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Outline

• Spatial filters

• Frequency domain filtering

• Edge detection

• Morphological filters
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Topic: Spatial filters

• Spatial filters

• Frequency domain filtering

• Edge detection

• Morphological filters
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Images are Discrete and Finite
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Spatial Mask

• Simple way to 

process an image

• Mask defines the

processing function

• Corresponds to a 

multiplication in 

frequency domain Convolution – Mask 

‘slides’ over the image

Mask Image
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Example

• Each mask position

has weight w

• The result of the

operation for each

pixel is given by:

1 2 1

0 0 0

-1 -2 -1

2 2 2

4 4 4

4 5 6

Mask Image

=1*2+2*2+1*2+…

=8+0-20

=-12


−= −=

++=
a

as

b

bt

tysxftswyxg ),(),(),(

6



Computer Vision - TP6 - Spatial Filters

Definitions

• Spatial filters

– Use a mask (kernel) over an image region

– Work directly with pixels

– As opposed to: Frequency filters

• Advantages

– Simple implementation: convolution with the 
kernel function

– Different masks offer a large variety of 
functionalities
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Averaging

Let’s think 

about 

averaging 

pixel values

For n=2, convolve pixel values with 1 2 1

2D images: 
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The convolution kernel
2=n

8=n

nlarge

Repeated averaging  Gaussian smoothing

Averaging
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Gaussian Smoothing
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• A Gaussian kernel gives less weight to pixels further 
from the center of the window

• This kernel is an approximation of a Gaussian function:

Gaussian Smoothing
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2 4 2

1 2 1
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2=

8.2= 4=

original
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Mean Filtering

• We are degrading the

energy of the high spatial

frequencies of an image

(low-pass filtering)

– Makes the image

‘smoother’

– Used in noise reduction

• Can be implemented with

spatial masks or in the

frequency domain 1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
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Median Filter

• Smoothing is averaging

(a) Blurs edges 

(b) Sensitive to outliers

(a)

(b)

– Sort            values around the pixel 

– Select middle value (median)

– Non-linear (Cannot be implemented with convolution)

• Median filtering

12 −N

sort median
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3x3

5x5

7x7

Salt and pepper noise Gaussian noise
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Border Problem

What a computer sees

1 2 1

2 4 2

1 2 1

How do we apply 

our mask to this 

pixel?
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Border Problem

• Ignore

– Output image will be smaller than original

• Pad with constant values

– Can introduce substantial 1st order derivative values

• Pad with reflection

– Can introduce substantial 2nd order derivative values
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Topic: Frequency domain filtering

• Spatial filters

• Frequency domain filtering

• Edge detection

• Morphological filters
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Image Processing in the Fourier 

Domain

Does not look anything like what we have seen

Magnitude of the FT
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Convolution in the Frequency Domain

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|
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Lets the low frequencies 

pass and eliminates the 

high frequencies.

Generates image with overall

shading, but not much detail

Low-pass Filtering

22



Computer Vision - TP6 - Spatial Filters

Lets through the high 

frequencies (the detail), 

but eliminates the low 

frequencies (the overall 

shape). It acts like an 

edge enhancer. 

High-pass Filtering
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Boosting High Frequencies
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The Ringing Effect

An ideal low-pass filter causes ‘rings’ 

in the spatial domain!

27



Computer Vision - TP6 - Spatial Filters

Topic: Edge detection

• Spatial filters

• Frequency domain filtering

• Edge detection

• Morphological filters
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Edge Detection

• Convert a 
2D image 
into a set of 
curves
– Extracts 

salient 
features of 
the scene

– More 
compact 
than pixels
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Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity
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How can you tell that a pixel is 

on an edge?

31



Computer Vision - TP6 - Spatial Filters

Edge Types

Step Edges

Roof Edge Line Edges
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Real Edges

Noisy and Discrete!

We want an Edge Operator that produces:

– Edge Magnitude

– Edge Orientation

– High Detection Rate and Good Localization
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Gradient

• Gradient equation: 

• Represents direction of most rapid change in intensity

• Gradient direction:

• The edge strength is given

by the gradient magnitude

34



Computer Vision - TP6 - Spatial Filters

Theory of Edge Detection
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• Partial derivatives (gradients):
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• Laplacian:
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Discrete Edge Operators

• How can we differentiate a discrete image?

Finite difference approximations:
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The Sobel Operators

• Better approximations of the gradients exist

– The Sobel operators below are commonly used

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1
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Comparing Edge Operators

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 1

Gradient:

Roberts (2 x 2):

Sobel (3 x 3):

Sobel (5 x 5):
-1 -2 0 2 1

-2 -3 0 3 2

-3 -5 0 5 3

-2 -3 0 3 2

-1 -2 0 2 1

1 2 3 2 1

2 3 5 3 2

0 0 0 0 0

-2 -3 -5 -3 -2

-1 -2 -3 -2 -1

0 1

-1 0

1 0

0 -1

Good Localization

Noise Sensitive

Poor Detection

Poor Localization

Less Noise Sensitive

Good Detection
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Effects of Noise

• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is 

the edge??
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Where is the edge?  

Solution:  Smooth First

Look for peaks in 
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Derivative Theorem of Convolution

…saves us one operation.
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Laplacian of Gaussian (LoG)

Laplacian of Gaussian operator

Where is the edge?  Zero-crossings of bottom graph !
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2D Gaussian Edge Operators

Laplacian of Gaussian
Gaussian

Derivative of Gaussian (DoG)

Mexican Hat (Sombrero)

• is the Laplacian operator:
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Canny Edge Operator

• Smooth image I with 2D Gaussian:

• Find local edge normal directions for each pixel

• Compute edge magnitudes

• Locate edges by finding zero-crossings along the edge normal 

directions (non-maximum suppression)
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Non-maximum Suppression

• Check if pixel is local maximum along gradient direction

– requires checking interpolated pixels p and r
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magnitude of the gradient
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After non-maximum suppression
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Canny Edge Operator

Canny with Canny with original 

• The choice of     depends on desired behavior

– large       detects large scale edges

– small      detects fine features
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Difference of Gaussians (DoG)

• Laplacian of Gaussian can be approximated by the

difference between two different Gaussians
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DoG Edge Detection

1=(a) 2=(b) (b)-(a)
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Unsharp Masking
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Topic: Morphological Filters

• Spatial filters

• Frequency domain filtering

• Edge detection

• Morphological filters
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Mathematical Morphology

• Provides a 

mathematical

description of

geometric structures

• Based on sets

– Groups of pixels which

define an image region

• What is this used for?

– Binary images

– Can be used for post-

processing

segmentation results!

• Core techniques

– Erosion, Dilation

– Open, Close
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Tumor Segmentation using Morphologic Filtering
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Dilation, Erosion

• Two sets:

– Image

– Morphological kernel

• Dilation (D)

– Union of the kernel with 

the image set

– Increases resulting area

• Erosion (E)

– Intersection

– Decreases resulting area
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Dilation

• Example using a 3x3 morphological kernel
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Erosion

• Example using a 3x3 morphological kernel
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Opening, Closing

• Opening
– Erosion, followed by 

dilation

– Less destructive than an 
erosion

– Adapts image shape to 
kernel shape

• Closing
– Dilation, followed by 

erosion

– Less destructive than a 
dilation

– Tends to close shape 
irregularities
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Opening

• Example using a 3x3 morphological kernel
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Closing

• Example using a 3x3 morphological kernel
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Core morphological operators

Dilation Erosion

Closing Opening
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Example: Opening

Tresholding

Opening
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Example: Closing

Closing
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Connected Component Analysis

• Define ‘connected’

– 4 neighbors.

– 8 neighbors.

• Search the image for 

seed points

• Recursively obtain all

connected points of

the seeded region
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Resources

• Szeliski, “Computer Vision: Algorithms and 

Applications”, Springer, 2011

– Chapter 3 – “Image Processing”

– Chapter 4 – “Feature Detection and Matching”
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