# Computer Vision – TP10 Deep Learning Resources and Examples

Miguel Coimbra, Hélder Oliveira



# Outline

- Techniques to reduce overfitting
- Deep learning examples



# Outline

- Techniques to reduce overfitting
- Deep learning examples



## Generalization

- Deep neural network => high number of parameters (high complexity)
- They require large training datasets

 What can we do when we do not have a large annotated training dataset?



## Regularization

 "Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error."



# Weight regularization

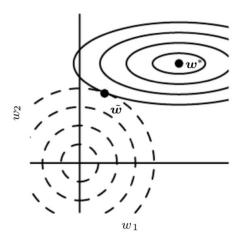
- Reduce the generalization error by imposing constraints on the weights
- Modifies the loss function in order to force some structure on the learned weights  $L'(\theta, \{(x_i, y_i)_i\}) = L(\theta, \{(x_i, y_i)_i\}) + \gamma \Omega(\theta)$

### • Different $\Omega$ , different effect on the weights



# Weight decay

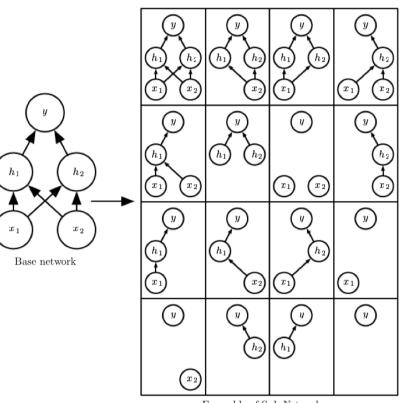
- Weight decay:  $\Omega(\theta) = \|\theta\|_2^2$ 
  - Drives the weights closer to the origin
  - Weight components that do not impact significantly the loss function are decayed





# Dropout

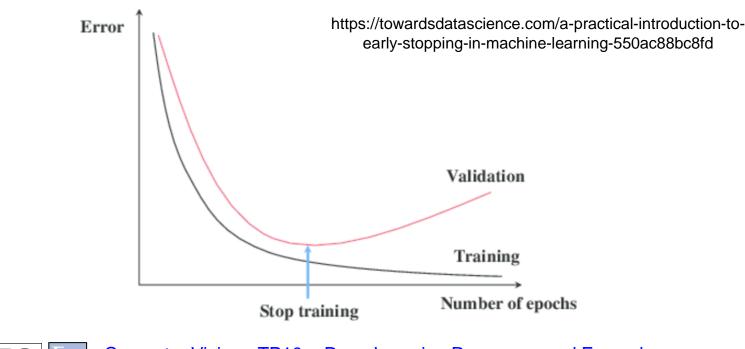
- During training, randomly switch off a fraction of the input or hidden units
- It avoids giving too much relevance to some training features
- It approximates bagging and ensemble learning over all sub-models (Monte-Carlo sampling)





# Early stopping

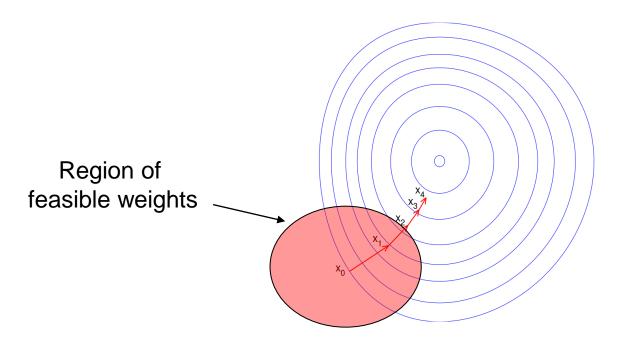
• Retain the model which performs best on the validation set (hopefully, test set too)





# Early stopping

Regularization effect: constraint on the number of training steps





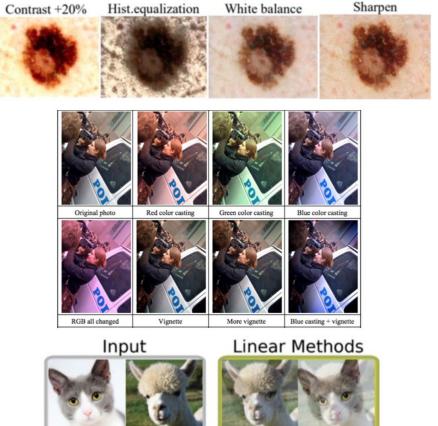
# Data augmentation

- Create fake data and add it to the training dataset (only training!)
- Especially useful for imaging data
- New data created from transformations of existing training data:
  - Different transformations may be more meaningful in different domains
  - A transformation should not change class meaning

U. PORTO C

# Data augmentation

- Transformations:
  - Translating
  - Rotating
  - Cropping
  - Flipping
  - Color space
  - Adding noise
  - Image mixing
  - Generative Adversarial Networks (GANs)



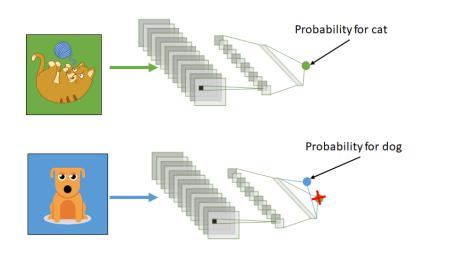
Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. Journal of Big Data. 2019 Dec;6(1):1-48.

– Etc.



# **Transfer learning**

- Main idea:
  - Features to perform a task T1 may be relevant and useful for a different task T2



https://towardsdatascience.com/transfer-learning-3e9bb53549f6



# **Transfer learning**

- When is it useful:
  - Reduced number of training samples for the considered task
  - Large number of training samples for a related task
  - Low-level features could be common to both tasks!

#### • Example:

- Image classification
- NNs pre-trained on the ImageNet dataset (~14 million images, ~20,000 categories)



# Transfer learning schemes

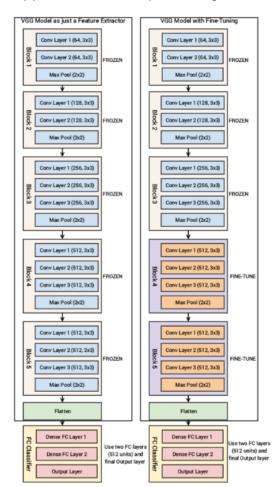
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to- transferlearning-with-real-world-applications-in-deep-learning-212bf3b2f27a

#### • Feature extraction:

- Keep convolutional layers frozen
- Pre-trained networks works as feature extractor
- Train fully connected/classification layers

#### • Fine-tuning:

- Use pre-trained weights as starting point for training
- Can keep frozen first convolutional layers (mostly edge/geometry detectors)





# Outline

- Techniques to reduce overfitting
- Deep learning examples



# Example in Keras

- Task:
  - Classify hand-written digits
- Model:
  - Convolutional neural network
- Full code available at:
  - <u>https://keras.io/examples/vision/mnist\_convnet/</u>

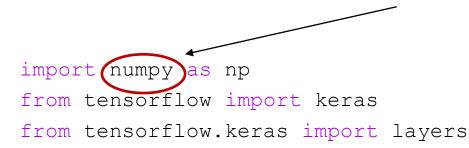




# Setup

Import useful libraries

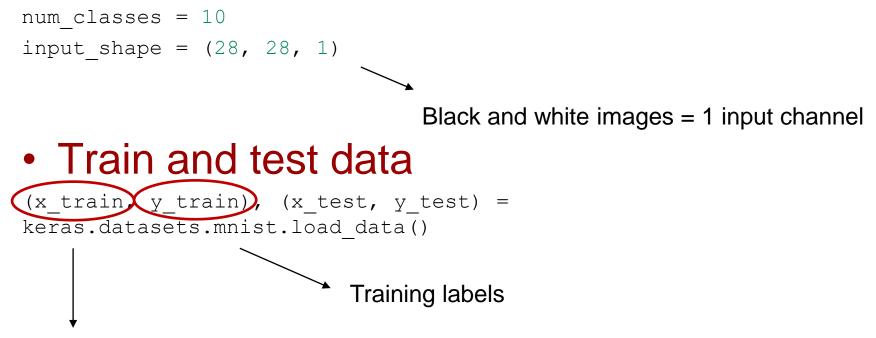
Useful for processing matrix-like data in Python, and much more...





### Prepare the data

#### Model/data parameters



Training images: dimensions (60000, 28, 28, 1), "channel-last" ordering

### Prepare the data

#### Scale images to [0,1] range

x\_train = x\_train.astype("float32") / 255 x\_test = x\_test.astype("float32") / 255

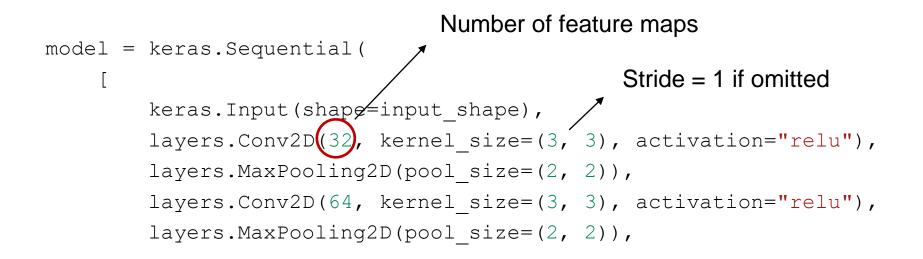
#### One-hot encoding

y\_train = keras.utils.to\_categorical(y\_train, num\_classes)
y\_test = keras.utils.to\_categorical(y\_test, num\_classes)

E.g., from "3" to  $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$ 

### Build the model - I

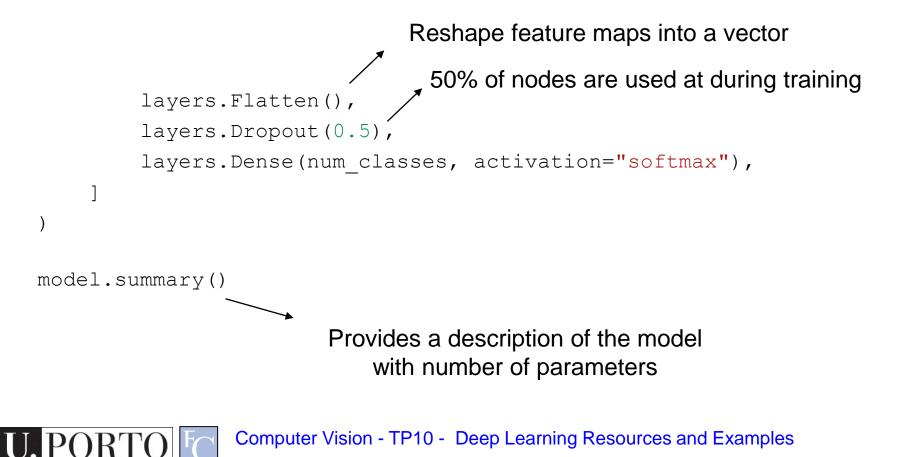
#### Feature extraction





## Build the model - II

Classification



### Build the model - III

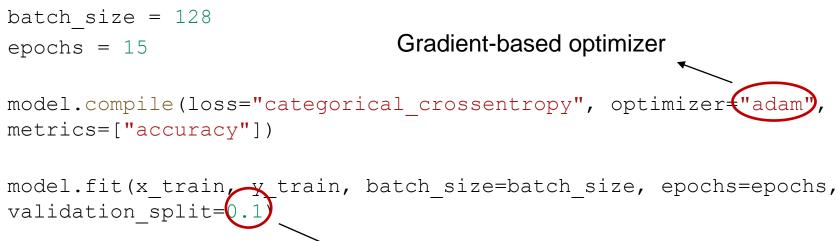
#### Model summary

#### Model: "sequential"

| Layer (type)                                                                | Output Shape       | Param # |
|-----------------------------------------------------------------------------|--------------------|---------|
| conv2d (Conv2D)                                                             | (None, 26, 26, 32) | 320     |
| max_pooling2d (MaxPooling2D<br>)                                            | (None, 13, 13, 32) | 0       |
| <pre>conv2d_1 (Conv2D)</pre>                                                | (None, 11, 11, 64) | 18496   |
| max_pooling2d_1 (MaxPooling<br>2D)                                          | (None, 5, 5, 64)   | 0       |
| flatten (Flatten)                                                           | (None, 1600)       | 0       |
| dropout (Dropout)                                                           | (None, 1600)       | 0       |
| dense (Dense)                                                               | (None, 10)         | 16010   |
| Total params: 34,826<br>Trainable params: 34,826<br>Non-trainable params: 0 |                    |         |



### Train the model



10% of the training data is used for validation



### Evaluate the model

```
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
```

#### Results

Test loss: 0.023472992703318596 Test accuracy: 0.9912999868392944



# Weight decay in Keras

Added to each layer



# Early stopping in Keras

```
tf.keras.callbacks.EarlyStopping(
    monitor='val_loss', min_delta=0, patience=0, verbose=0,
    mode='auto', baseline=None, restore_best_weights=False
)
```

- Then call "callbacks" into model.fit()
- Patience = number of epochs with no improvement after which training is stopped
- Min\_delta = minimum change
- Restore\_best\_weights = keep best model

# **Transfer learning Keras**

Load a pre-trained model

- Feature extractor: base\_model.trainable = False
- Fine-tuning: base\_model.trainable = True
- Then add a classification head



### Resources

- I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Cambridge: MIT press, 2016.
  - Chapter 7 "Regularization for deep learning"
- <u>https://www.tensorflow.org/tutorials/keras</u>
- <u>https://www.tensorflow.org/tutorials/images</u>

