Computer Vision - TP7 Segmentation

Miguel Tavares Coimbra

Outline

- Introduction to segmentation
- Thresholding
- Region based segmentation

Topic: Introduction to segmentation

- Introduction to segmentation
- Thresholding
- Region based segmentation

Boundaries of Objects

Marked by many users
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/html/images.html

Boundaries of Objects from Edges

Brightness Gradient (Edge detection)

- Missing edge continuity, many spurious edges

Boundaries of Objects from Edges

Multi-scale Brightness Gradient

- But, low strength edges may be very important

Machine Edge Detection

Image

Boundaries in Medical Imaging

A

B

C

Fig. 2. Representation of a closed contour by elliptic Fourier descriptors. (a) Input. (b) Series truncated at 16 harmonics. (c) Series truncated to four harmonics.

Detection of cancerous regions

Boundaries in Ultrasound Images

Hard to detect in the presence of large amount of speckle noise

Sometimes hard even for humans!

What is 'Segmentation'?

- Separation of the image in different areas
- Objects
- Areas with similar
 visual or semantic characteristics

Not trivial! It is the holy grail of most computer vision problems!

Subjectivity

- A 'correct' segmentation result is only valid for a specific context
- Subjectivity!
- Hard to implement
- Hard to evaluate

Topic: Thresholding

- Introduction to segmentation
- Thresholding
- Region based segmentation

Core Technique: Thresholding

- Divide the image into two areas:
- 1, if $f(x, y)>K$
- 0, if $f(x, y)<=K$
- Not easy to find the ideal \boldsymbol{k} magic number
- Core segmentation technique
- Simple
- Reasonably effective

Finding the 'magic number'

Sonnet for Lena

```
4011t10-1 |:|
(), |ra|l |
If im t.u.I - ا...
Ithum|ktit the:
```



```
                *)
```


Global thresholds are not always adequate...

Adaptive Thresholding

- Adapt the threshold value for each pixel
- Use characteristics of nearby pixels
- How?
- Mean
- Median
- Mean + K
- ...

Mean of 7×7 neighborhood
Computer Vision - TP7 - Segmentation

Sonnel: for Lena

 it is bart sumetimes to clacribe it fast. I thinghthe the mitire world I would bungtess If otily gnur jottali I toudid compers. Alas! Fiast when I triell to use $V Q$ 1 fomed thin yuur checks belong to only yon.
 ltard to suatch wilh sums of aliscrete cositues. And for your lips, sentisual and thetual Thitiren Crises fomal act then proper fracint.
 I might have fixel them with himks here or there B:at when filteratesk aparkde from your "ywo I sain, 'Dantin ull thin. I'ls just aritize."

Sonnet for Lena

O deer Lema, your heauty for wo vart
It is hatd wonntiznea to describe ic taet. I thought the entipe world 1 would inoptem If only wour portrait I ratilit romprome.
Alme! Firat whrli I trimel to ume VQ
Ifound that yutar cherics belong to only you.
Your silky hoir contajun a thowand linee
Hanl to ralalch with sums of diacrece comines.
And for yomir lipm, mpanual and twrisal
Thirn end C'rayk fontud nat the proper fractal.
 I tught have fixenl thinit with limike here or thetr
 t neid. 'Danir eall thin. I'll junt digitize."

Thernas Coblturet

Otsu's Thresholding

- Is there an optimal threshold for a bimodal distribution?
- Yes
- Gist: Minimize WithinClass Variance
- Alternatively: Maximize BetweenClass Variance

\square

Within Class Variance

- Class Variance
- The lower the variance, the less dispersed the data is for each class

$$
\sigma^{2}=\frac{\sum_{i=0}^{N}(X i-\mu)^{2}}{N}
$$

$X i$ is the pixel value, μ is the mean, and N is the number of pixels in one image

- Within Class Variance
- Weighted sum of each class variance:
- Background (b);
- Foreground (f)

$$
\sigma_{w}^{2}=W_{b} \sigma_{b}^{2}+W_{f} \sigma_{f}^{2}
$$

Wj is the percentage of image pixels belonging to class ${ }^{j}$

Link: http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html

Link: http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
U.PORTO Computer Vision - TP7 - Segmentation

Topic: Region based segmentation

- Introduction to segmentation
- Thresholding
- Region based segmentation

Why Region Based Segmentation?

- Segmentation
- Edge detection and Thresholding not always effective
- Homogenous regions
- Region-based segmentation
- Effective in noisy images

Definitions

- Based on sets
- Each image R is a set of regions R_{i}
- Every pixel belongs to one region
- One pixel can only belong to a single region

$$
R=\bigcup_{i=1}^{S} R_{i} \quad R_{i} \bigcap R_{j}=\varnothing
$$

R_{7}
R_{2}

R_{5}
R_{4}

Basic Formulation

Let R represent the entire image region. Segmentation partitions R into n subregions, $R_{1}, R_{2}, \ldots, R_{n}$, such that:
a) $\bigcup_{i=1}^{n} R_{i}=R$
b) $\quad R_{i}$ is a connected region, $i=1,2, \ldots, n$.
c) $\quad R_{i} \cap R_{j}=\phi$ for all i and $j, i \neq j$
d) $\quad P\left(R_{i}\right)=$ TRUE for $i=1,2, \ldots, n$.
e) $\quad P\left(R_{i} \cup R_{j}\right)=F A L S E$ for $i \neq j$.
a) Every pixel must be in a region
b) Points in a region must be connected
c) Regions must be disjoint
d) All pixels in a region satisfy specific properties
e) Different regions have different properties
\square

How do we form regions?

- Region Growing
- Region Merging
- Region Splitting
- Split and Merge
- Watershed

What a computer sees

Region growing

- Groups pixels into larger regions.
- Starts with a seed region.
- Grows region by merging neighboring pixels.
- Iterative process
- How to start?
- How to iterate?
- When to stop?

- Seed Fixel
\uparrow Direction of Growth
(a) Start of Growing a Region

- Gown Fivels
* Fixels Being

Considered
(b) Growing Process After a Few Iterations

Region merging

- Algorithm
- Divide image into an initial set of regions
- One region per pixel
- Define a similarity criteria for merging regions
- Merge similar regions
- Repeat previous step until no more merge operations are possible

Similarity Criteria

- Homogeneity of regions is used as the main segmentation criterion in region growing
- gray level
- color, texture
- shape
- model
- etc.

Gray-Level Criteria

- Comparing to Original Seed Pixel - Very sensitive to choice of seed point
- Comparing to Neighbor in Region
- Allows gradual changes in the region
- Can cause significant drift
- Comparing to Region Statistics
- Acts as a drift dampener
- Other possibilities!

Region splitting

- Algorithm
- One initial set that includes the whole image

- Similarity criteria
- Iteratively split regions into sub-regions
- Stop when no more splittings are possible

The segmentation problem

Figure 5.23 A quad-tree representation of an 8×8 binary image.

Split and Merge

- Combination of both algorithms
- Can handle a larger variety of shapes
- Simply apply previous algorithms consecutively

The Watershed Transform

- Geographical inspiration
- Shed water over rugged terrain
- Each lake corresponds to a region
- Characteristics
- Computationally complex
- Great flexibility in segmentation
- Risk of over-segmentation

The Drainage Analogy

- Two points are in the same region if they drain to the same point

Courtesy of Dr. Peter Yim at National Institutes of Health, Bethesda, MD

The Immersion Analogy

Catchment

[Milan Sonka, Vaclav Hlavac, and Roger Boyle]

Figure 5.51: Watershed segmentation: (a) original; (b) gradient image, 3×3 Sobel edge detection, histogram equalized; (c) raw watershed segmentation; (d) watershed segmentation using region markers to control oversegmentation. Courtesy W. Higgins, Penn State University.

Over-Segmentation

- Over-segmentation
- Raw watershed segmentation produces a severely oversegmented image with hundreds or thousands of catchment basins
- Post-Processing
- Region merging
- Edge information
- Etc.

Resources

- Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011
- Chapter 5 - "Segmentation"

