
On Improving the Efficiency of Deterministic

Calls and Answers in Tabled Logic Programs

Miguel Areias and Ricardo Rocha

DCC-FC & CRACS
University of Porto, Portugal

{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. The execution model on which most tabling engines are
based allocates a choice point whenever a new tabled subgoal is called.
This happens even when the call is deterministic. However, some of the
information from the choice point is never used when evaluating deter-
ministic tabled calls with batched scheduling. Moreover, when a deter-
ministic answer is found for a deterministic tabled call, the call can be
completed early and the corresponding choice point can be removed.
Thus, if applying batched scheduling to a long deterministic computa-
tion, the system may end up consuming memory and evaluating calls
unnecessarily. In this paper, we propose a solution that tries to reduce
this memory and execution overhead to a minimum. Our experimental
results show that, for deterministic tabled calls and tabled answers with
batched scheduling, it is possible not only to reduce the memory usage
overhead, but also the running time of the execution.

Keywords: Tabling, Deterministic Calls and Answers, Implementation.

1 Introduction

Tabling [1] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Implementations of tabling are now widely available in systems like XSB
Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury and more recently Ciao Pro-
log. The increasing interest in tabling led to further developments and proposals
that improve some practical deficiencies of current tabling execution models in
key aspects of tabled evaluation like re-computation, scheduling and memory
recovery. The discussion we address in this work also results from practical de-
ficiencies that we have found in the execution data structures and algorithms
used to deal with deterministic tabled calls and answers if applying batched
scheduling [2].

The execution model on which most tabling engines are based allocates a
choice point whenever a new tabled subgoal is called. This happens even when
the call is deterministic, i.e., defined by a single matching clause. This is necessary
since the information from the choice point is crucial to correctly implement
some tabling operations. However, some of this information is never used when

evaluating deterministic tabled calls with batched scheduling. Moreover, when
an answer found for a deterministic tabled call is known to be a deterministic
answer, i.e., be the single matching answer for the call, then the call can be
completed early [3] and the corresponding choice point can be removed.

Thus, if tabling is applied to a long deterministic computation, the system
may end up consuming memory and evaluating calls unnecessarily. In this paper,
we propose a solution that tries to reduce this memory and execution overhead
to a minimum. We will focus our discussion on a concrete implementation, the
YapTab system [4], an efficient suspension-based tabling engine that extends
the state-of-the-art Yap Prolog system to support tabled evaluation for definite
programs, but our proposal can be generalized and applied to other suspension-
based tabling engines. Our experimental results show that, for deterministic
tabled calls and tabled answers with batched scheduling, it is possible not only
to reduce the memory usage overhead, but also the running time of the execution.

The remainder of the paper is organized as follows. First, we briefly introduce
the main background concepts about tabled evaluation. Next, we discuss in more
detail how YapTab compiles and dynamically indexes deterministic tabled calls
and how deterministic tabled answers can be handled. We then describe how
we have extended YapTab to provide engine support to efficiently deal with
deterministic tabled calls and answers. Finally, we present some experimental
results and we end by outlining some conclusions.

2 Basic Tabling Concepts

Tabling consists of storing intermediate answers for subgoals so that they can
be reused when a repeated subgoal appears1. Whenever a tabled subgoal is first
called, a new entry is allocated in an appropriated data space, the table space. Ta-
ble entries are used to collect the answers found for their corresponding subgoals.
Moreover, they are also used to check whether calls to subgoals are repeated. Re-
peated calls to tabled subgoals are not re-evaluated against the program clauses,
instead they are resolved by consuming the answers already stored in their table
entries. During this process, as further new answers are found, they are stored
in their tables and later returned to all repeated calls. Within this model, the
nodes in the search space are classified as either: generator nodes, corresponding
to first calls to tabled subgoals; consumer nodes, corresponding to repeated calls
to tabled subgoals; or interior nodes, corresponding to non-tabled subgoals.

The YapTab design follows the seminal SLG-WAM design [3]: it extends
WAM’s execution model with a new data area, the table space; a new set of
registers, the freeze registers; an extension of the standard trail, the forward

trail ; and four new operations for definite programs:

Tabled Subgoal Call: this operation checks if the subgoal is in the table space.
If so, it allocates a consumer node and starts consuming the available an-
swers. If not, it allocates a generator node and adds a new entry to the table
space.

1 A subgoal repeats a previous subgoal if they are the same up to variable renaming.

New Answer: this operation checks whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

Answer Resolution: this operation checks whether extra answers are available
for a particular consumer node and, if so, consumes the next one. If no
answers are available, it suspends the current computation and schedules a
possible resolution to continue the execution.

Completion: this operation determines whether a tabled subgoal is completely
evaluated. A subgoal is said to be completely evaluated when the set of stored
answers represents all the conclusions that can be inferred from the set of
facts and rules in the program. When this is the case, the operation closes
the subgoal’s table entry and reclaims stack space. Otherwise, control moves
to a consumer with unconsumed answers.

During tabled evaluation, at several points, we can choose between continuing
forward execution, backtracking to interior nodes, returning answers to consumer
nodes, or performing completion. The decision on which operation to perform is
determined by the scheduling strategy. Different strategies may have a significant
impact on performance, and may lead to a different ordering of solutions to
the query goal. Arguably, the two most successful tabling scheduling strategies
are batched scheduling and local scheduling [2]. YabTab supports both batched
scheduling, local scheduling and the dynamic intermixing of batched and local
scheduling at the subgoal level [5]. Local scheduling does not have any relevance
for this work, so we will not consider it.

Batched scheduling schedules the program clauses in a depth-first manner as
does the WAM. It favors forward execution first, backtracking next, and consum-
ing answers or completion last. It thus tries to delay the need to move around
the search tree by batching the return of answers. When new answers are found
for a particular tabled subgoal, they are added to the table space and the ex-
ecution continues. For some situations, this results in creating dependencies to
older subgoals, therefore enlarging the current SCC (Strongly Connected Com-

ponent) [3] and delaying the completion point to an older generator node. By
default in YapTab, tabled predicates are evaluated using batched scheduling [5].

3 Deterministic Tabled Calls and Answers in YapTab

In this section, we discuss how tabled predicates are compiled in YapTab and, in
particular, we show how YapTab uses the Yap compiler to generate compiled and
indexed code for deterministic tabled calls. We then discuss how deterministic
tabled answers for deterministic tabled calls can be handled in YapTab.

3.1 Compilation of Tabled Predicates

Tabled predicates defined by several clauses are compiled using the table try me,
table retry me and table trust me WAM-like instructions in a manner similar
to the generic try me/retry me/trust me WAM sequence. The table try me

instruction extends the WAM’s try me instruction to support the tabled sub-
goal call operation. The table retry me and table trust me differ from the
generic WAM instructions in that they restore a generator choice point rather
than a standard WAM choice point. Tabled predicates defined by a single clause
are compiled using the table try single WAM-like instruction, a specialized
version of the table try me instruction for deterministic tabled calls. We next
show YapTab’s compiled code for a tabled predicate t/1 defined by a single
clause and for a tabled predicate t/3 defined by several clauses.

% predicate definitions
:- table t/1, t/3.
t(X) :- ...
t(a1,b1,c1) :- ...
t(a1,b2,c2) :- ...
t(a1,b1,c3) :- ...
t(a2,b2,c4) :- ...

% compiled code generated by YapTab for predicate t/1
t1_1: table_try_single t1_1a
t1_1a: ‘WAM code for clause t(X) :- ...’

% compiled code generated by YapTab for predicate t/3
t3_1: table_try_me t3_2
t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2: table_retry_me t3_3
t3_2a: ‘WAM code for clause t(a1,b2,c2) :- ...’
t3_3: table_retry_me t3_4
t3_3a: ‘WAM code for clause t(a1,b1,c3) :- ...’
t3_4: table_trust_me
t3_4a: ‘WAM code for clause t(a2,b2,c4) :- ...’

As t/1 is a deterministic tabled predicate, the table try single instruction
will be executed for every call to this predicate. On the other hand, t/3 is a non-
deterministic tabled predicate, but some calls to it can be deterministic, i.e.,
defined by a single matching clause. Consider, for example, the calls t(a2,X,Y)
and t(X,Y,c3). These two calls are deterministic as each of them matches with
a single t/3 clause, respectively, the 4th and 3rd clause. We next describe how
YapTab uses the demand-driven indexing mechanism of Yap to dynamically
generate table try single instructions for this kind of deterministic calls.

3.2 Demand-Driven Indexing

Yap implements demand-driven indexing (or just-in-time indexing) [6] since ver-
sion 5. The idea behind it is to generate flexible multi-argument indexing of
Prolog clauses during program execution based on actual demand. This feature
is implemented for static code, dynamic code and the internal database. All in-
dexing code is generated on demand for all and only for the indices required.
This is done by building an indexing tree using similar building blocks to the
WAM but it generates indices based on the instantiation of the current goal, and
expands indices given different instantiations for the same goal.

This powerful optimization allows YapTab to execute some calls to non-
deterministic tabled predicates like deterministic tabled predicates. This happens
when Yap’s indexing scheme finds that for a particular call to a non-deterministic
tabled predicate, there is only a single clause that matches the call. We next show
an example illustrating the indexed code generated for a non-deterministic call
and two deterministic calls to the previous t/3 tabled predicate.

% indexed code generated by YapTab for call t(a1,X,Y)
table_try t3_1a
table_retry t3_2a
table_trust t3_3a

% indexed code generated by YapTab for call t(a2,X,Y)
table_try_single t3_4a

% indexed code generated by YapTab for call t(X,Y,c3)
table_try_single t3_3a

The call t(a2,X,Y) is non-deterministic as it matches the 1st, 2nd and 3rd
clauses of t/3, so a table try/table retry/table trust sequence is gener-
ated. The other two calls, t(a3,X,Y) and t(X,Y,c3), are both deterministic as
they only match a single t/3 clause, so a table try single instruction can be
generated. Note however, that there are situations where a call can be deter-
ministic, but Yap’s indexing scheme cannot detect it as deterministic in order
to generate the appropriate table try single instruction [6]. In such cases, we
cannot benefit directly from our approach, but we can take advantage of the sim-
ilarities between the table try single instruction and the last matching clause

of a non-deterministic tabled call to apply our approach later.

3.3 Last Matching Clause

When evaluating a tabled predicate, the last matching clause of a call to the
predicate is implemented either by the table trust me instruction or by the
table trust instruction. The former situation occurs when we have a generic
call to the predicate (all the arguments of the call are unbound variables) and the
latter situation occurs when we have a more specific call (some of the arguments
are at least partially instantiated) optimized by indexing code. In a WAM-based
implementation, the last matching clause of a call is implemented by first restor-
ing all the necessary information from the current choice point (usually pointed
to by the WAM’s B register) and then, by discarding the current choice point (by
updating B to its predecessor). In a tabled implementation, the table trust me

and table trust instructions also restore all the necessary information from
the current choice point B, but instead of updating B to its predecessor, they
update the next clause field of B to the completion instruction. By doing that,
they force completion detection when the computation backtracks again to B,
i.e., whether the clauses for the subgoal call at hand are all exploited.

Hence, the computation state that we have when executing a table trust me

or table trust instruction is similar to that one of a table try single instruc-
tion, that is, in both cases the current clause can be seen as deterministic as it

is the last (or single) matching clause for the subgoal call at hand. Thus, we
can view the table trust me and table trust instructions as a special case of
the table try single instruction. This means that the approach used for the
table try single instruction to efficiently deal with deterministic tabled calls
can be applied to the table trust me and table trust instructions. We discuss
the implementation details for these instructions in the next section.

3.4 Deterministic Tabled Answers

A tabled answer is deterministic when it is the single matching answer for the
corresponding tabled call. Determining when an answer is deterministic is im-
portant because the tabled call can be completed early and the corresponding
choice point can be removed. Taking into account the formulation discussed
above for the last matching clause, we can also extend the definition of being a
deterministic tabled answer and say that a tabled answer is deterministic when
we can safely conclude that no more answers will be found, i.e., when the current
answer is the last (or single) matching answer for the corresponding tabled call.

However, during execution time, it is not always possible to conclude before-
hand that no more answers will be found for a particular tabled call. This is a
safe conclusion only when the tabled call is deterministic, i.e., the clause being
executed for the tabled call at hand is the last (or single) matching clause, and
the choice point for the tabled call is the topmost choice point, i.e., no alterna-
tive paths exist for evaluating the tabled call at hand. In what follows, we will
thus assume that a tabled call is deterministic when the clause being executed
for the call is the last matching clause and that a tabled answer is deterministic
when the answer is the last matching answer for the corresponding tabled call.

4 Implementation Details

In this section, we describe in detail how we have extended YapTab to provide
engine support to efficiently deal with deterministic tabled calls and answers.

4.1 Generator Nodes

In YapTab, a generator node is implemented as a WAM choice point extended
with some extra fields. The format of a generic generator choice point in YapTab
is depicted in Fig. 1(a). Fields that are not found in standard WAM choice points
are coloured gray. A generator choice point is divided in three sections. The top
section contains the usual WAM fields needed to restore the computation on
backtracking plus two extra fields [5]: cp dep fr is a pointer to the correspond-
ing dependency frame, used by local scheduling for fix-point check, and cp sg fr

is a pointer to the associated subgoal frame where answers should be stored. The
middle section contains the argument registers of the subgoal and the bottom
section contains the substitution factor [7], i.e., the set of free variables which

(a)

cp_dep_fr

cp_sg_fr

Dependency frame

Subgoal frame

cp_ap

cp_tr

cp_h

cp_cp

Next unexploited clause

Top of trail

Top of global stack

Success continuation PC

cp_env Current Environment

An Argument Register n

A1 Argument Register 1

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Sm

S1

.
.
.
.

cp_b Failure continuation CP

cp_ap

cp_tr

Next unexploited clause

Top of trail

Subgoal frame

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Sm

S1

.
.
.
.

cp_sg_fr

cp_b Failure continuation CP

(b)

... ...

Fig. 1. (a) Generic and (b) deterministic generator choice points in YapTab

exist in the terms in the argument registers. The substitution factor is an opti-
mization that allows the new answer operation to store in the table space only
the substitutions for the free variables in the subgoal call.

If we now turn our attention to how generator choice points are handled dur-
ing evaluation, we find that some of this information is never used when eval-
uating deterministic tabled calls with batched scheduling. This happens mainly
because, with batched scheduling, the computation is never resumed in a deter-
ministic generator choice point. This allows us to remove the argument registers
and the standard cp cp, cp h and cp env fields. The cp dep fr field can also be
removed because it is only necessary with local scheduling [5].

Figure 1(b) shows the new format of a deterministic generator choice point in
YapTab. The cp b field is needed for failure continuation; the cp ap and cp tr

are required when backtracking to the choice point; the cp sg fr is required by
the new answer and completion operations; and the substitution factor fields are
required by the new answer operation. This optimization is similar to the shallow

backtracking optimization as introduced by Carlsson [8]. The main difference to
our approach is that, instead of delaying the initialization of some choice point
fields, here we can safely ignore and remove them as they are never used.

Considering that N is the number of arguments registers and that M is the
number of substitution variables, the ratio of memory usage in the choice point
stack between the new and the original representation of deterministic generator
choice points can be expressed as follows:

4 + 1 + M

8 + N + 1 + M

4.2 Tabling Operations

Dealing with deterministic tabled calls and answers required small changes to
the tabled subgoal call, completion and new answer operations. Figure 2 shows
in more detail the changes (blocks of code marked with a ‘// *** new ***’
comment) made to the table try single and table trust me2 instructions.

table_try_single(TABLED_CALL tc) {
sg_fr = subgoal_check_insert(tc) // sg_fr is the subgoal frame for tc
if (new_tabled_subgoal_call(sg_fr)) {

if (evaluation_mode(tc) == batched_scheduling) // *** new ***
store_deterministic_generator_node(sg_fr)

else // local scheduling
store_generic_generator_node(sg_fr)

...
}
...

}

table_trust_me(TABLED_CALL tc) {
// the B register points to the current choice point
restore_generic_generator_node(B, COMPLETION)
if (evaluation_mode(tc) == batched_scheduling &&

not_in_a_frozen_segment(B) { // *** new ***
subs_factor = B + sizeof(generic_generator_cp) + arity(tc)
gen_cp = subs_factor - sizeof(deterministic_generator_cp)
gen_cp->cp_sg_fr = B->cp_sg_fr
gen_cp->cp_tr = B->cp_tr
gen_cp->cp_ap = B->cp_ap
gen_cp->cp_b = B->cp_b
B = gen_cp

}
...

}

Fig. 2. Pseudo-code for the table try single and table trust me instructions

The table try single instruction now checks whenever the subgoal being
called is to be evaluated using batched or local scheduling. If batched, it allocates
a deterministic generator choice point. If local, it proceeds as before and allocates
a generic generator choice point.

The table trust me instruction now checks if the current tabled call is being
evaluated using batched scheduling and if the current choice point is not in a
frozen segment3. If these two conditions hold, we can recover some memory space
by transforming the current generator choice point into a deterministic generator

2 The changes made to the table trust instruction are identical.
3 The YapTab system uses frozen segments to protect the stacks of suspended com-

putations [4]. Thus, if the current choice point is trapped in a frozen segment it is
worthless to try to recover memory from it using our approach.

choice point (we assume that the choice point stack grows upwards). To do that,
we need to copy the cp sg fr, cp tr, cp ap and cp b fields in the current choice
point to their new position, just above the substitution factor variables.

Deterministic generator choice points can be accessed later when executing
the completion and/or new answer operations. Since both generator types have
different sizes, we need to distinguish which is the type of the generator in
order to correctly access the fields required by each operation. The completion
operation needs to access the cp sg fr field and the new answer operation needs
to access the cp sg fr and substitution factor fields. Figure 3 shows in more
detail the changes made to the completion and new answer instructions. For

completion() {
... // fixpoint check loop
// subgoal completely evaluated
if (is_deterministic_generator_cp(B)) { // *** new ***

gen_cp = deterministic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

} else { // generic generator choice point
gen_cp = generic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

}
complete_subgoal(sg_fr)
...

}

new_answer(TABLED_CALL tc, CHOICE_POINT cp, ANSWER ans) {
// cp is the generator choice point for the tabled call tc
if (is_deterministic_generator_cp(cp)) { // *** new ***

gen_cp = deterministic_generator_cp(cp)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(deterministic_generator_cp)

} else { // generic generator choice point
gen_cp = generic_generator_cp(cp)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(generic_generator_cp) + arity(tc)

}
insert = answer_check_insert(sg_fr, subs_factor)
if (insert == FALSE || evaluation_mode(tc) == local_scheduling) {

fail() // repeated answer or local scheduling
} else { // new answer and batched scheduling

if (is_deterministic_generator_cp(gen_cp) &&
topmost_choice_point(gen_cp) { // *** new ***

// the new answer is deterministic, thus the tabled call can be ...
mark_as_completed(sg_fr) // ... completed early and the ...
B = gen_cp->cp_b // .. corresponding choice point can be removed

}
...

}
}

Fig. 3. Pseudo-code for the completion and new answer instructions

the new answer instruction, we also show the pseudo-code that determines when
an answer is deterministic. Remember from section 3.4 that we can conclude that
an answer is deterministic when the tabled call is deterministic and the choice
point for the tabled call is the topmost choice point4.

5 Experimental Results

We next present some experimental results comparing YapTab with and without
the new support for deterministic tabled calls and answers. The environment for
our experiments was an Intel(R) Core(TM)2 Quad CPU Q9550 2.83GHz with 2
GBytes of main memory and running the Linux kernel 2.6.24-24 with YapTab
5.1.3. To put the performance results in perspective and have a well-defined
starting point comparing the memory ratio between the new and the original
representation of deterministic generator choice points, first we have defined
three deterministic tabled predicates, respectively with arities 5, 11 and 17, that
simply call themselves recursively:

:- table t/5, t/11, t/17.

t(N,A2,A3,A4,A5) :- N>0, N1 is N-1, t(N1,A2,A3,A4,A5).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11) :-
N>0, N1 is N-1, t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17) :- N>0,
N1 is N-1, t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17).

The first argument N controls the number of times the predicate is executed.
It thus defines the number of generator choice points to be allocated (we used
a value of 200,000 in our experiments). In order to have specific combinations
of argument registers (column Args) and substitution variables (column Subs),
we have run each predicate with three different sets of free variables in the ar-
guments. Table 1 shows the local stack5 memory usage, in KBytes, and the
running time, in milliseconds, for YapTab without (column YapTab) and with
(column YapTab+Det) the new support for deterministic tabled calls and an-
swers. A third column shows the memory and running time ratio between both
approaches. For the memory ratio, we show in parentheses the ratio given by
the formula introduced at the end of section 4.1.

As expected, the results in Table 1 confirm that memory reduction increases
when the number of argument registers is bigger and the number of substitution
variables is smaller. This is consistent with the formula presented in section 4.1.
The small difference between our experiments and the values obtained when us-
ing the formula came from the fact that, in the formula, we are considering a

4 Detecting if a choice point is the topmost choice point is implemented by comparing
it against the B register (that points to the topmost choice point on the current
branch) and the B FZ register (that points to the topmost frozen choice point).

5 In YapTab, the local stack contains both choice points and environment frames [9].
Other systems, like XSB Prolog, have separate choice point and environment stacks.

Args Subs
YapTab YapTab+Det YapTab+Det/YapTab

Memory Time Memory Time Memory Time

5 4 18,751 224 11,719 160 0.62 (0.50) 0.71
5 2 17,188 216 10,157 148 0.59 (0.44) 0.69
5 0 15,626 216 8,594 152 0.55 (0.36) 0.70
11 10 28,126 332 16,407 240 0.58 (0.50) 0.72
11 5 24,219 256 12,501 268 0.52 (0.40) 1.05
11 0 20,313 232 8,594 184 0.42 (0.25) 0.79
17 16 37,501 444 21,094 340 0.56 (0.50) 0.77
17 8 31,251 436 14,844 300 0.47 (0.38) 0.69
17 0 25,001 312 8,594 236 0.34 (0.19) 0.76

Average 0.52 (0.39) 0.76

Table 1. Local stack memory usage (in KBytes) and running times (in milliseconds) for
YapTab without and with the new support for deterministic tabled calls and answers

local stack without environment frames and, in the experiments, for each gen-
erator choice point we are also allocating an environment frame6. The results
in Table 1 also suggest that this memory reduction can have an impact in the
running time of the execution.

Next, we tested our approach using two well-know problems: the fibonacci

problem (using lists of integers to represent arbitrary numbers) and the sequence

comparisons problem7. For both problems, we used a standard implementa-
tion (tabled predicates fib/2 and seq/3) and a transformed implementation
(tabled predicates fib t/2 and seq t/3) that forces all tabled calls to use the
table try single instruction. The Prolog code for the main predicates that
implement both problems are presented next.

:- table fib/2, fib_t/2, seq/3, seq_t/3.

fib(0,[1]).
fib(1,[1]).
fib(N,L) :- N>1, N1 is N-1, N2 is N-2,
fib(N1,L1), fib(N2,L2), sum_lists(L1,L2,L).

fib_t(N,L):- (N=<1 -> L=[1] ; (N1 is N-1, N2 is N-2,
fib_t(N1,L1), fib_t(N2,L2), sum_lists(L1,L2,L))).

seq(0,0,0).
seq(0,M,M).
seq(N,0,N).
seq(N,M,C) :- N>0, M>0, N1 is N-1, M1 is M-1,
seq(N1,M,C1), seq(N,M1,C2), seq(N1,M1,C3), min(N,M,C1,C2,C3,C).

seq_t(N,M,C) :- (N==0 -> M=C ; N>0, (M==0 -> C=M ; N1 is N-1, M1 is M-1,
seq_t(N1,M,C1), seq_t(N,M1,C2), seq_t(N1,M1,C3), min(N,M,C1,C2,C3,C))).

6 As these experiments do not store permanent variables [9] for environments, this
corresponds to adding the size of an environment frame to both parts of our formula.

7 In the sequence comparisons problem, we have two sequences A and B, and we want
to determine the minimal number of operations needed to turn A into B.

We experimented the fibonacci problem with sizes 1000, 2000 and 4000
and the sequence comparisons problem with sequences of length 500, 1000 and
2000. Table 2 shows the local stack memory usage, in KBytes, and the run-
ning time, in milliseconds, for YapTab without (column YapTab) and with
(column YapTab+Det) the new support for deterministic tabled calls and an-
swers. Again, a third column shows the memory and running time ratio between
both approaches.

Program Size
YapTab YapTab+Det YapTab+Det/YapTab

Memory Time Memory Time Memory Time

fib/2
1000 250 984 203 884 0.8120 0.8984
2000 375 2,880 305 2,804 0.8133 0.9736
4000 500 6,492 407 6,420 0.8140 0.9889

seq/3
500 45,914 792 39,079 448 0.8511 0.5657
1000 183,625 8,108 156,282 3,272 0.8511 0.4036
2000 734,438 135,580 718,813 117,483 0.9787 0.8665

fib t/2
1000 250 988 125 368 0.5000 0.3725
2000 375 3,040 188 1,268 0.5013 0.4171
4000 500 6,516 250 2,828 0.5000 0.4340

seq t/3
500 45,914 804 78 252 0.0017 0.3134
1000 183,625 8,844 157 952 0.0009 0.1076
2000 734,438 131,904 313 7,048 0.0004 0.0534

Table 2. Local stack memory usage (in KBytes) and running times (in milliseconds) for
YapTab without and with the new support for deterministic tabled calls and answers

The results in Table 2 show improvements on the local stack memory usage
and in the running time of the execution for all experiments. In particular, for
the standard predicates, fib/2 and seq/3, our approach shows, on average, a
slightly worse tendency to memory and running time reduction, if compared
with the results on Table 1. This happens mainly because of the existence of
permanent variables in the body of the tabled clauses. However, on average, our
approach is able to improve the performance of the execution for all fib/2 and
seq/3 experiments. This suggests that it is possible to take advantage of our
approach by using the last matching clause optimization when a program do not
contains deterministic tabled predicates.

For the transformed predicates, fib t/2 and seq t/3, our approach shows
very good performance. For the fib t/2 experiments, it decreases, on average,
memory usage to 50% and running time to 40%. For the seq t/3 experiments,
it shows impressive gains. In particular for sequences of length 2000, it uses
2500 times less memory on the local stack and executes 19 times faster. This
shows that our approach can be quite effective when we have deterministic tabled
answers for deterministic tabled calls.

6 Conclusions and Further Work

We have presented a proposal for the efficient evaluation of deterministic tabled
calls and answers with batched scheduling. A well-known aspect of tabling is
the overhead in terms of memory usage compared with standard Prolog. This
suggested to us the question of whether it was possible to minimize this overhead
when evaluating deterministic tabled computations. Our initial results are quite
promising, they suggest that, for deterministic tabled calls and tabled answers
with batched scheduling, it is possible not only to reduce the memory usage
overhead, but also the running time of the execution for certain applications.

Further work will include exploring the impact of applying our proposal to
more complex problems, seeking real-world experimental results allowing us to
improve and expand our current implementation.

Acknowledgements

This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/EIA/66924/2006).

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20–74

2. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: International Symposium
on Programming Language Implementation and Logic Programming. Number 1140
in LNCS, Springer-Verlag (1996) 243–258

3. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3) (1998) 586–634

4. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Theory and Practice of Logic Programming 5(1 & 2) (2005) 161–205

5. Rocha, R., Silva, F., Santos Costa, V.: Dynamic Mixed-Strategy Evaluation of
Tabled Logic Programs. In: International Conference on Logic Programming. Num-
ber 3668 in LNCS, Springer-Verlag (2005) 250–264

6. Santos Costa, V., Sagonas, K., Lopes, R.: Demand-Driven Indexing of Prolog
Clauses. In: International Conference on Logic Programming. Number 4670 in
LNCS, Springer-Verlag (2007) 395–409

7. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (1999)
31–54

8. Carlsson, M.: On the Efficiency of Optimising Shallow Backtracking in Compiled
Prolog. In: International Conference on Logic Programming, The MIT Press (1989)
3–16

9. Aı̈t-Kaci, H.: Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT
Press (1991)

