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Fitting and Clustering

• Another definition for segmentation:

– Pixels belong together because they conform

to some model

• Sounds like “Segmentation by

Clustering”...

• Key difference:

– The model is now explicit

We have a 

mathematical

model for the

object we want to 

segment.

Ex: A line
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Hough Transform

• Elegant method for direct object 

recognition

• Edges need not be connected

• Complete object need not be visible

• Key Idea: Edges VOTE for the possible 

model
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Image and Parameter Spaces
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Example - Lines
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Example - Circles

Computer Vision - TP12 - Advanced Segmentation



Least Squares Line Fitting

• Popular fitting procedure

• Simple but biased (why?)

• Consider a line:

y = ax + b

• What is the line that best predicts all

observations (xi,yi)?

– Minimize:  −−
i

ii baxy 2)(
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What happens if 

the line is vertical?
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This looks better…
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Total Least Squares

• Works with the actual distance between

the point and the line (rather than the

vertical distance)

• Lines are represented as a collection of

points where:

• And:

122 =+ ba

Again... Minimize 

the error, obtain the 

line with the ‘best 

fit’.

0=++ cbyax
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Point correspondence 

• We can estimate a line but, which points 
are on which line?

• Usually:

– We are fitting lines to edge points, so…

– Edge directions can give us hints!

• What if I only have isolated points?

• Let’s look at two options:

– Incremental fitting

– Allocating points to lines with K-means
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Incremental Fitting

• Start with connected curves of edge points

• Fit lines to those points in that curve

• Incremental fitting:

– Start at one end of the curve

– Keep fitting all points in that curve to a line

– Begin another line when the fitting 

deteriorates too much

• Great for closed curves!
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K-means allocation

• What if points carry no hints about which 
line they lie on?

• Assume there are k lines for the x points.

• Minimize:

• Iteration:

– Allocate each point to the closest line

– Fir the best line to the points allocated to each 
line
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Topic: Active Contours
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Active Contours

• Given: initial contour (model) near desired 

object
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Active Contours

• Goal: evolve the 

contour to fit exact 

object boundary 

• How?

– Reward solutions next 

to high image 

gradients

– Punish solutions that 

deform shape too 

much

– Iteratively find the 

‘best’ solution to these 

requirements
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Intuition - Elastic Band

• Contour evolves to a 

low-energy solution, but 

is hindered by 

obstacles

• Better intuition: Gravity

– Contour is ‘attracted’ to 

specific image features

– Contour resists to any 

deformation of its shape
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Strong motivation – Moving 

deformable objects
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Things we need to consider

• Representation of the contours

• Defining the energy functions

– External

– Internal

• Minimizing the energy function
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Representation

• We’ll consider a discrete representation of the contour, 

consisting of a list of 2d point positions (“vertices”)

• At each iteration, we’ll have the option to move each 

vertex to another nearby location (“state”)

),,( iii yx=

1,,1,0 −= ni for

),( 00 yx

),( 1919 yx
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Energy function

The total energy (cost) of the current snake is defined as:

• External energy: encourage contour to fit on places 
where specific image structures exist

• Internal energy: encourage prior shape preferences

A good fit between the current deformable contour and the 
target shape in the image will yield a low value for this cost 
function

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
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External image energy

Magnitude of gradient

- (Magnitude of gradient) ( )22 )()( IGIG yx +−

22 )()( IGIG yx +
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External image energy

• Gradient images                 and

• External energy at a point on the curve is:

• External energy for the whole curve:
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Internal energy

For a continuous curve, a 

common internal energy 

term is the “bending energy”  

At some point v(s) on the 

curve, this is:

Tension,
Elasticity

Stiffness,
Curvature
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Internal energy

• For our discrete representation: 

• Internal energy for the whole curve:
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Example: compare curvature

(1,1) (1,1)

(2,2)
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(3,1)

(2,5)
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Penalizing elasticity

• Current elastic energy definition uses a discrete estimate 

of the derivative:

• This rewards very small shapes!

• Instead -> Reward an ‘average distance d between pairs 

of points’
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large  small medium 

• e.g.,    weight controls the penalty for internal elasticity

Energy weights
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Energy minimization: greedy

• For each point, search window around it and move to 

where energy function is minimal

– Typical window size, e.g., 5 x 5 pixels

• Stop when predefined number of points have not 

changed in last iteration, or after max number of 

iterations

• Note:

– Convergence not guaranteed

– Need decent initialization
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Tracking via deformable contours

1. Use final 
contour/model 
extracted at frame  t  
as an initial solution 
for frame t+1

2. Evolve initial contour 
to fit exact object 
boundary at frame t+1

3. Repeat, initializing 
with most recent 
frame

Tracking Heart Ventricles 
(multiple frames)
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Deformable contours: pros and 

cons

Pros:

• Useful to track and fit non-rigid shapes

• Contour remains connected

• Possible to fill in “subjective” contours

• Flexibility in how energy function is defined, weighted.

Cons:

• Must have decent initialization near true boundary, may 

get stuck in local minimum

• Parameters of energy function must be set well based on 

prior information
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Topic: Semantic Segmentation

• Segmentation by Fitting

• Active Contours

• Semantic Segmentation
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Remember ‘Segmentation’?

• Separation of the 

image in different 

areas

– Objects

– Areas with similar 

visual or semantic

characteristics

First form regions based on visual 

characteristics, then find the 

semantics of each region
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Semantic Segmentation

• Separation of the 

image in different 

areas

– Objects

– Areas with similar 

visual or semantic 

characteristics

First classify each pixel, and only 

then form regions (much harder!!)



Classification and Segmentation
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Semantic Segmentation
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Semantic Segmentation

• Requires sophisticated pixel-level 

classification algorithms to be effective

• Powerful data-based approach to 

segmentation

• Fueled by recent advances in deep neural 

networks, such as U-NET
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U-Net

• Encoder-decoder structure
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O. Ronneberger, P. Fischer, 

and T. Brox. "U-net: 

Convolutional networks for 

biomedical image 

segmentation." 

In International Conference 

on Medical image computing 

and computer-assisted 

intervention, pp. 234-241. 

Springer, Cham, 2015.



Resources

• Szeliski, “Computer Vision: Algorithms and 

Applications”, Springer, 2011

– Chapter 5 – “Segmentation”
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