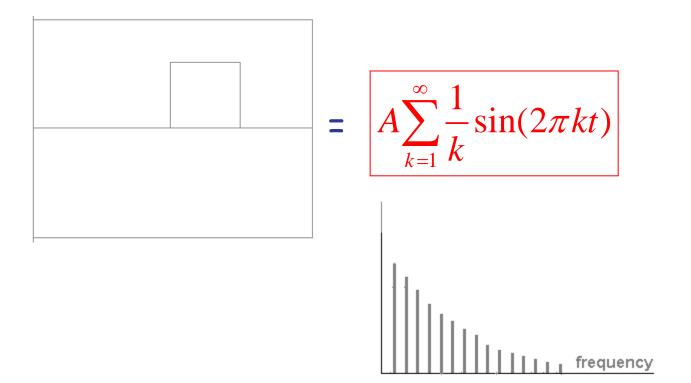












Fourier Transform – more formally

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi u x} dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

- Spatial Domain (x) \longrightarrow Frequency Domain (u)

(Frequency Spectrum *F(u)*)

Inverse Fourier Transform (IFT)

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i2\pi u x} dx$$

Fourier Transform

• Also, defined as:

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-iux} dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

• Inverse Fourier Transform (IFT)

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u) e^{iux} du$$

Properties of Fourier Transform

Linearity
$$c_1 f(x) + c_2 g(x)$$
 $c_1 F(u) + c_2 G(u)$ Scaling $f(ax)$ Spatial
Domain $\frac{1}{|a|} F\left(\frac{u}{a}\right)$ Frequency
DomainShifting $f(x-x_0)$ $e^{-i2\pi u x_0} F(u)$ Symmetry $F(x)$ $f(-u)$ Conjugation $f^*(x)$ $F^*(-u)$ Convolution $f(x) * g(x)$ $F(u)G(u)$ Differentiation $\frac{d^n f(x)}{dx^n}$ $(i2\pi u)^n F(u)$

Topic: Frequency Space

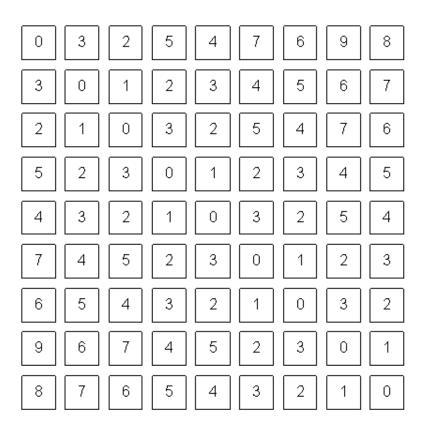
- Fourier Transform
- Frequency Space
- Spatial Convolution

How does this apply to images?

 We have defined the Fourier Transform as

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-iux} dx$$

- But images are:
 - Discrete.
 - Two-dimensional.



What a computer sees

2D Discrete FT

 In a 2-variable case, the discrete FT pair is:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \exp[-j2\pi(ux/M + vy/N)]$$

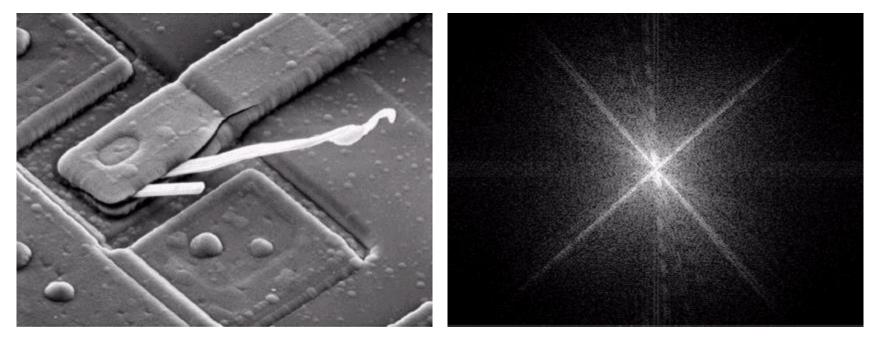
For u=0,1,2,...,M-1 and v=0,1,2,...,N-1
New matrix
with the
same size!
AND: $f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) \exp[j2\pi(ux/M + vy/N)]$

For x=0,1,2,...,M-1 and y=0,1,2,...,N-1

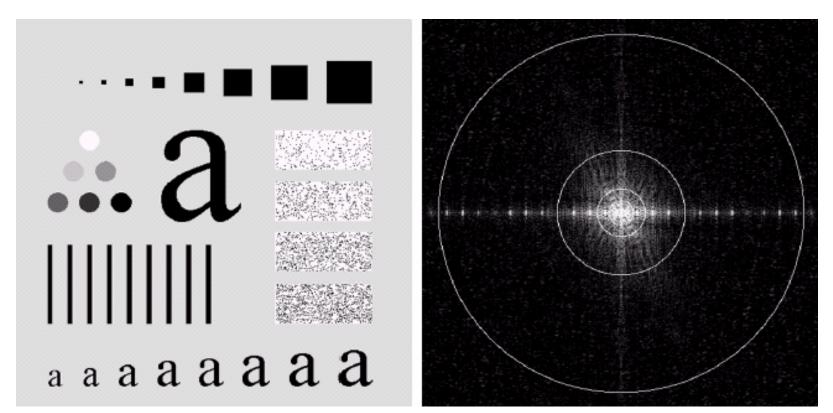
Frequency Space

- Image Space
 - f(x,y)
 - Intuitive

- Frequency Space
 - F(u,v)
 - What does this mean?



Power distribution



An image (500x500 pixels) and its Fourier spectrum. The super-imposed circles have radii values of 5, 15, 30, 80, and 230, which respectively enclose 92.0, 94.6, 96.4, 98.0, and 99.5% of the image power.

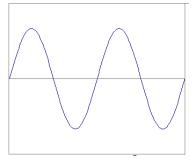
Power distribution

- Most power is in low frequencies.
- Means we are using more of this:

And less of this:

To represent our signal.

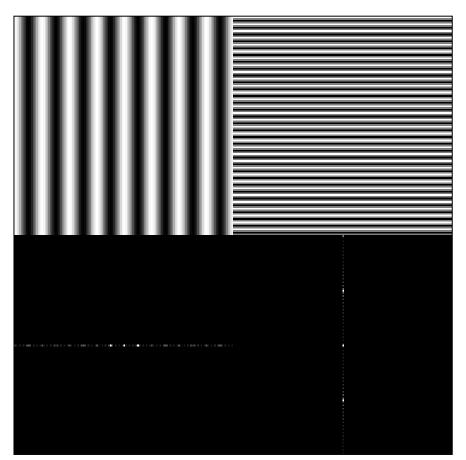
• Why?

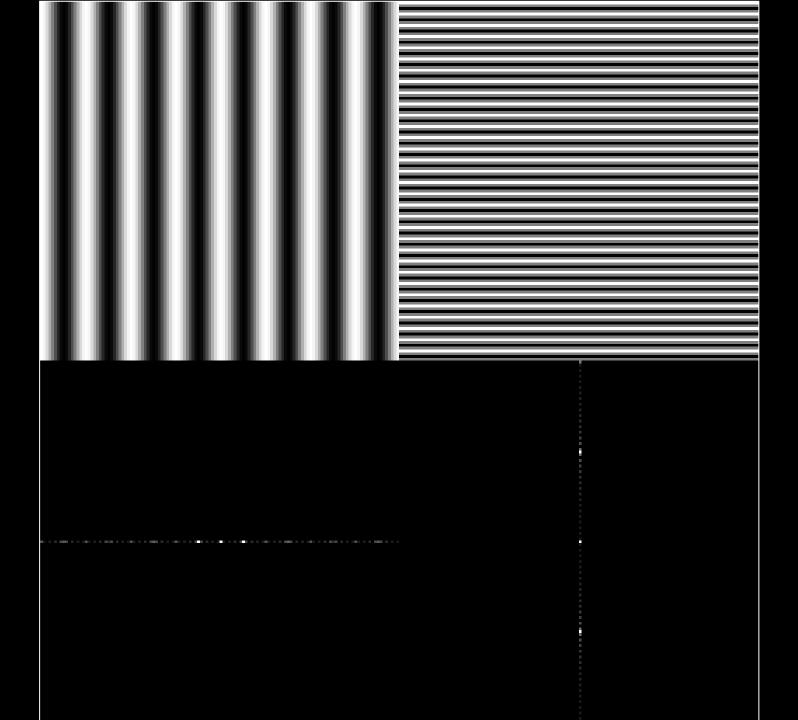


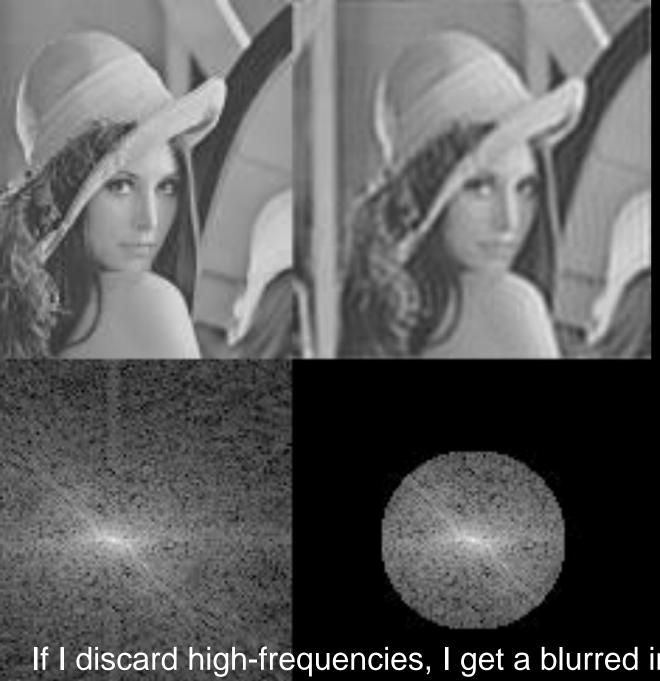
What does this mean??

Horizontal and Vertical Frequency

- Frequencies:
 - Horizontal frequencies correspond to horizontal gradients.
 - Vertical frequencies correspond to vertical gradients.
- What about diagonal lines?







If I discard high-frequencies, I get a blurred image... Why?

Why bother with FT?

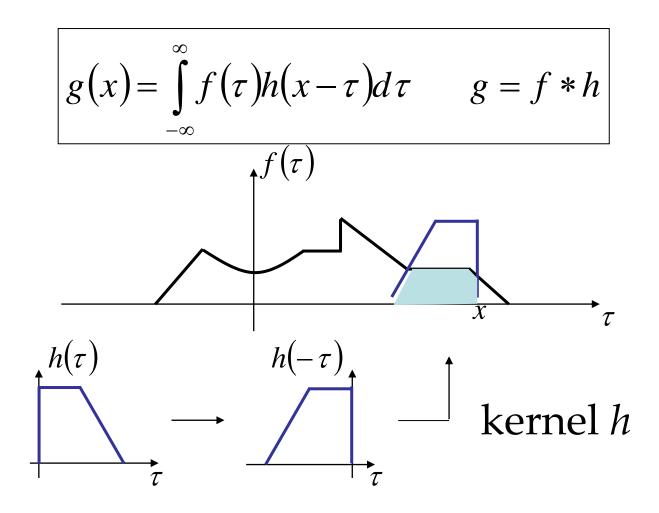
- Great for filtering.
- Great for compression.
- In some situations: Much faster than operating in the spatial domain.
- Convolutions are simple multiplications in Frequency space!

•

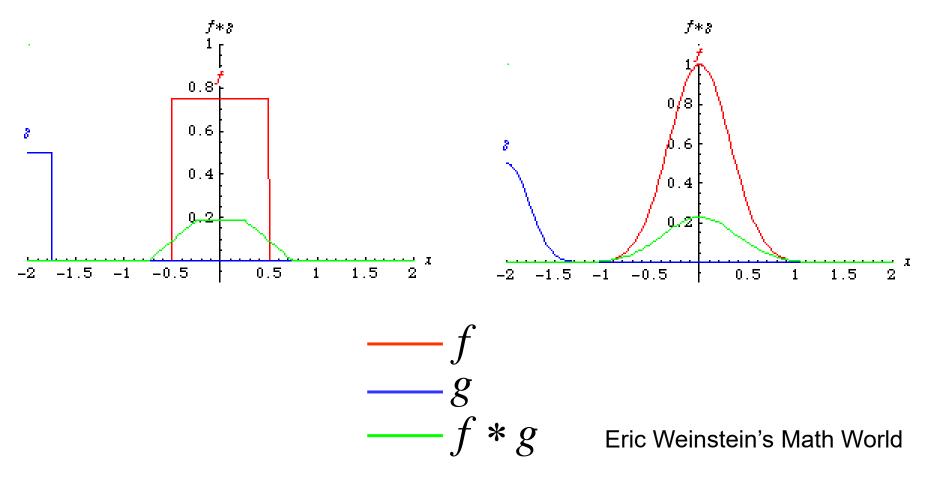
Topic: Spatial Convolution

- Fourier Transform
- Frequency Space
- Spatial Convolution

Convolution



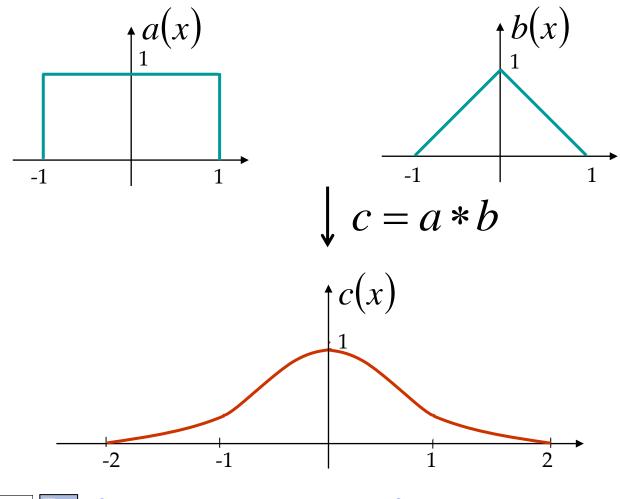
Convolution - Example



Computer Vision - TP3 - Frequency Space

34

Convolution - Example



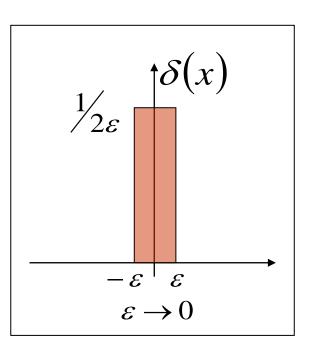
Convolution Kernel – Impulse Response

$$f \longrightarrow h \longrightarrow g$$

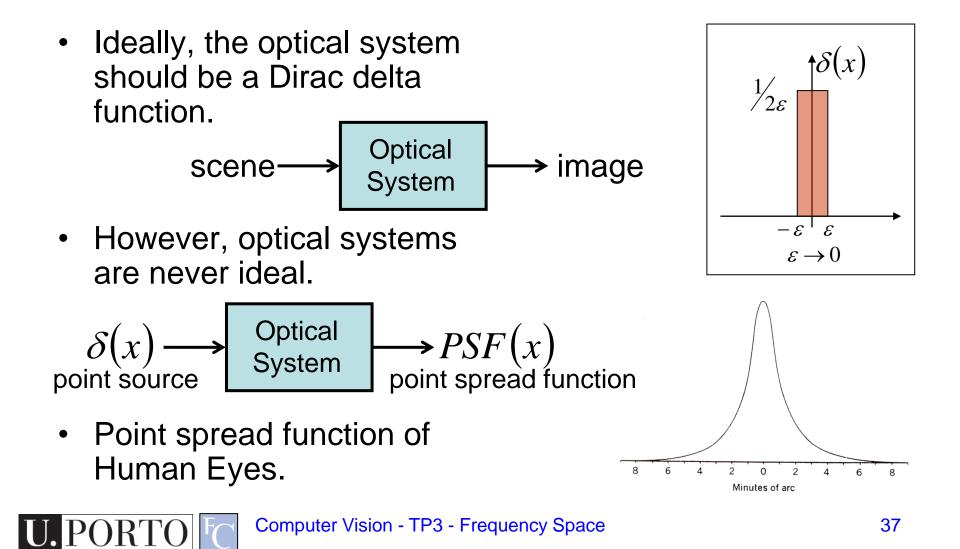
$$g = f * h$$

• What *h* will give us g = f?

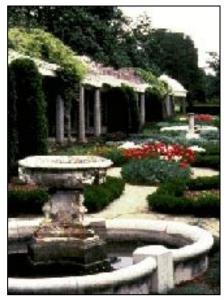
Dirac Delta Function (Unit Impulse)



Point Spread Function



Point Spread Function



normal vision

myopia

hyperopia

Computer Vision - TP3 - Frequency Space

38

Images by Richmond Eye Associates

Properties of Convolution

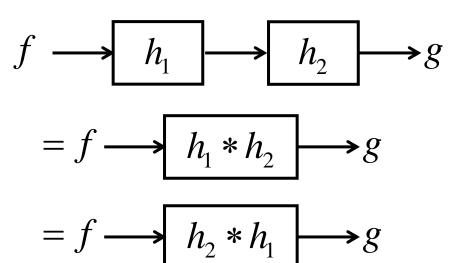
Commutative

$$a * b = b * a$$

Associative

$$(a*b)*c = a*(b*c)$$

Cascade system



Fourier Transform and Convolution

Let
$$g = f * h$$
 Then $G(u) = \int_{-\infty}^{\infty} g(x)e^{-i2\pi ux} dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)h(x-\tau)e^{-i2\pi ux} d\tau dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau} d\tau \right] h(x-\tau)e^{-i2\pi u(x-\tau)} dx \right]$
 $= \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau} d\tau \right] \int_{-\infty}^{\infty} \left[h(x')e^{-i2\pi ux'} dx' \right] = F(u)H(u)$

Convolution in spatial domain

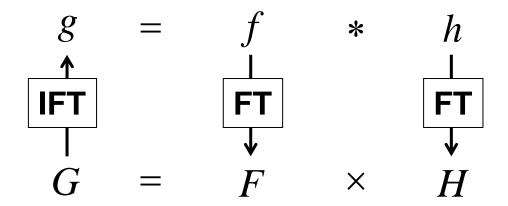
 \Leftrightarrow Multiplication in frequency domain

Fourier Transform and Convolution

Spatial Domain (x) Frequency Domain (u)

$$g = f * h \qquad \longleftrightarrow \qquad G = FH$$
$$g = fh \qquad \longleftrightarrow \qquad G = F * H$$

So, we can find g(x) by Fourier transform



Example use: Smoothing/Blurring

• We want a smoothed function of f(x)

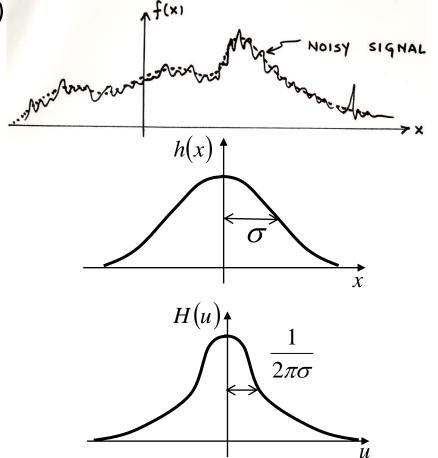
$$g(x) = f(x) * h(x)$$

• Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\frac{x^2}{\sigma^2}\right]$$

Then

$$H(u) = \exp\left[-\frac{1}{2}(2\pi u)^2 \sigma^2\right]$$
$$G(u) = F(u)H(u)$$



Resources

- Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011
 - Chapter 3 "Image Processing"

