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* Introduction to segmentation
* Thresholding
* Region based segmentation
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Topic: Introduction to segmentation

* Introduction to segmentation
* Thresholding
* Region based segmentation
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Boundaries of Objects

Marked by many users

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/html/images.html
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Boundaries of Objects from
Edges

Brightness Gradient (Edge detection)

» Missing edge continuity, many spurious edges
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Boundaries of Objects from
Edges

Multi-scale Brightness Gradient

 But, low strength edges may be very important
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Machine Edge Detection
Human Boundary Marking




Boundaries in Medical Imaging

A B L

Fig. 2. Representation of a closed contour by elliptic Fourier descriptors. (a) Input. (b) Series truncated at 16 harmonics. (c¢) Series truncated to four harmonics.

Detection of cancerous regions

PORTO Computer Vision - TP7 - Segmentation g

[Foran, Comaniciu, Meer, Goodell, 00]




Boundaries in Ultrasound
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Hard to detect in the presence of large amount of speckle noise
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What is ‘Segmentation’™?

e Separation of the
Image in different
areas
— Objects

— Areas with similar
visual or semantic
characteristics

Not trivial! It is the holy grail of
most computer vision problems!
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Subjectivity

* A ‘correct’ What is tt
- - correct
segmentation result IS | segmentat

only valid for a e
specific context
— Subjectivity! X R |

— Hard to implement
— Hard to evaluate

Person Suitcasew
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Topic: Thresholding

* Introduction to segmentation
* Thresholding
* Region based segmentation
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Core Technigue: Thresholding

Divide the image into two

areas.:
— 1, iff(x,y)>K
— 0, iff(x,y)<=K

Not easy to find the ideal k
magic number

Core segmentation technique
— Simple
— Reasonably effective

Adequate
threshold
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Finding the ‘'magic number’

Correct
(k =74)

[BAPORTO

Wrong!
(k = 128)

}
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Adaptive Thresholding

« Adapt the threshold
value for each pixel

 Use characteristics of

nearby pixels
« How?
— Mean

— Median
— Mean + K

[BAPORTO

e *Snmml.

i Efs*r;{ﬂea@z.- ey
i {uﬁfgﬁ. = wk,é :.5.-‘5. . :

,‘ i Hﬂfﬁ? e .{_v‘ﬂl“‘ :'__'__:- M A el T
"“7“"0 “dear Loty yaur heauty fa su yaat SEHES 4
ng 1|, i; ha.nj smnrtimes 1o xloacrlbe it In.ut

: ,.'\u.m 16 miich With Fughs'of disefot mﬁcﬁ v
\g &-And fur your ] lips,bensual and tm:tunl d%a-e LT
1"'l'hl.ri.t'fn Crnru fovind | lmt thu pmper fluilnl T-f;“ oo

.m

23

Mean "of 7x7 nelghborhood

Computer Vision - TP7 - Segmentation 17



Sonnel for Lena

O dear Lena, yuur heauty ia so vast

1 in bart senetiznes to deseribe it [ast,
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X7 window: K =7

Sonnet for Lena
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Otsu’s Thresholding

* |Is there an optimal
threshold for a

5000

bimodal distribution? w | [
- Yes
— Gist: Minimize Within- =™
Class Variance
— Alternatively: o
Maximize Between-
Class Variance VW m o m @

Pixel Intensity

By Lucas(CA) - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=67144384
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Within Class Variance

» Class Variance « Within Class Variance
— The lower the — Weighted sum of each
variance, the less class variance:
dispersed the data is « Background (b);
for each class » Foreground (f)
N . 2
2 i=O(Xl _ ﬂ) 2 _ 2 2
g° = oy = Wyop + Wro
N w b“b fvf
Xi is the pixel value, u is the mean, and N is the Wi is the percentage of image pixels belonging to
number of pixels in one image class |
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Threshold

Weight, Background
Mean, Background

Variance, Background

Weight, Foreground
Mean, Foreground

Variance, Foreground

Within Class Variance

T=8 T=1 T=2 T=

Ll

8
6
4 4
2 2
012345 2012345 012345
| B B
Wy = @ Wp = ©.222 i, = B.4167 Wp = ©.4722 Wy = ©.6389
My = @ p = @ Mp = ©.4667 Mp = ©.6471 Mp = 1.26@9
gfy, = @ g%y, = @ g%, = ©.2483 | o%, = ©.4637 | o%, = 1.4102
Wg = 1 i = 8.7778 iz = B.5833 i = ©.5278 We = ©.3811
Mz = 2.3811 Ms = 3.8357 Ms = 3.7143 Mz = 3.8947 Mz = 4.3077
g%s = 3.1196 | o’ = 1.9639 | o'y = @.7755 | o’; = 8.5152 | o’; = @.2130
g%, = 3.1196 | g%, = 1.5268 g%, = B.5561 | o, = ©.4989 | o, = 8.9779

Link: http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html

[BAPORTO

Computer Vision - TP7 - Segmentation

0

012345

Wp = B.88890

Mp = 2.8313

21



Greyscale Image Binary Image Histogram

Link: http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
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Topic: Region based segmentation

* Introduction to segmentation
* Thresholding
* Region based segmentation
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Why Region Based Segmentation?

« Segmentation

— Edge detection and
Thresholding not
always effective

« Homogenous regions
— Region-based
segmentation

— Effective in noisy
Images
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Definitions

« Based on sets

« Each image R is a set
of regions R,

— Every pixel belongs to
one region

— One pixel can only
belong to a single
region

R:DRi R(R; =2
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Basic Formulation

Let R represent the entire image a) Every pixel must be In a
region. Segmentation partitions R reqion
into n subregions, R, R,, ..., R, 9
such that. b) Points in a region must
) | JrR =R be connected
i=1 .
b o o c) Regions must be
) R. Isa connected region,i =1, 2, ..., n. C o
disjoint
) RNR,=gforalliand j,i# ] d) All pixels in a region
satisfy specific
d) P(R)=TRUEfori=12..,n. properties

e) Different regions have

e) P(R UR;)=FALSEfori= j. different propertieS
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How do we form regions?

* Region Growing i S8 N R A R

* Region Merging

* Region Splitting 2= ][ || 2] ][

« Split and Merge

 \Watershed sieivicsieseeinE

What a computer sees

PORTO Computer Vision - TP7 - Segmentation
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Region growing

« Groups pixels into * lterative process
larger regions. — How to start?

« Starts with a seed — How to iterate?
region. — When to stop?

« Grows region by
merging neighboring Finish

pixels.
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= meed Pivel
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(ay Start of Growing a Eegion

B Growmn Picels

= FPLels Being
_onsidered

(0 Growing Process After a Few [terations




Region merging

 Algorithm
— Divide image into an initial set of regions
* One region per pixel
— Define a similarity criteria for merging
regions
— Merge similar regions

— Repeat previous step until no more merge
operations are possible
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Similarity Criteria

 Homogeneity of regions is used as the
main segmentation criterion in region
growing
— gray level
— color, texture

. L I
Choice of criteria

affects segmentation
— shape results dramatically!

— model
— etc.
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Gray-Level Criteria

« Comparing to Original Seed Pixel
— Very sensitive to choice of seed point
« Comparing to Neighbor in Region
— Allows gradual changes in the region
— Can cause significant drift

« Comparing to Region Statistics
— Acts as a drift dampener

* Other possibilities!

PORTO Computer Vision - TP7 - Segmentation 34




Region splitting

 Algorithm

— One Initial set that
Includes the whole
iImage

— Similarity criteria

— Iteratively split regions
Into sub-regions

— Stop when no more
splittings are possible

PORTO Computer Vision - TP7 - Segmentation
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The segmentation problem

Figure 5.23 A quad-tree representation of an 8x8 binary image.

36
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Split and Merge

e Combination of both
algorithms

« Can handle a larger
variety of shapes
— Simply apply previous
algorithms
consecutively
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The Watershed Transform

« Geographical inspiration

— Shed water over rugged
terrain

— Each lake corresponds to a
region
« Characteristics
— Computationally complex

— Great flexibility in
segmentation

— RIisk of over-segmentation

- watersheds

o catchment
T basins
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The Drainage Analogy
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The Immersion Analogy

Catchment
basins

Watersheds
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[Milan Sonka,
Vaclav Hlavac,
(d) and Roger Boyle]

Figure 5.51: Watershed segmentation: {(a} original; (b} gradient image, 3x 3 Sobel edge detec-
tion, histogram equalized; (¢} raw watershed segmentation; (d) watershed segmeniation using
region markers to control oversegmeniation. Couriesy W. Higgins, Penn Stafe University.




Over-Segmentation

« Over-segmentation

— Raw watershed segmentation produces a
severely oversegmented image with hundreds
or thousands of catchment basins

* Post-Processing
— Region merging
— Edge information
— Etc.
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Resources

« Szeliski, “Computer Vision: Algorithms and
Applications”, Springer, 2011
— Chapter 5 — “Segmentation”
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