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Supervised vs. Unsupervised

e Supervised learning « Examples

— We have access to a — Image classification
set of training data for — Image segmentation
which we know the — Object detection
correct class/answer

o — Etc.

— Training

data:{(x;, y;)}

- x;. data (e.g., Image)

- V. label
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DOG, DOG, CAT TREE SKY

Object Detection  Semantic Segmentation
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Supervised vs. Unsupervised

« Unsupervised « Examples

learning — Clustering

— Discover hidden — Dimensionality
structures in the data reduction

— Training data:{x;}¥_, — Generative models

- x;. only data (e.g., — Etc.
Image), no label! o %& ) ?

3.4 —_— 2. K-means clustering
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Autoencoders

* Objective

— Find representative features of the data
* Unsupervised learning

— No data labels required
« Simple idea

— Learn a representation of the data and try to
recover the original data from that!
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Autoencoders

* Representative features

Features 2

I Encoder

Input data T ==E?2E

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 37 May 18, 2017
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Autoencoders

* Representative features

Features | 2z | /

Input data

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

Encoder

XL

Fei-Fei Li & Justin Johnson & Serena Yeung

e =
PHL&Ne

ool TSR
sl < B
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Lecture 13- 38 May 18, 2017
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Autoencoders

« Reconstruction

Reconstructed Z
input data 7y
Decoder
Features =
A
Encoder
Input data T

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 42 May 18, 2017
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Autoencoders

« Reconstruction

Originally: Linear +

= nonlinearity (sigmoid)
Rgconts'gu::ted X Later: Deep, fully-connected
INPUL Geka 4 Later: ReLU CNN (upconv)
Decoder
Features o
\
Encoder
Input data T

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 42 May 18, 2017
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Autoencoders

« Reconstruction

Reconstructed 2

. I
input data A
Decoder
Features =~
A
Encoder
Input data T

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 -

Reconstructed data

o [

B L&ES
RS
-EH: LT

Encoder: 4-layer conv
Decoder: 4-layer upconv

' Input data
P csi I

RN L&lHe

i MRS g
a7l < B

42 May 18, 2017
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Autoencoders

» Training T
| " s
I;ilrt;:ﬁ;;hﬂ features L2 Loss function: Ei sg

reconstruct original data — 3?2 —— .
. T“"” -EH; LT

ff? Encoder: 4-layer conv
A Decoder: 4-layer upconv

Reconstructed
input data

Decoder
Input data

Features [ 2 o IR
A

Encoder ,%ﬁ @

IR i W
Input data T a%&g

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 42 May 18, 2017
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Autoencoders

 Use the learned features for other tasks!

Reconstructed ‘

input data

Decoder

Features ‘

T After training,

Input data |

throw away decoder

Encoder

|

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 47 May 18, 2017
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Autoencoders

 Use the learned features for other tasks!

Loss function
(Softmax, etc) bird  plane

/' ‘\ dog deer truck

Predicted Label

Train for final task
(sometimes with
small data)

Fine-tune

Encoder can be encoder

Y

I Classifier
used to initialize a Features Z jointly with

€T

supervised model classifier
Encoder

o MR

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 48 May 18, 2017

Input data
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Avold trivial solutions

* Undercomplete: dim(z) << dim(x)
— Forces to capture the most salient features
— Dimensionality reduction
— Capture meaningful factors of variation

* Regularized

— Encourage the model to have some
properties
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Sparse Autoencoders

* Code sparsity
LOSS = ||lx — %12 + ||zl

— Helps learning good features for classification

— Forces a (Laplace) prior on latent
representation

— Different from weight regularization! Why?
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Denoising Autoencoders

* Definition
— Encoder function: z = E(x)
— Decoder function: X = D(z)
— Noisy version of data: X = x + noise

— Denoising autoencoder:
LOSSgen = llx — D(E()?))”%

 Implicitly learns the structure of the data
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Denoising Autoencoders

Input Output

%fi\“ ~ 70

3 AN X S
v - . - 11
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A Ve ~Q D
/ j S— \
~ ~ \
.f ~
~ ~ O\
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il Y
Encoder Decoder

https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/
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Autoencoder Applications

* Dimensionality reduction
* Denoising
 Information retrieval

— Low-dimensional, binary code (semantic
hashing)

* Generative models
— Variational autoencoders (VAES)
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Variational Autoencoders

* |dea: we can use the autoencoder
approach to generate data from a specific

distribution

* Training: data sampled from such
distribution

* Use autoencoder to generate the
statistical description of the data
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Variational Autoencoders

« Generative model:

— Given a set of training data, learn their
distribution in order to generate new data from
a similar distribution

B4 =

Training data ~ p_._(X) Generated samples ~p_ . (X)

Wantto learn p . (x) similar to p___(x)
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Variational Autoencoders

* |dea

— Encoder and decoder provide distributions
(their parameters), not data points!

* Assumptions
- Training data {x;};.,
- p(z) Gaussian distribution
- p(x|z) Gaussian distribution (Encoder)

- p(z|x) approximated by a Gaussian
distribution (Decoder)
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Variational Autoencoders

* Training

— Use a variational lower bound of the log-
likelihood log p(x;)

» Generate data
— Sample z from a Gaussian prior
— Use decoder to get (Gaussian) p(x|z)
— Sample x|z from p(x|z)

[BAPORTO
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Outline

* Autoencoders
* Deep learning for segmentation

PORTO Computer Vision - TP13 - Advanced Deep Learning Topics




Semantic Segmentation

e Separation of the
Image in different
areas
— Objects

— Areas with similar
visual or semantic
characteristics

First classify each pixel, and only
then form regions (much harder!!)
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Deep Learning Semantic
Segmentation

» Basic idea: use deep learning models to
classify pixels with semantic labels

— Can we simply use CNN architectures
previously presented for classification?

* More demanding task than image
classification
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Fully Convolutional Networks

 Remove fully connected layers from
existing CNN models (e.qg., VGG16)

— Variable size input
— Qutput can have same size of input. (Why?)

J. Long, E. Shelhamer, and T. Darrell, “Fully
convolutional networks for semantic
segmentation,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431—
3440.
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Fully Convolutional Networks

« Upsampling/Skip connections
— Project information to image domain
— Keep global information

PORTO Computer Vision - TP13 - Advanced Deep Learning Topics




Fully Convolutional Networks

* Limitations:
— Too complex for real time segmentation
— Global information not efficiently managed
— Not easily generalizable to 3D data
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Encoder-Decoder Models

* Encoder-decoder architectures
— Similar to autoencoders architectures
— Leverage latent representation
— But require labels to train (supervised)

Input Imag Latent ’ Output Map
Representation
Encod Decoder
- ' ®
X y

Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D. Image segmentation using deep learning: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021 Feb 17
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U-Net

(] 2 D Seg m e ntatl O n O. Ronneberger, P. Fischer,

input
image

64 64

A4
A4

tile
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and T. Brox. "U-net:
Convolutional networks for
biomedical image
128 64 64 2 segmentation."

In International Conference
on Medical image computing
> | OUTPUE and computer-assisted
N segmentation . .
ol & 8§ map intervention, pp. 234-241.
EEE Springer, Cham, 2015.
256 128
512 256 t
3 'E > =» conv 3x3, RelLU
"4 S copy and crop
4 el § max pool 2x2
5 3 4 up-conv 2x2
= conv 1x1
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V-Net

» 3D segmentation " A Anmac et Fully

1Ch. (input) e
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convo- lutional neural
networks for volumetric
medical image segmen-
tation,” in International
ctCramen | & Conference on 3D Vision.

T ,.Q IEEE, 2016, pp. 565-571.
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Encoder-Decoder Models

* Extensively used in as state-of-the-art for
different fields

— “General” image segmentation

— Autonomous driving

— Medical and biomedical image segmentation
* Limitations

— Potential loss of fine-grained image
Information
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Training

* Pixel classification
— Pixel-level cross-entropy loss

N
1
CEjpss = _NE pnlogq, + (1 —py)log(1 — qy)
n=1

* Problem
— Not very effective for highly imbalanced data
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Training

* Dice coefficient

predicted

2 X

2x
area of
overlapped
(green)

ground truth

Dice _ s
coefficient ~ total area
(green)

https://datascience.stackexchange.com/questions/75708/neural-network-probability-output-and-loss-function-example-dice-loss
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Training

 Dice loss
2 ZN 1Pnqn T €

P WA

DICE; ;s =1 —

* More robust against imbalanced data and
directly related to “similarity” between the
output segmentation map and true
segmentation map
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Resources

 F.F. Li, J. Johnson, S. Young. Convolutional
Neural Networks for Visual Recognition, Stanford
University, 2017
— Lecture 13- "Generative models”

— http://cs231n.stanford.edu/slides/2017/cs231n_2017 |
ecturel3.pdf

* |. Goodfellow, Y. Bengio, and A. Courville. Deep
learning. Cambridge: MIT press, 2016.
— Chapter 14 — “Autoencoders”
— Chapter 20 — “Deep Generative Models”
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