Computer Vision – TP8 Statistical Classifiers

Miguel Coimbra, Hélder Oliveira

Outline

- Statistical Classifiers
- Support Vector Machines
- Neural Networks

Topic: Statistical Classifiers

- Statistical Classifiers
- Support Vector Machines
- Neural Networks

Statistical PR

- I use statistics to make a decision
 - I can make decisions even when I don't have full a priori knowledge of the whole process
 - I can make mistakes
- How did I recognize this pattern?
 - I learn from previous observations where I know the classification result
 - I classify a new observation

Features

- Feature F_i $F_i = [f_i]$
- Feature F_i with N values.

$$F_i = [f_{i1}, f_{i2}, ..., f_{iN}]$$

 Feature vector F with M features.

$$F = [F_1 | F_2 | ... | F_M]$$

- Naming conventions:
 - Elements of a feature vector are called coefficients
 - Features may have one or more coefficients
 - Feature vectors may have one or more features

Classifiers

A Classifier C maps a class into the feature space

$$C_{\text{Spain}}(x, y) = \begin{cases} true & , y > K \\ false & , otherwise \end{cases}$$

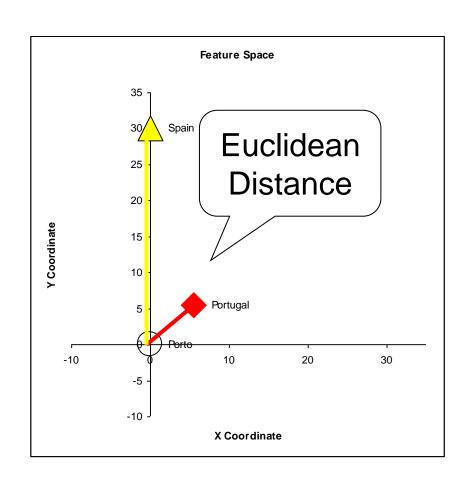
- Various types of classifiers
 - Nearest-Neighbours
 - Support Vector Machines
 - Neural Networks
 - Etc...

Distance to Mean

 I can represent a class by its mean feature vector

$$C = \overline{F}$$

- To classify a new object, I choose the class with the closest mean feature vector
- Different distance measures!



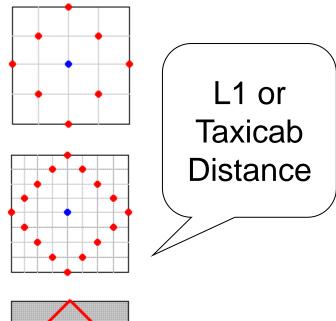
Possible Distance Measures

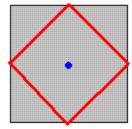
L1 Distance

$$L1(x,y) = \sum_{i=1}^{N} |x_i - y_i|$$

 Euclidean Distance (L2 Distance)

$$L2(x,y) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

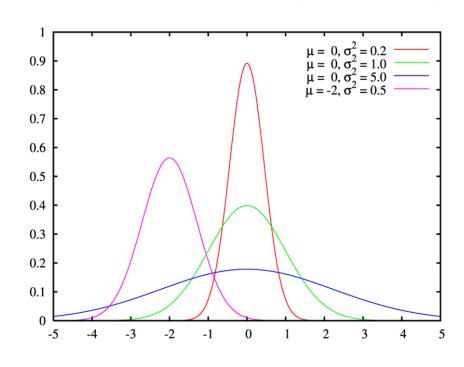




Gaussian Distribution

- Defined by two parameters:
 - Mean: µ
 - Variance: σ²
- Great approximation to the distribution of many phenomena.
 - Central Limit Theorem

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-u)^2}{2\sigma^2}\right)$$



Multivariate Distribution

For N dimensions:

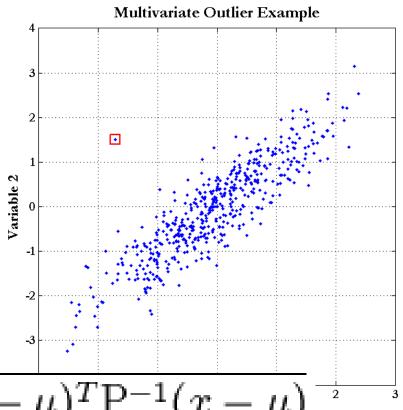
$$f_X(x_1, \dots, x_N) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

- Mean feature vector: $\mu = \overline{F}$
- Covariance Matrix:

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \qquad \mu_i = \mathrm{E}(X_i) \qquad \Sigma_{ij} = \mathrm{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

Mahalanobis Distance

- Based on the covariance of coefficients
- Superior to the Euclidean distance



$$D_M(x) = \sqrt{(x-\mu)^T P^{-1}(x-\mu)}$$

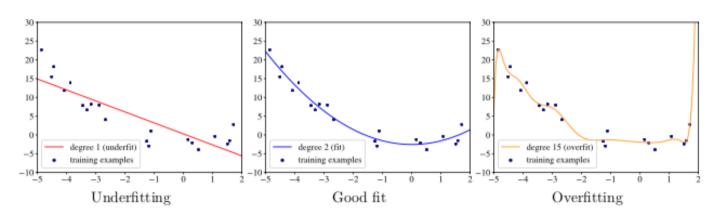
Generalization

- Classifiers are optimized to reduce training errors
 - (supervised learning): we have access to a set of training data for which we know the correct class/answer

What if test data is different from training data?

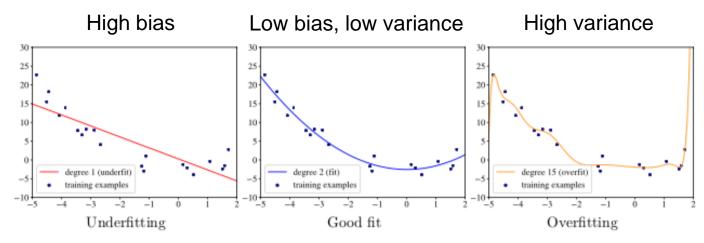
Underfitting and Overfitting

- Is the model too simple for the data?
 - Underfitting: cannot capture data behavior
- Is the model too complex for the data?
 - Overfitting: fit perfectly training data, but will not generalize well on unseen data



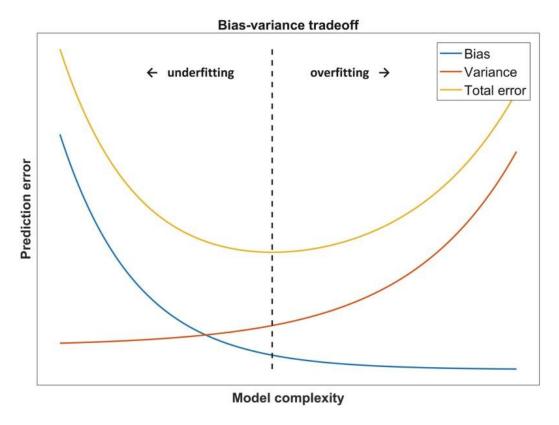
Bias and variance

- Bias
 - Average error in predicting correct value
- Variance
 - Variability of model prediction



Bias-variance tradeoff

total err = bias² + variance + irreducible err



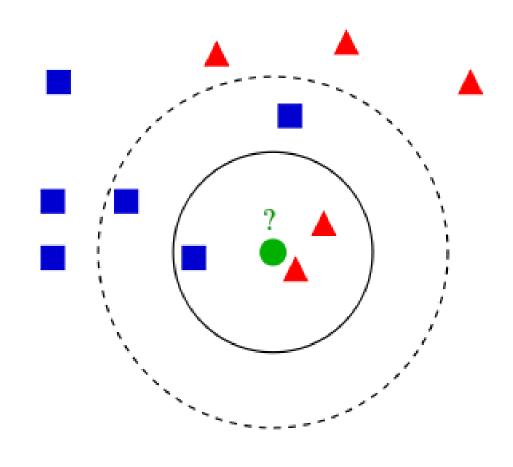
K-Nearest Neighbours

Algorithm

- Choose the closest K neighbours to a new observation
- Classify the new object based on the class of these K objects

Characteristics

- Assumes no model
- Does not scale very well...

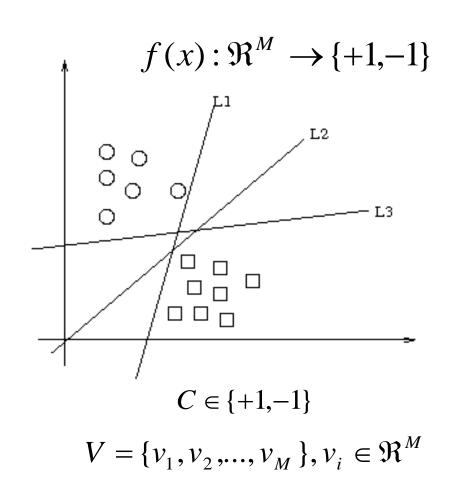


Topic: Support Vector Machines

- Statistical Classifiers
- Support Vector Machines
- Neural Networks

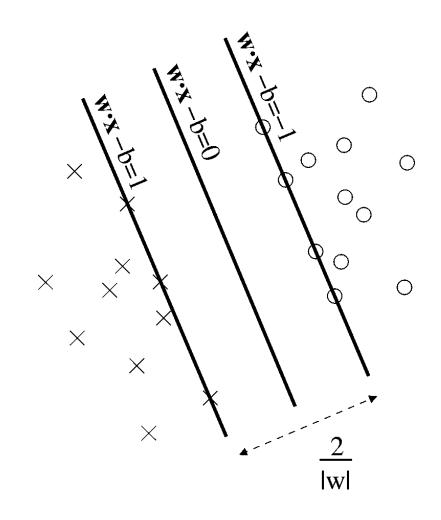
Maximum-margin hyperplane

- There are many planes that can separate our classes in feature space
- Only one maximizes
 the separation
 margin
- Of course that classes need to be separable in the first place...



Support vectors

- The maximummargin hyperplane is limited by some vectors
- These are called support vectors
- Other vectors are irrelevant for my decision



Decision

- I map a new observation into my feature space
- Decision hyperplane:

$$(w.x) + b = 0, w \in \mathbb{R}^N, b \in \mathbb{R}$$

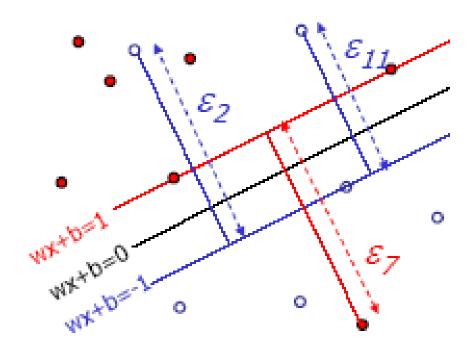
Decision function:

$$f(x) = sign((w.x) + b)$$

A vector is either above or below the hyperplane

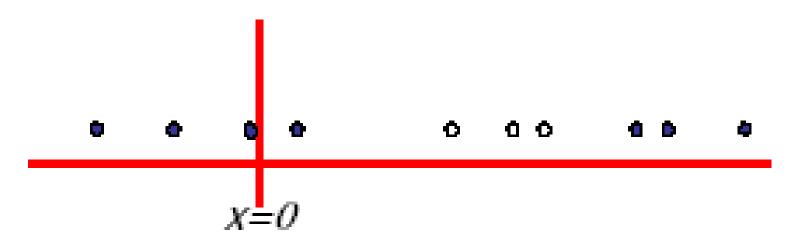
Slack variables

- Most feature spaces
 cannot be segmented
 so easily by a
 hyperplane
- Solution:
 - Use slack variables
 - 'Wrong' points 'pull' the margin in their direction
 - Classification errors!



But this doesn't work in most situations...

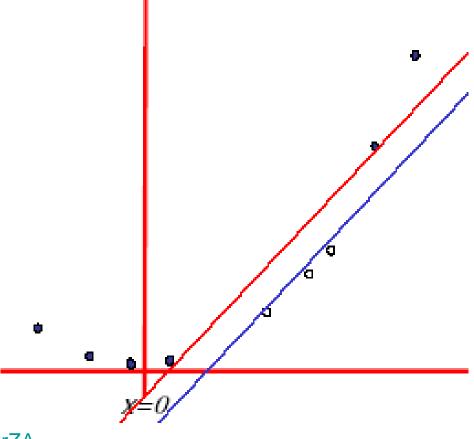
 Still, how do I find a Maximum-margin hyperplane for some situations?



Most real situations face this problem...

Solution: Send it to hyperspace!

- Take the previous case: f(x) = x
- Create a new higherdimensional function:
 g(x) = (x, x²)
- A kernel function is responsible for this transformation



https://www.youtube.com/watch?v=3liCbRZPrZA

Typical kernel functions

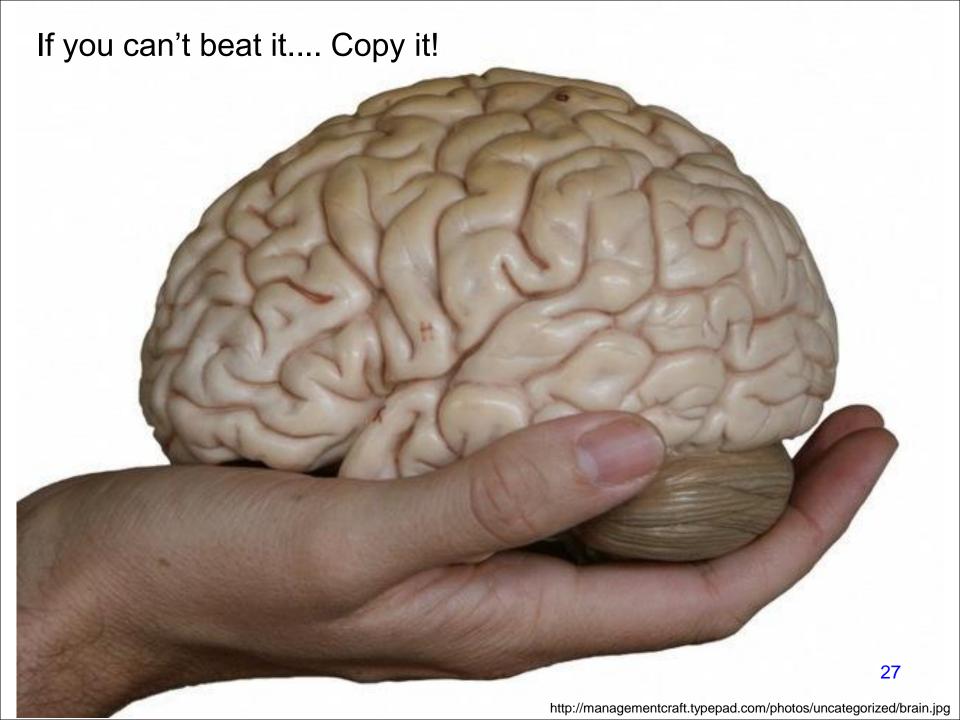
Linear	$K(x, y) = x \cdot y + 1$
Polynomial	$K(x,y) = (x.y+1)^p$
Radial-Base Functions	$K(x, y) = e^{-\ x-y\ ^2/2\sigma^2}$
Sigmoid	$K(x, y) = \tanh(kx.y - \delta)$

Classification

- Training stage:
 - Obtain kernel parameters
 - Obtain maximum-margin hyperplane
- Given a new observation:
 - Transform it using the kernel
 - Compare it to the hyperspace

Topic: Neural Networks

- Statistical Classifiers
- Support Vector Machines
- Neural Networks



Biological Neural Networks

Neuroscience:

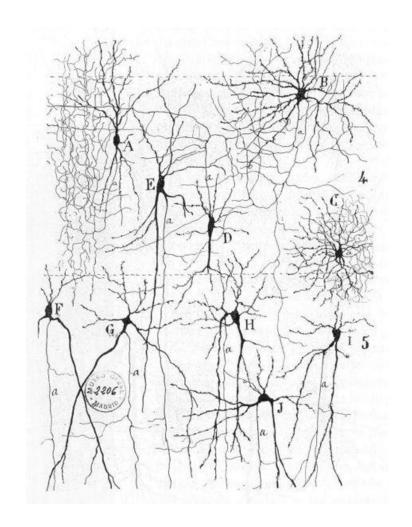
 Population of physically interconnected neurons

Includes:

- Biological Neurons
- Connecting Synapses

The human brain:

- 100 billion neurons
- 100 trillion synapses



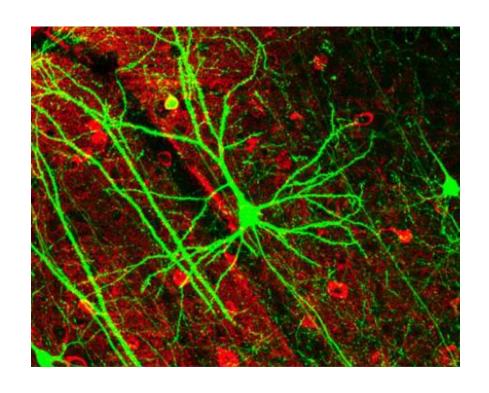
Biological Neuron

Neurons:

- Have K inputs (dendrites)
- Have 1 output (axon)
- If the sum of the input signals surpasses a threshold, sends an action potential to the axon

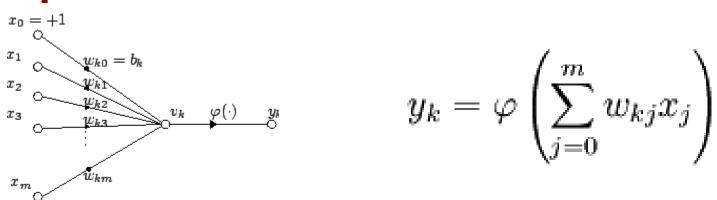
Synapses

 Transmit electrical signals between neurons



Artificial Neuron

- Also called the McCulloch-Pitts neuron
- Passes a weighted sum of inputs, to an activation function, which produces an output value



McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7:115 - 133.

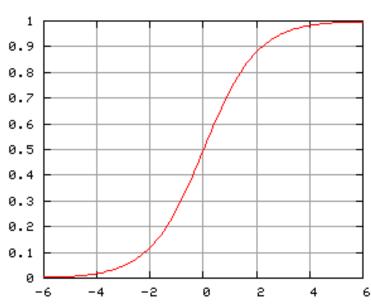
Sample activation functions

Rectified Linear Unit (ReLU)

$$y = \begin{cases} u, & \text{if } u \ge 0 \\ 0, & \text{if } u < 0 \end{cases}, \ u = \sum_{i=1}^{n} w_i x_i$$

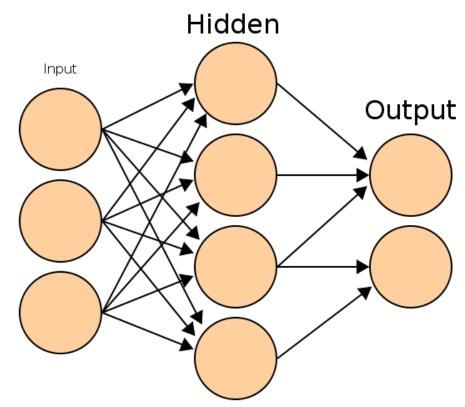
Sigmoid function

$$y = \frac{1}{1 + e^{-u}}$$



Artificial Neural Network

- Commonly refered as Neural Network
- Basic principles:
 - One neuron can perform a simple decision
 - Many connected neurons can make more complex decisions



Characteristics of a NN

- Network configuration
 - How are the neurons inter-connected?
 - We typically use *layers* of neurons (input, output, hidden)
- Individual Neuron parameters
 - Weights associated with inputs
 - Activation function
 - Decision thresholds

How do we find these values?

Learning paradigms

- We can define the network configuration
- How do we define neuron weights and decision thresholds?
 - Learning step
 - We train the NN to classify what we want
- Different learning paradigms
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

Appropriate for **Pattern Recognition**.

Learning

- We want to obtain an optimal solution given a set of observations
- A cost function measures how close our solution is to the optimal solution
- Objective of our learning step:
 - Minimize the cost function

Backpropagation Algorithm

In formulas

Network output: Out
$$(x) = \varphi(\sum_m w_{nm}^{(L)} \varphi(\dots \varphi(\sum_j w_{\ell j}^{(2)} \varphi(\sum_k w_{jk}^{(1)} x_k)))$$

Training set:
$$\{(x_i, y_i)\}_{i=1,...,N}$$

Optimization: find $[w_{jk}^{(1)}, w_{\ell j}^{(2)}, \dots, w_{nm}^{(L)}]$ such that

minimize
$$\sum_{i=1}^{N} \text{Loss}(\text{Out}(x_i), y_i)$$

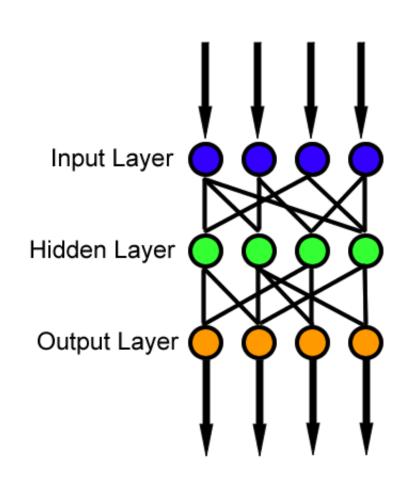
It is solved with (variants of) the gradient descent, where gradients are computed via the backpropagation algorithm

Losses

- They quantify the <u>distance</u> between the output of the network and the true label, i.e., the correct answer
- Classification problems:
 - The output (obtained usually with softmax) is a probability distribution
 - Loss-function: cross-entropy. It is defined in terms of the Kullback-Leibler distance between probability distributions
- Regression problems:
 - The output is a scalar or a vector of continuous values (real or complex)
 - Loss-function: mean-squared error. It is the distance associated with the L2-norm

Feedforward neural network

- Simplest type of NN
- Has no cycles
- Input layer
 - Need as many neurons as coefficients of my feature vector
- Hidden layers
- Output layer
 - Classification results



Resources

- Andrew Moore, "Statistical Data Mining Tutorials",
 http://www.cs.cmu.edu/~awm/tutorials.htm
- C.J. Burges, "A tutorial on support vector machines for pattern recognition", in Knowledge Discovery Data Mining, vol.2, no.2, 1998, pp.1-43.