Computer Vision – TP14 Advanced Deep Learning Topics II

Miguel Coimbra, Hélder Oliveira

Outline

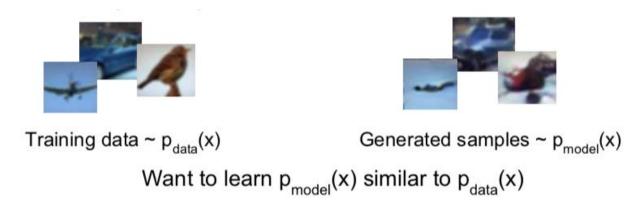
- Generative models
- Variational autoencoders (VAEs)
- Generative adversarial networks (GANs)

Outline

- Generative models
- Variational autoencoders (VAEs)
- Generative adversarial networks (GANs)

Generative models

 Given a set of training data, learn their distribution and generate new data from a similar distribution



- Explicit: returns $p_{model}(x)$
- Implicit: generate samples only

Applications

- Generate new data for simulations
 - Reinforcement learning
- Generate new data for model training
 - Data augmentation
- Fill in the gaps of measured data
 - Super-resolution
 - Colorization
- Inference of latent representation

Outline

- Generative models
- Variational autoencoders (VAEs)
- Generative adversarial networks (GANs)

Variational Autoencoders

- Idea: we can use the autoencoder approach to generate data from a specific distribution
- Training: data sampled from such distribution
- Use autoencoder to generate the statistical description of the data

Variational Autoencoders

Idea

 Encoder and decoder provide distributions (their parameters), not data points!

Assumptions

- Training data $\{x_i\}_{i=1}^N$
- -p(z) Gaussian distribution
- -p(x|z) Gaussian distribution (Decoder)
- p(z|x) approximated by a Gaussian distribution (Encoder)

Variational Autoencoders

Training

– Use a variational lower bound of the loglikelihood $\log p_{\theta}(x_i)$

Generate data

- Sample z (latent representation) from a Gaussian prior
- Use decoder to get (Gaussian) $p_{\theta}(x|z)$
- Sample x|z from $p_{\theta}(x|z)$

Data likelihood intractable to compute:

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

Use a network to model encoder distribution

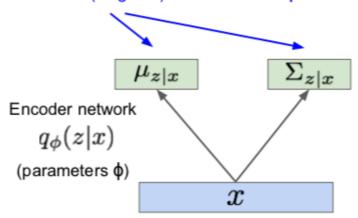
$$q_{\phi}(z|x) \approx p(z|x)$$

 Then, optimize a lower bound of the data likelihood:

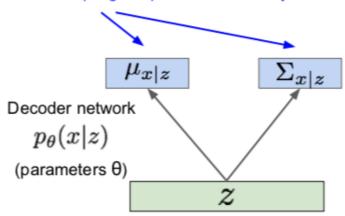
$$\log p_{\theta}(x) \ge E_z[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$$

 Encoder and decoder networks return distribution parameters

Mean and (diagonal) covariance of z | x



Mean and (diagonal) covariance of x | z



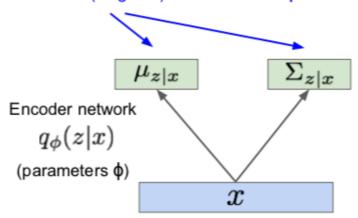
Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung

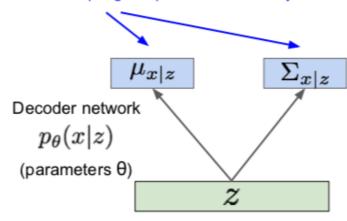
Lecture 13 - 69 May 18, 2017

 Sample from these distributions to get latent z and image x

Mean and (diagonal) covariance of z | x



Mean and (diagonal) covariance of x | z



Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 69 May 18, 2017

Putting it all together: maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Let's look at computing the bound (forward pass) for a given minibatch of input data

Input Data

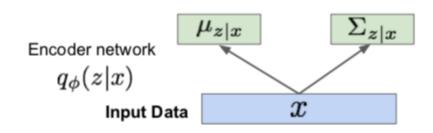
x

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 84 May 18, 2017

Putting it all together: maximizing the likelihood lower bound

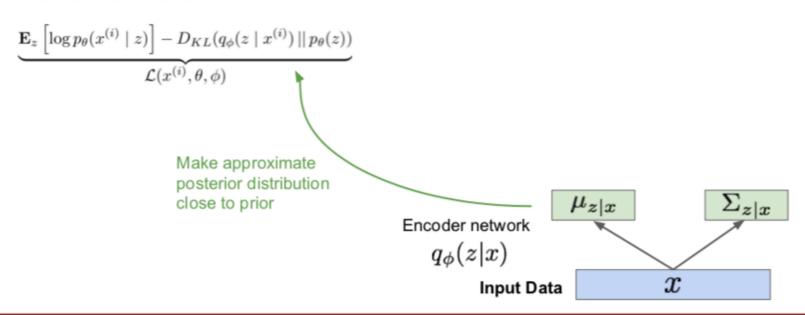
$$\underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 85 May 18, 2017

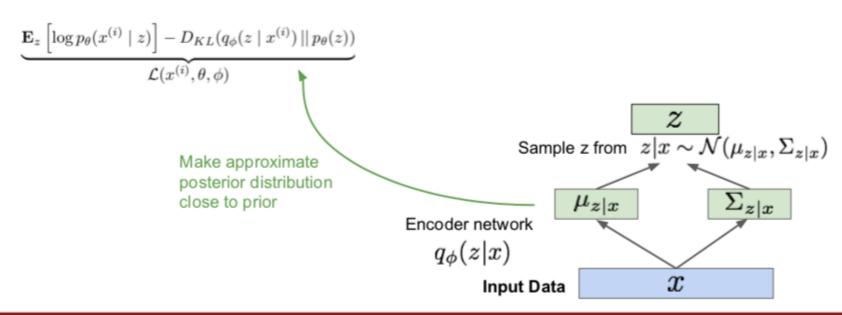
Putting it all together: maximizing the likelihood lower bound



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 86 May 18, 2017

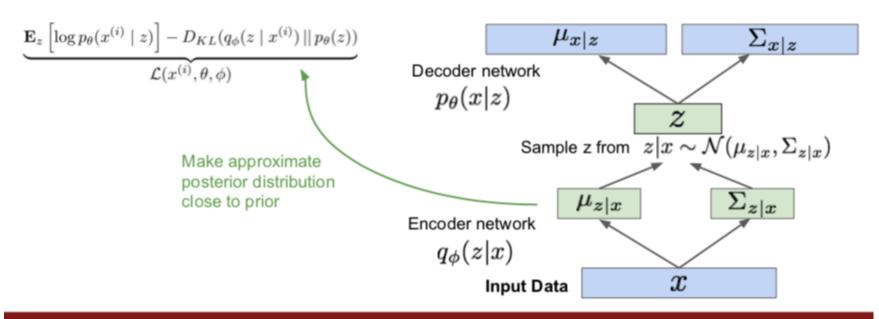
Putting it all together: maximizing the likelihood lower bound



Fei-Fei Li & Justin Johnson & Serena Yeung

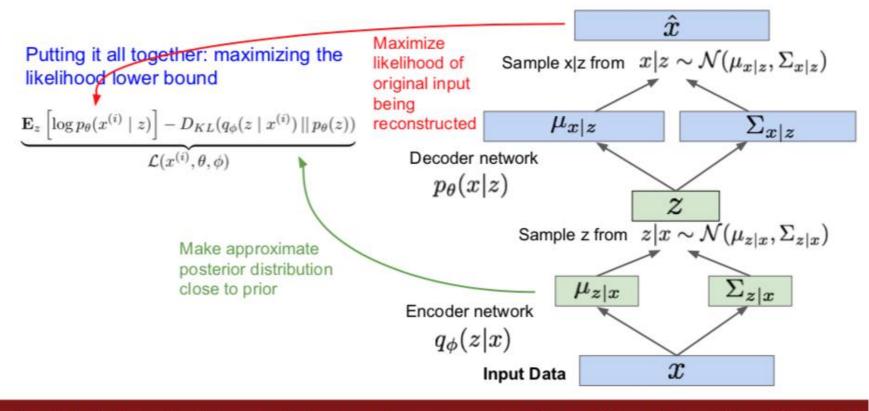
Lecture 13 - 87 May 18, 2017

Putting it all together: maximizing the likelihood lower bound



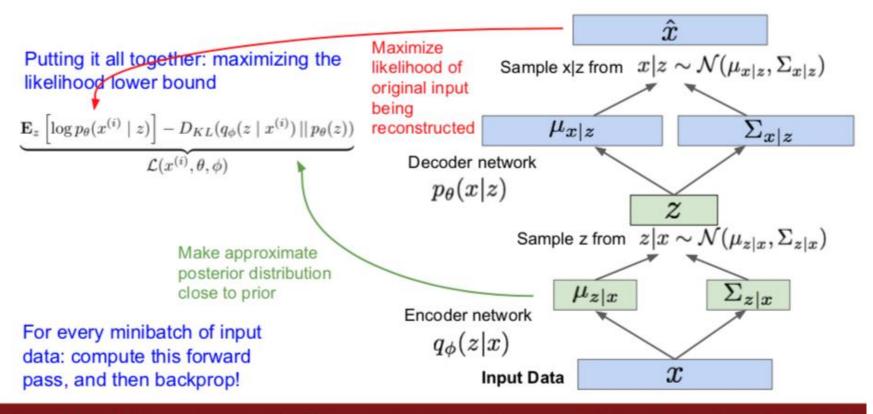
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 88 May 18, 2017



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 89 May 18, 2017

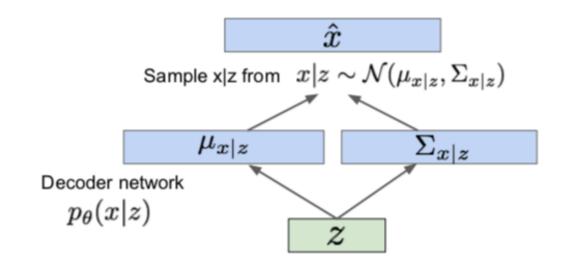


Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 90 May 18, 2017

Generating data

- 1. Sample z from prior
- Use decoder network
- 3. Sample from Gaussian posterior



Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Sample z from $z \sim \mathcal{N}(0, I)$

VAEs results

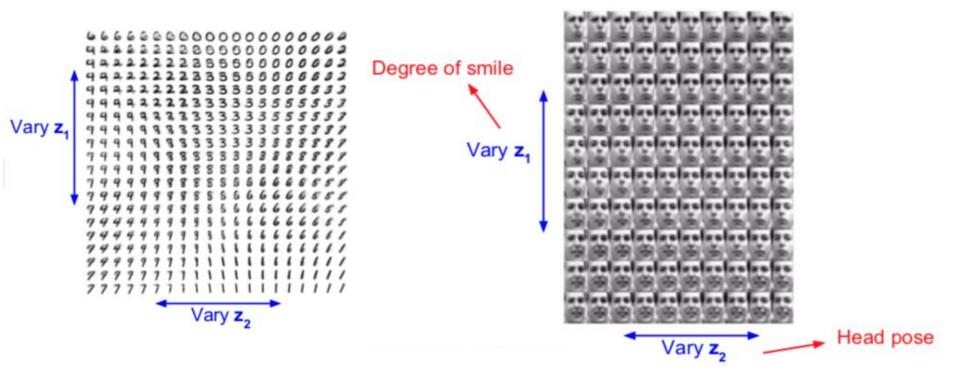
32x32 CIFAR-10

Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Latent representations

z contains independent factors!

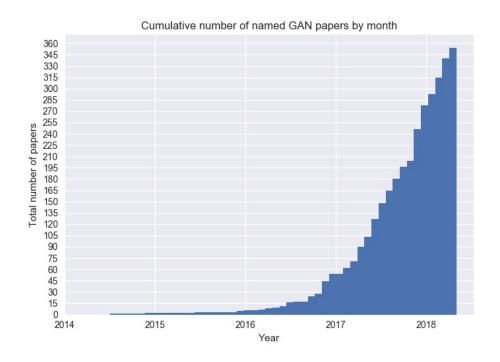


Outline

- Generative models
- Variational autoencoders (VAEs)
- Generative adversarial networks (GANs)

GANs taking over

Track updates at the GAN Zoo



https://github.com/hindupuravinash/the-gan-zoo

Generative adversarial networks

Main idea

- In contrast with other models (e.g., VAEs), it does not provide explicit information about data distribution (i.e., density function)
- Generate samples only

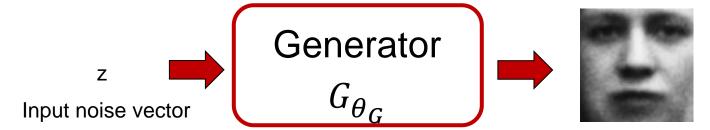
• How?

 Define an adversarial two-player game between a generator and a discriminator

Generator

Learns a transformation from a simple noise distribution to training distribution (e.g., images)

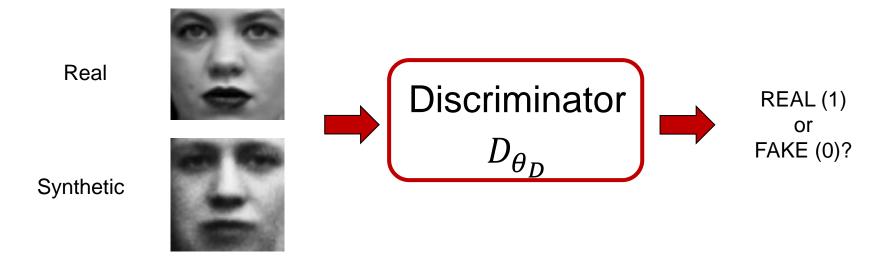
Training samples



Synthetic sample

Discriminator

Distinguish between real and fake images



Training GANs

- Train jointly the generator and the discriminator in a minimax game
 - Generator: try to fool the discriminator by generating real-looking images
 - Discriminator: try to distinguish between real and generated images

Training GANs

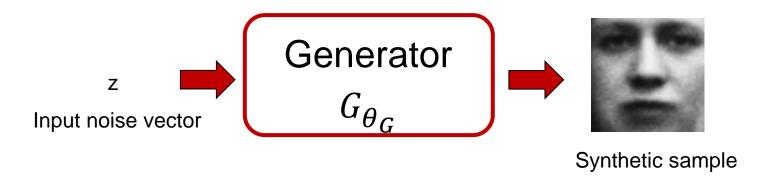
Minimax objective function

$$\min_{\theta_G} \max_{\theta_D} E_{p_{train}} \log D_{\theta_D}(x) + E_{p(z)} \log(1 - D_{\theta_D}(G_{\theta_G}(z)))$$

- Discriminator: maximize the objective so that D(x) is close to 1 (real) and D(G(z)) close to 0 (fake)
- Generator: minimize the objective so that D(G(z)) is close to 1 (the discriminator is fooled)
- Solved via alternating gradient optimization

Generating data

 After training, just use the generator to generate new samples



- Useful side-effect:
 - Discriminator can be used for transfer learning (why?)

GANs architectures

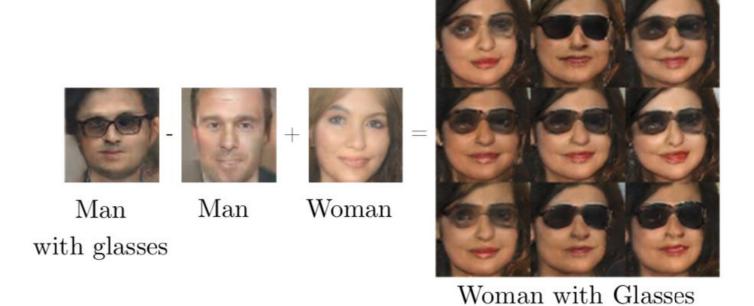
- Image GANs mainly use CNNs
- Generator
 - Upsampling + convolutional layers: similar to decoder in AEs
- Discriminator
 - Similar to classification CNN

GANs results

Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196. 2017 Oct 27.

Latent representations

Interpretable vector math



Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 2015 Nov 19.

Generative models: VAEs vs GANs

VAEs

- © Principled (max likelihood) approach
- Provide explicit distributions
- Provide blurry samples

GANs

- Beautiful, state-of-the-art samples
- ☼ Trickier to train (unstable)
- Do not provide explicit distributions

Resources

- F.F. Li, J. Johnson, S. Young. Convolutional Neural Networks for Visual Recognition, Stanford University, 2017
 - Lecture 13- "Generative models"
 - http://cs231n.stanford.edu/slides/2017/cs231n_2017_l ecture13.pdf
- I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Cambridge: MIT press, 2016.
 - Chapter 14 "Autoencoders"
 - Chapter 20 "Deep Generative Models"

