Exam-Computer Vision

Date: 19/01/2022
Lecturers: Miguel Tavares Coimbra, Francesco Renna
Duration: 2 hours

Part I - Fundamental Topics (10 points)

1. Digital Image. Consider an image where the only component of the color present is the intensity of each pixel, represented in Figure 1. The image is in digital format, has a 5×5 resolution and an 8 -bit quantization.

0	100	100	100	100
150	150	150	150	150
150	150	150	150	150
150	150	200	200	200
200	200	200	200	255
I Component				

Figure 1
a) Calculate the histogram of the image intensity. Present the calculations made and the final result in chart form. (2 points)
b) Apply a contrast stretching operation to the image represented in Figure 1. Present the calculations made and the final result in matrix form (1 point).
c) Discuss and apply a strategy that makes it more effective to apply a contrast stretching operation to the image in Figure 1. Present the calculations made and the final result in matrix form (3 points)
2. Digital Filters Consider the image represented in Figure 2, where each value corresponds to the intensity of the color at that point. The image is in digital format, has 4×4 dimension and has a 4-bit quantization.

10	10	5	5
10	10	5	5
0	0	5	5
0	0	0	0

Figure 2
a) Apply one of Sobel's filters to the image depicted in Figure 2, with size 3x3, over the gray area of image. Present the calculations you find relevant and the final result in matrix form. (2 points)
b) Explain what quantity is being calculated with this filter, and how it can be used to build an edge detector algorithm. (2 points)

Part II - Advanced Topics (10 points)

3. Segmentation

a) Identify and explain the 3 fundamental steps present in most region-based segmentation algorithms. Describe the implementation of these 3 steps for a region merging algorithm (2 points)
b) Explain the concept of semantic segmentation by comparing it with conventional segmentation (1 point)

4. Neuronal Networks

a) Describe the McCulloch-Pitts neuron model, and how these neurons can be combined to form an artificial neural network. (2 points)
b) Briefly describe the architecture and operation of a convolutional neuronal network. (2 points)
c) What are the advantages of a convolutional neural network compared with a network with only fully connected layers? (2 points)
d) Explain the operation of an artificial neuronal network of the autoencoder type. (1 point)

