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One definition

« Pattern recognition

"the act of taking in raw data and taking an
action based on the category of the data"

Wikipedia

« How do | do this so well?
* How can | make machines do this?
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Mathematics

* We only deal with numbers.
— How do we represent knowledge?
— How do we represent visual features?
— How do we classify them?
* Very complex problem!!
— Let's break it into smaller ones...
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Typical PR system

Sensor

Gathers the observations to be classified or described

Feature Extraction

Computes numeric or symbolic information from the observations;

Classifier

Does the actual job of classifying or describing observations, relying on the
extracted features.
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Sensor

* In our specific case:
— Image acquiring mechanism
— Let's assume we don't control it

One observation = One Image
Video = Multiple Observations
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Feature Extraction

* What exactly are features?
— Colour, texture, shape, etc
— Animal with 4 legs
— Horse
— Horse jumping

* These vary a lot!

* Some imply some sort of ‘recognition’
e.g. How do | know the horse is jumping?
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Broad classification of features

 Low-level
— Colour, texture

* Middle-level
— Object with head and four legs
— Object moving up
— Horse
* High-level
— Horse jumping
— Horse competition
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| ow-level features

* Objective
* Directly reflect specific image and V|deo
features S

— Colour
— Texture
— Shape
— Motion

— Etc.
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Middle-level features

 Some degree of subjectivity

* They are typically one solution of a
problem with multiple solutions

* Examples:
— Segmentation
— Optical Flow
— Identification
— Etc.
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High-level features

« Semantic Interpretation

 Knowledge F?“
« Context =
* Examples: a0

How do humans
do this so well?

~

)

— This person suffers from epilepsy
— The virus attacks the cell with some degree of

intellig

ence

— This person is running from that one
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The semantic gap

* Fundamental problem of current research!

e
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Features & Decisions

Various
Possible
Solutions

Decision>

One

Solution
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How do |
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Classification

Middle-Level Features High-Level Features
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M inputs, N outputs
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Classifiers

 How do | map my M inputs to my N

outputs?

 Mathematical tools:
— Distance-based classifiers
— Rule-based classifiers
— Support Vector Machines
— Neural Networks
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Types of PR methods

« Statistical pattern recognition

— based on statistical characterizations of
patterns, assuming that the patterns are
generated by a probabilistic system

« Syntactical (or structural) pattern
recognition

— based on the structural interrelationships of
features
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Porto is in Portugal

| want to make decisions
— Is Porto in Portugal?

* | know certain things
— A world map including cities and countries

| can make this decision!
— Porto is in Portugal

* | had enough a priori knowledge to make
this decision
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What if | don’t have a map?

| still want to make this decision

| observe:

— Amarante has coordinates x4,y, and is in Portugal
— Viseu has coordinates x,, y, and is in Portugal

— Vigo has coordinates x5, yzand is in Spain

| classify:

— Porto is close to Amarante and Viseu so Porto is in
Portugal

What if | try to classify Valencga?
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Statistical PR

e | used statistics to make a decision

— | can make decisions even when | don’t have
full a priori knowledge of the whole process

— | can make mistakes i What }

- How did | recognize this pattern? A_Patem?

— | learned from previous observations where |
Knew the classification result

— | classified a new observation
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Back to the Features

* Feature F; F=[f] * Naming conventions:
— Elements of a feature

e Feature F.with N vector are called
' coefficients

values.
— Features may have
E={f1sfaros fir] one or more
coefficients
* Feature vector F with — Feature vectors may
M features. have one or more
features

F=[F|F)|..|F,]
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Back to our Porto example

* I've classified that Porto is in Portugal

 \What feature did | use?
— Spatial location

* Let's get more formal

— |'ve defined a feature vector F with one
feature F4, which has two coefficients f;,, f;,

F=[H]=[/ 1]
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Feature Space

 Feature Vector
— Two total coefficients
— Can be seen as a VAN
feature ‘space’ with
two orthogonal axis

15 4

10 - ‘ Braga

* Feature Space

— Hyper-space with N
dimensions where N is

Y Coordinate

[6)]
L

the total number of ke -"“
coefficients of my
feature vector

X Coordinate
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A Priori Knowledge

* | have a precise model of
my feature space based
on a priori knowledge

City is in Spain if F,,>23

* Great models = Great

classifications
F,y(London) = 100
London is in Spain (??)

Porto is in
Portugal!

eature Space \
e 1 know the
border is
LA here
25 j
20 -
E 15 1
§ 10 - ‘ Braga
5 |
£ Porto; . . - Arr\ararl1te
K[l)/ 2 4 6 8 10 12
-5
-10 A
X Coordinate
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What if | don’t have a model?

| need to learn from

observations.
— Derive a model

— Direct classification

* Training stage

— Learn model
parameters

e Classification

[BPORTO
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Classes

- In our example, cities e

can belong to: h SPAIN
— Portugal Lo
— Spain

* | have two classes of
cities

* A class represents a

sub-space of my
feature space

Y Coordinate
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Classifiers

* A Classifier C maps a class into the
feature space

true , V>K

CSpain (.X, y) — {

false ,otherwise

 Various types of classifiers
— Nearest-Neighbours
— Bayesian
— Soft-computing machines

— Etc...
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Visual Features

The earth is blue,
white and
brown

The earth is round" he south pole has

a smooth texture



Visual Features

* Features
— Measure specific characteristics
— Numerical values
— May have multiple values

 Visual Features

— Quantify visual characteristics of an image

— Popular features
» Colour, Texture, Shape
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Feature vector

* Feature F; F=[f]  Naming conventions
| for this module:

 Feature F;with N — Elements of a feature
vector are called

values. .
coefficients
F=[fs Sy fox] — Features may have
one or more
 Feature vector F with coefficients
M features. — Feature vectors may
have one or more
F=[R|F]..|F,] o
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Gray-Level Histogram

 |ntensity distribution
(HSI)

 \We can define the
number of histogram

DINS

« Histogram bins =
~eature coefficients

F=[fo5es foss]

a
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Colour Histogram

« We typically have three
histograms
Ex: RGB Colour space
- Red Histogram
- Green Histogram
- Blue Histogram

* How do we build a
feature vector?

0
— Concatenate vectors
— Multi-dimensional
quantization of colour
Blue
B 200
0

space

Green
25

6

256
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RGB Histogram

* Simply concatenate vectors
* Not very smart... (why?)

| S rose s S o35 ]
:fGOr“afGZSS] FRGB:[FR|FG|FB]

0

a2k

I ]
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HSI Histogram

* Quantize HSI space

— Define number of bins
N.

— Feature vector

Fus = forer Sy

» Typically better for
object description
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Fig. 2. Three color images and their MPEG-7 histogram color distribution,
depicted using a simplified color histogram. Based on the color distribution, the
two left images would be recognized as more similar compared to the one on
the right.
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What is texture?

“Texture gives us information about the
spatial arrangement of the colours or
Intensities in an image”

[L. Shapiro]
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Two approaches to texture

» Structural approach

— Texture is a set of primitive fexels in some
regular or repeated relationship

— Good for regular, ‘man-made’ textures

» Statistical approach

— Texture is a quantitative measure of the
arrangement of intensities in a region

— More general and easier to compute
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Statistical approaches

» Grey level of central pixels

» Average of grey levels in window

 Median

« Standard deviation of grey levels

« Difference of maximum and minimum grey levels

» Difference between average grey level in small and large windows
« Sobel feature

* Kirsch feature
e Derivative in x window
« Derivative in y window )

« Diagonal derivatives _
« Combine features How do | pick one??

\ )
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Shape Descriptors

* Blue: Similar shapes by Region-Based
* Yellow: Similar shapes by Contour-Based

€9
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Topic: Detection of interest points
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Motivation: Same interest points

* We want to detect the same points in both
Images

No chance to find true matches!




Motivation: ‘Unique’ descriptor per
iInterest point

* \We want to match the same interest points

* Need a descriptor invariant to geometric
and photometric differences




Corners are distinctive interest

points
LI, 1, 2 X 2 matrix of image
M =
2. Lxly Iylj derivatives (averaged in

neighborhood of a point)

I

K Y

ol
Notation: [ < —

OX
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Gradient strength

o
Since M is symmetric, we have M =X 201 ; X'
i 2
Mx;, = Ax,

The eigenvalues of M reveal the amount of
iIntensity change in the two principal orthogonal
gradient directions in the window
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Scoring ‘cornerness’
™

I '
“edge’: “‘corner”: “flat” region
A >> A1 and A, are large, Aqand A, are
Ao >> Ay Ay~ A, small;

One way to score — )\1 >\2
the cornerness: )\1 -+ )\2
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Harris corner detector

1) Compute M matrix for image window
surrounding each pixel to get its cornerness
score.

2) Find points with large corner response (f >
threshold)

3) Take the points of local maxima, i.e., perform
non-maximum suppression
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Properties of the Harris corner
detector

 Rotation invariant? Yes _ _
M=X

« Scale invariant?

[BPORTO




Properties of the Harris corner
detector

 Rotation invariant? Yes
 Scale invariant? No

A T mmm) B

All points will be Corner!
classified as edges
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Automatic scale selection

@& @

/’{g“ /\ Image 2

region size S, region size

[BPORTO




From edges to blobs

« Edge = ripple
» Blob = superposition of two ripples

Original signal

IR

-20 -10 10 20 =20 -7 7 20 -20 -3 3 20 -20 -1 1

Convolved with Laplacian (o = 1)
2 - - : k = 2
JI ||' % "i,\ ] ok /\ a.' "‘f\ ] 5l /\ '.. ',' \_ | il /\ “‘ "(\
\
Vv Y VoV VV \|
1
-20 =T, 10 20 -20 = 7 20 -20 =3 3 20 -20 1

« Spatial selection: the magnitude of the Laplacian Maximum
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob
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Blob detection in 2D

« Laplacian of
Gaussian: Circularly
symmetric operator
for blob detection in

2D

[BPORTO




Scale invariant interest points

Interest points are local e
maxima in both 0.5 R
position and scale

. T T 7
\ 7 7 7 7 7S
- T T

S ST

(T 77777
T T T 7
[ T IT 7 7
[T TTF 7

= List of

(X, ¥, O) Squared filter

response maps
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Geometric transformations

Multiple View
Geometry

In omniuler vislon

e.g. scale,
translation,
rotation
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SIFT descriptor [Lowe 2004]

» Use histograms to bin pixels within sub-patches
according to their orientation

-

Why subpatches?

Why does SIFT have
some illumination
invariance?
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Making descriptor rotation invariant

» Rotate patch according to its dminant grédient
orientation

« This puts the patches into a canonical orientation
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SIFT descriptor [Lowe 2004]

« Extraordinarily robust matching technique
« Can handle changes in viewpoint
« Can handle significant changes in illumination
* Fast and efficient—can run in real time
* Lots of code available

e | g

N

o
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NASA Mars Rover images
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Example

NASA Mars Rover images




SIFT properties

 |[nvariant to
— Scale
— Rotation

» Partially invariant to
— lllumination changes
— Camera viewpoint
— Occlusion, clutter
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Resources

« Szeliski, “Computer Vision: Algorithms and
Applications”, Springer, 2011
— Chapter 14 — "Recognition”
— Chapter 4 — "Feature Detection and Matching”
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