
An Efficient and Scalable Memory Allocator for
Multithreaded Tabled Evaluation of Logic Programs

Miguel Areias and Ricardo Rocha
CRACS & INESC TEC, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
Email: {miguel-areias,ricroc}@dcc.fc.up.pt

Abstract—Despite the availability of both multithreading and
tabling in some Prolog systems, the implementation of these two
features, such that they work together, implies complex ties to one
another and to the underlying engine. In recent work, we have
proposed an approach to combine multithreading with tabling,
implemented on top of the Yap Prolog system, whose primary
goal was to reduce memory usage for the table space. Regarding
the execution times, we observed some problems related to Yap’s
memory allocator, which is based on the operating system’s
default memory allocator, when running programs that allocate
a higher number of data structures in the table space.

In this paper, we propose a more efficient and scalable memory
allocator for multithreaded tabled evaluation of logic programs.
Our goal is to minimize the performance degradation that the
system suffers when it is exposed to simultaneous memory
requests made by multiple threads. For that, we propose a
memory allocator based on local and global pages, to split
memory among specific data structures and different threads,
together with a strategy where data structures of the same type
are pre-allocated within a page. Experimental results show that
our new memory allocator can effectively reduce the execution
time and scale better, when increasing the number of threads,
than the original allocator.

Keywords-Multithreading, Logic Programming, Tabling, Mem-
ory Allocation, Performance, Scalability.

I. INTRODUCTION

Tabling [1] is a recognized and powerful implementation
technique that overcomes some limitations of traditional Pro-
log systems in dealing with recursion and redundant sub-
computations. Tabling is a refinement of Prolog’s SLD res-
olution that stems from one simple idea: save intermediate
answers for current computations, in an appropriate data area
called the table space, so that they can be reused when a
similar computation appears during the resolution process.
Tabled evaluation can reduce the search space, avoid looping
and have better termination properties than SLD resolution.
Work on tabling proved its viability for application areas such
as natural language processing, knowledge based systems,
model checking, program analysis, among others. Currently,
tabling is widely available in systems like ALS-Prolog, B-
Prolog, Ciao, Mercury, XSB and Yap.

Multithreading in Prolog is the ability to concurrently
perform computations, in which each computation runs in-
dependently but shares the program clauses. The ISO Prolog
multithreading standardization proposal [2] is currently imple-
mented in several Prolog systems including Ciao, SWI-Prolog,

XSB and Yap, providing a highly portable solution given the
number of operating systems supported by these systems.

When multithreading is combined with tabling, we have the
best of both worlds, since we can exploit the combination of
higher procedural control with higher declarative semantics. In
a multithreaded tabling system, tables may be either private
or shared between threads. While private tables are easier
to implement, shared tables have all the associated issues of
locking, synchronization and potential deadlocks. Here, the
problem is even more complex because we need to ensure the
correctness and completeness of the answers found and stored
in the shared tables. Thus, despite the availability of both
threads and tabling in a Prolog system, the implementation
of these two features such that they work together implies
complex ties to one another and to the underlying engine.

XSB was the first Prolog system to combine tabling with
multithreading [3]. In recent work [4], we have presented an
alternative view to XSB’s approach, implemented on top of
the Yap Prolog system [5], where each thread views its tables
as private but, at the engine level, we use a common table
space, i.e., from the thread point of view, the tables are private
but, from the implementation point of view, the tables are
shared among all threads. The primary goal of this work was
to reduce memory usage for the table space and, for that, we
have proposed three designs for the common table space: No-
Sharing (NS), Subgoal-Sharing (SS) and Full-Sharing (FS).
Our results showed that the SS design and, mainly, the FS
design can, indeed, significantly reduce the memory usage for
multithreaded tabled logic programs [4].

Regarding the execution times, we observed some problems
related to Yap’s memory allocator for multithreaded support,
in particular, when running programs that allocate a higher
number of data structures in the table space. Yap’s memory
allocator is based on the operating system’s default memory
allocator, which can be a problem when making a lot of mem-
ory requests, since such requests may require synchronization
at the low-level implementation.

In this paper, we focus our discussion on the efficient and
scalable memory allocation for multithreaded tabled evaluation
of logic programs, within the common table space approach.
Our goal is to minimize the performance degradation that the
system suffers, when it is exposed to simultaneous memory
requests made by multiple threads. In order to avoid this
memory contention, we follow the general approach of the



current state-of-the-art user-level memory allocators, such as
Hoard [6], Ptmalloc [7], Tcmalloc [8], and Jemalloc [9],
but instead of using thread caches, local and global heaps
with different block sizes, we use proper local and global
pages, to split memory among specific data structures and
different threads, together with a kind of slab allocation [10]
mechanism where tabled data structures of the same type are
pre-allocated within a page. When a page P is made local
to a thread T , this means that T has exclusive permission to
allocate and deallocate data structures from P . On the other
hand, global pages have no owners and, thus, they are free
from allocate/deallocate operations. In both cases, all threads
can access (for read or write operations) the data structures on
local or global pages. This is very important since it allows
to significantly reduce memory contention without introducing
any overhead for multithreaded tabled evaluation.

Experimental results show that our new memory allocator
can effectively reduce the execution time and scale better,
when increasing the number of threads, than the original
allocator, for multithreaded tabled programs using the NS, SS
and FS designs. The present work is already fully integrated
and available with the latest development version of Yap1.

The remainder of the paper is organized as follows. First,
we briefly introduce some background about Yap’s table space
organization and the NS, SS and FS designs. Next, we describe
our new memory allocator and we present some important im-
plementation details. Finally, we discuss experimental results
and we end by outlining some conclusions.

II. BACKGROUND

Yap implements a multithreading library that follows the
original SWI-Prolog proposal [11]. Like in SWI-Prolog, Yap’s
threads run independently, i.e., all threads have their own
stacks and only share the Prolog area where predicates,
records, flags and other global non-backtrackable data are
stored. For multithreaded tabling, our approach is still based
on this idea in which each thread runs independently.

A. Yap’s Table Space Organization

A critical component in the implementation of an effi-
cient tabling system is the design of the data structures and
algorithms to access and manipulate tabled data. The most
successful data structure for tabling is tries. Tries are trees in
which common prefixes are represented only once. The trie
data structure provides complete discrimination for terms and
permits look up and possibly insertion to be performed in a
single pass through a term, hence resulting in a very efficient
and compact data structure for term representation [12].

Yap’s table space is organized as follows. At the entry
point we have the table entry data structure. This structure is
allocated when a tabled predicate is being compiled, so that a
pointer to the table entry can be included in its compiled code.
This guarantees that further calls to the predicate will access
the table space starting from the same point. Below the table

1http://www.dcc.fc.up.pt/∼vsc/Yap

entry, we have the subgoal trie structure. Each different tabled
subgoal call to the predicate at hand corresponds to a unique
path through the subgoal trie structure, always starting from
the table entry, passing by several subgoal trie data units, the
subgoal trie nodes, and reaching a leaf data structure, the sub-
goal frame. The subgoal frame stores additional information
about the subgoal and acts like an entry point to the answer
trie structure. Each unique path through the answer trie data
units, the answer trie nodes, corresponds to a different tabled
answer to the entry subgoal.

B. The No-Sharing Design

The starting point for our multithreading approach was
the situation where each thread allocates fully private tables
for each new tabled subgoal called during its computation.
Figure 1 shows the configuration of the table space if several
different threads call the same tabled subgoal call i.

Answer
Trie

Structure

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 Tk-1. . .T2 Tk-2Tk-3

Fig. 1. Table space organization for the NS design

One can observe that the table entry data structure is still
the entry point for tabled predicates, but now each thread has
its own cell inside a bucket array which points to the private
data structures. The subgoal trie structure, the subgoal frames
and the answer trie structures are private to each thread and
they are removed when the thread itself abolishes the tables
or finishes execution.

The memory usage for this design for a particular
table entry T, assuming that all running threads NT
have completely evaluated the same number NS of sub-
goals, is sizeof(TET ) + sizeof(BAT ) + [sizeof(STST ) +
[sizeof(SFT ) + sizeof(ATST )] ∗ NS] ∗ NT , where TET

and BAT represent the common table entry and bucket array
data structures, STST and ATST represent the nodes inside
the subgoal and answer trie structures, and SFT represents the
subgoal frames.

C. The Subgoal-Sharing Design

In our second design, the threads share part of the tables.
Figure 2 shows the configuration of the table space if several
different threads call the same tabled subgoal call i.

In the SS design, the subgoal trie structure is now shared
among the threads and the leaf data structures in each subgoal
trie path, instead of pointing to a subgoal frame, they now
point to a bucket array. Each thread has its own cell inside



Subgoal
Frame
call_i

Answer
Trie

Structure

Subgoal
Frame
call_i

Answer
Trie

Structure

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Tk-3 Tk-2 Tk-1. . .

Subgoal Trie Structure

T0 T1 T2

Fig. 2. Table space organization for the SS design

the bucket array which then points to a private subgoal
frame and answer trie structure. In this design, concurrency
among threads is restricted to the allocation of nodes on the
subgoal trie structure. Whenever a thread finishes execution,
its private structures are removed, but the shared structures
remain present as they can be in use or be further used by
other threads. Shared structures are only removed when the
last running thread (usually thread 0) abolish the tables.

Assuming again that all running threads NT have com-
pletely evaluated the same number NS of subgoals, the
memory usage for this design for a particular table entry
T is sizeof(TET ) + sizeof(STST ) + [sizeof(BAT ) +
[sizeof(SFT ) + sizeof(ATST )] ∗NT ] ∗NS.

D. The Full-Sharing Design

Our third design is the more sophisticated one. Figure 3
shows its table space organization if considering again several
different threads calling the same tabled subgoal call i.

Table Entry

Subgoal Entry call_i

Answer
Trie

Structure

Subgoal Trie Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Tk-3 Tk-2 Tk-1. . .T0 T1 T2

Sg_Entry Sg_Entry Sg_Entry

Fig. 3. Table space organization for the FS design

In the FS design, part of the subgoal frame information
(the subgoal entry data structure in Fig. 3) and the answer
trie structure are now also shared among all threads. The
previous subgoal frame data structure was split into two: the
subgoal entry stores common information for the subgoal call
(such as the pointer to the shared answer trie structure); the
remaining information (the subgoal frame data structure in

Fig. 3) remains private to each thread. The subgoal entry
also includes a bucket array, in which each cell points to
the private subgoal frame of each thread. The private subgoal
frames include an extra field which is a back pointer to the
common subgoal entry. This is important because, with that,
we can keep unaltered all the tabling data structures that point
to subgoal frames. In this design, concurrency among threads
now also includes the access to the subgoal entry data structure
and the allocation of nodes on the answer trie structures.

Again, assuming that all running threads NT have com-
pletely evaluated the same number NS of subgoals, the
memory usage for this design for a particular table entry
T is sizeof(TET ) + sizeof(STST ) + [sizeof(SET ) +
sizeof(BAT )+sizeof(ATST )+sizeof(SFT )∗NT ]∗NS,
where SET and SFT represent, respectively, the shared sub-
goal entry and the private subgoal frame data structures.

The FS design has two major advantages. First, memory
usage is reduced to a minimum. The only memory overhead,
when compared with a single threaded evaluation, is the bucket
array associated with each subgoal entry, and apart from the
split on the subgoal frame data structure, all the remaining
structures are kept unchanged. Second, since threads are
sharing the same answer trie structures, answers inserted by
a thread for a particular subgoal call are automatically made
available to all other threads when they call the same subgoal.

E. Table Locking Schemes

To deal with concurrent table accesses, we use a Table
Lock at Write Level (TLWL) scheme [4]. The TLWL scheme
allows a single writer per chain of sibling nodes that represent
alternative paths from a common parent node, meaning that
only one thread at a time can be inserting a new child node
starting from the same parent node. In order to reduce the
lock duration to a minimum, we also use trylocks instead of
traditional locks. With trylocks, when a thread fails to get
access to the lock, instead of waiting, it returns to the non-
critical region, i.e., it traverses the newly inserted nodes, if any,
checking if the token t at hand was, in the meantime, inserted
by another thread. If t is not found, the process repeats until the
thread get access to the lock or until t be found. For locking,
we use either a locking field per trie node or a global array
of lock entries.

III. NEW MEMORY ALLOCATOR

Modern computer architectures use pages to handle mem-
ory. Pages are fixed size blocks of contiguous memory cells.
Based on this characteristic, we adopted an allocation scheme
based also on pages, where each memory page only contains
data structures of the same type. In order to split memory
among different threads, in our approach, a page can be
considered a local page, if owned by a particular thread, or
a global page, otherwise. Figure 4 gives an overview of the
new memory allocator based on pages.

A thread can own any number of pages of the same type, of
different types and/or free pages. Any type of page (including
free pages) can be local to a thread or global, and each



Memory
Pages

local page
thread 1

type X data
structures

local page
thread 2

type Y data
structures

local page
thread 2

type Y data
structures

local page
thread 1

free

global page

type X data
structures

Fig. 4. Using pages as the basis for the new memory allocator

particular page only contains data structures of the same type.
When a page P is made local to a thread T , this means
that T has exclusive permission to allocate and deallocate
data structures from P . On the other hand, global pages have
no owners and, thus, they are free from allocate/deallocate
operations. To allocate/deallocate data structures on global
pages, first the corresponding pages should be moved to a
particular thread. All running threads can access (for read
or write operations) the data structures allocated on a page,
independently of being a local or global page.

Access to the chain of available pages for a given data type
is synchronized by a page entry data structure. For each dif-
ferent data type, there is a global page entry and a local page
entry per thread. For example, for the subgoal frames, there
is a GB PG sg fr global page entry and a LC PG sg fr
local page entry per thread. Access to free pages (i.e., pages
with all data structures unused) is also synchronized by
proper global/local page entries, named GB PG void and
LC PG void, respectively. Full pages (i.e., pages with all data
structures in use) are not accessed from any local or global
page entry. A page entry data structure includes a PgEnt first
and a PgEnt last field that point, respectively, to the first
and last page in the chain of pages. For the global pages,
an extra PgEnt lock field implements a lock mechanism that
synchronizes access to the respective chain of pages.

The management of pages and data structures within pages
is achieved by allocating a special page header structure at the
beginning of each page and by uniformly dividing the remain-
ing space in equal-size data structures of the data type being
handled. Figure 5 shows an example that better illustrates how
page entries and page headers work together. A page header
consists of four fields. The PgHd next and PgHd prev fields
point, respectively, to the next and previous pages in the chain
of pages. The PgHd strs in use field stores the number of
data structures in use within a page. When it reaches zero the
page is freed and moved to the LC PG void page entry of the
thread at hand. The PgHd first field points to the first unused
data structure within a page and the remaining unused data
structures are linked through their next fields. When all data
structures are in use (i.e., when a page is full and PgHd first
is Null), the page is simply released from the respective chain.

Allocating and freeing data structures are constant-time
operations, all we have to do is to move a structure to or
from a list of free structures. Whenever a thread T requests to
allocate memory for a data structure of type S, it can instantly
satisfy the request by returning the first unused slot on the first
available local page with type S. If there are no available local
pages with type S, then a new page must be requested. If there
are free local pages in LC PG void, then the first one is made

PgEnt_last

PgEnt_first

page entry

P
g
H
d
_
s
t
r
s
_
i
n
_
u
s
e

P
g
H
d
_
f
i
r
s
t
_
s
t
r

P
g
H
d
_
n
e
x
t

P
g
H
d
_
p
r
e
v
i
o
u
s

n
e
x
t

n
e
x
t

n
e
x
t

u
n
u
s
e
d

d
a
t
a
 
s
t
r
u
c
t
u
r
e

u
n
u
s
e
d

d
a
t
a
 
s
t
r
u
c
t
u
r
e

u
n
u
s
e
d

d
a
t
a
 
s
t
r
u
c
t
u
r
e

Page Zoom

Fig. 5. Page entries and page headers in the new memory allocator

to be of type S. Otherwise, thread T must synchronize with
the other threads in order to access the shared resources. Then,
it first tries the GB PG void chain of free global pages and, if
no free page exists there, it asks for new memory pages from
the operating system’s memory allocator (such pages are then
chained in the GB PG void page entry).

Deallocation of a data structure of type S does not free up
the memory, but only opens an unused slot on the chain of
available local pages for type S. Further requests to allocate
memory of type S will later return the now unused memory
slot. When all data structures in a page are unused, the page
is moved to the chain of free local pages. A free local page
can be reassigned later to a different data type. This process
eliminates the need to search for suitable memory space and
greatly alleviates memory fragmentation. The only wasted
space is the unused portion at the end of a page when it cannot
fit exactly with the size of the corresponding data structures.

When a thread finishes execution, it deallocates all its
private data structures and then moves its local pages to the
corresponding global page entries. Remember from Section II
that shared structures are only deallocated when the last
running thread (usually thread 0) abolish the tables. Thus, if
a thread T allocates a data structure D, then it will be also
responsible for deallocating D, if D is private to T , or D will
remain live in the tables, if D is shared, even when T finish
execution. In the latter case, D can be only deallocated by the
last running thread L. In such case, D is made to be local to
L and the deallocation process follows as usual.

IV. IMPLEMENTATION DETAILS

In this section, we present in more detail the algorithms that
implement the key aspects of the new memory allocator.

Algorithm 1 shows the pseudo-code for allocating a new
data structure given the corresponding local page entry
pg ent. Initially, it checks for available pages and, if no page
exists, a new one is requested through a call to the alloc page()
procedure (lines 1–3). Next, it gets the first unused structure



from the page obtained and updates the page header to point
to the next unused structure (lines 4–5). If no more unused
structures exist then the page is full and the page entry at hand
is updated to point to the next available page (lines 7–11).

Algorithm 1 alloc struct(pg ent)
1: pg ← PgEnt first(pg ent)
2: if pg = Null then {no available pages}
3: pg ← alloc page()
4: str ← PgHd first(pg)
5: PgHd first(pg)← struct next(str)
6: if PgHd first(pg) = Null then {page is full}
7: if PgHd next(pg) = Null then
8: PgEnt last(pg ent)← Null
9: else

10: PgHd prev(PgHd next(pg))← Null
11: PgEnt first(pg ent)← PgHd next(pg)
12: PgHd strs in use(header) + +
13: return str

Algorithm 2 shows the pseudo-code for the alloc page()
procedure. Initially, the procedure checks for free local pages
(lines 1–2). If there is at least one such page, it updates
the chain of free local pages (lines 3–5) and returns it.
Otherwise, it locks the free global pages and tries to get a
page from there (lines 7–15) and, if no free page exists, it
asks the operating system for new memory pages (procedure
alloc init new pages from OS()).

Algorithm 2 alloc page()
1: pg ← PgEnt first(LC PG void)
2: if pg 6= Null then
3: if PgHd next(pg) = Null then
4: PgEnt last(LC PG void)← Null
5: PgEnt first(LC PG void)← PgHd next(pg)
6: else {no free local pages}
7: lock(PgEnt lock(GB PG void))
8: pg = PgEnt first(GB PG void)
9: if pg = Null then {no free global pages}

10: alloc init new pages from OS()
11: pg = PgEnt first(GB PG void)
12: if PgHd next(pg) = Null then
13: PgEnt last(GB PG void)← Null
14: PgEnt first(GB PG void)← PgHd next(pg)
15: unlock(PgEnt lock(GB PG void))
16: return pg

Algorithm 3 shows the pseudo-code for the free struct()
procedure given a data structure str and the corresponding
local page entry pg ent. Initially, it determines the corre-
sponding page pg for str (line 1) and checks if pg contains
other structures in use (lines 2–3). If so, str is chained in the
list of unused structures within the page (lines 10–11), and if
str is the first structure being made available, then pg is also
inserted in the chain of available pages of that type (lines 5–9).

Otherwise, if pg does not contain other structures in use, the
page stops being of the current type and is moved to the chain
of free local pages (lines 13–25). The free page() procedure
inserts a page into the chain of available free pages.

Algorithm 3 free struct(str, pg ent)
1: pg ← get page(str)
2: PgHd strs in use(pg)−−
3: if PgHd strs in use(pg) 6= 0 then
4: if PgHd first(pg) = Null then {first unused struct}
5: PgHd next(pg)← Null
6: PgHd prev(pg) = PgEnt last(pg ent)
7: if PgHd prev(pg) 6= Null then
8: PgHd next(PgHd prev(pg))← pg
9: PgEnt last(pg ent)← pg

10: struct next(str)← PgHd first(pg)
11: PgHd first(pg)← str
12: else {no other structures in use}
13: if PgHd prev(pg) 6= Null then
14: if PgHd next(pg) = Null then
15: PgEnt last(pg ent)← PgHd prev(pg)
16: else
17: PgHd prev(PgHd next(pg))← PgHd prev(pg)
18: PgHd next(PgHd prev(pg))← PgHd next(pg)
19: else
20: if PgHd next(pg) = Null then
21: PgEnt last(pg ent)← Null
22: else
23: PgHd prev(PgHd next(pg))← Null
24: PgEnt first(pg ent)← PgHd next(pg)
25: free page(pg, LC PG void)

V. EXPERIMENTAL RESULTS

We now present experimental results comparing the old
and the new memory allocators for the NS, SS and FS table
designs. The environment for our experiments was a machine
with 4 Six-Core AMD Opteron (tm) Processor 8425 HE (24
cores in total) with 64 GBytes of main memory and running
the Linux kernel 2.6.34.9-69.fc13.x86 64 with Yap 6.3.

A. Benchmark Programs
We used five sets of benchmarks. The Large Joins

and WordNet sets were obtained from the OpenRuleBench
project2; the Model Checking set includes three different
specifications and transition relation graphs usually used in
model checking applications; the Path Left and Path Right
sets implement two recursive definitions of the well-known
path/2 predicate, that computes the transitive closure in
a graph, using several different configurations of edge/2
facts (Fig. 6 shows an example for each configuration). We
experimented the BTree configuration with depth 17, the
Pyramid and Cycle configurations with depth 2000 and the
Grid configuration with depth 35. All benchmarks find all the
solutions for the problem.

2http://rulebench.projects.semwebcentral.org



TABLE I
CHARACTERISTICS OF THE BENCHMARK PROGRAMS

Bench Tabled Subgoals Tabled Answers Time (ms)
calls trie nodes trie depth unique repeated trie nodes trie depth NS

Large Joins
Join2 1 6 5/5/5 2,476,099 0 2,613,660 5/5/5 3,747
Mondial 35 42 3/4/4 2,664 2,452,890 14,334 6/7/7 737
WordNet
Clusters 117,659 235,319 2/2/2 166,877 161,853 284,536 1/1/1 822
Hypo 117,657 117,659 2/2/2 698,472 20,341 816,129 1/1/1 1,551
Holo 117,657 235,315 2/2/2 74,838 54 192,495 1/1/1 711
Hyper 117,657 235,315 2/2/2 698,472 8,658 816,129 1/1/1 1,413
Tropo 117,657 235,315 2/2/2 472 0 118,129 1/1/1 611
Mero 117,657 117,659 2/2/2 74,838 13 192,495 1/1/1 695
Model Checking
IProto 1 6 5/5/5 134,361 385,423 1,554,896 4/51/67 2,466
Leader 1 5 4/4/4 1,728 574,786 41,788 15/80/97 3,761
Sieve 1 7 6/6/6 380 1,386,181 8,624 21/53/58 24,688
Path Left
BTree 1 3 2/2/2 1,966,082 0 2,031,618 2/2/2 1,517
Pyramid 1 3 2/2/2 3,374,250 1,124,250 3,377,250 2/2/2 3,393
Cycle 1 3 2/2/2 4,000,000 2,000 4,002,001 2/2/2 4,035
Grid 1 3 2/2/2 1,500,625 4,335,135 1,501,851 2/2/2 1,929
Path Right
BTree 131,071 262,143 2/2/2 3,801,094 0 3,997,700 1/2/2 2,334
Pyramid 3,000 6,001 2/2/2 6,745,501 2,247,001 6,751,500 1/2/2 2,770
Cycle 2,001 4,003 2/2/2 8,000,000 4,000 8,004,001 1/2/2 3,025
Grid 1,226 2,453 2/2/2 3,001,250 8,670,270 3,003,701 1/2/2 2,346

Cycle
(depth 4)

Grid
(depth 4)

Pyramid
(depth 4)

BTree
(depth 2)

Fig. 6. Edge configurations for the path benchmarks

In order to have a deeper insight on the behavior of each
benchmark, and therefore clarify some of the results that
are presented next, we first characterize the benchmarks. The
columns in Table I have the following meaning:

• calls: is the number of different calls to tabled subgoals.
It corresponds to the number of paths in the subgoal tries.

• trie nodes: is the total number of trie nodes allocated in
the corresponding subgoal/answer trie structures.

• trie depth: is the minimum/average/maximum number
of trie nodes required to represent a path in the corre-
sponding subgoal/answer trie structures. Trie structures
with smaller average depth values are more amenable to
higher lock contention.

• unique: is the number of different tabled answers found.
It corresponds to the number of paths in the answer tries.

• repeated: is the number of redundant tabled answers
found. With the TLWL locking scheme, redundant an-
swers do not lock the table space.

• NS: is the average execution time, in milliseconds, of
five first runs for 1 thread with the NS design and the
old memory allocator. In what follows, we will use these

times as the base times when computing the overhead
ratios for the execution with 16 and 24 threads.

By observing Table I, the Mondial benchmark, from the
Large Joins set, and the three Model Checking benchmarks
seem to be the benchmarks least amenable to lock contention
since they are the ones that find less unique answers and
that have the deepest trie structures. In this regard, the Path
Left and Path Right sets correspond to the opposite case.
They find a huge number of answers and have very shallow
trie structures. On the other hand, the WordNet and Path
Right sets have the benchmarks with the largest number of
different subgoal calls, which can reduce the probability of
lock contention because answers can be found for different
subgoal calls and therefore be inserted with minimum overlap.
On the opposite side are the Join2 benchmark, from the Large
Joins set, and the Path Left benchmarks, which have only a
single tabled subgoal call.

B. Performance Analysis

During experimentation, we observed some huge differ-
ences, in the execution time, between the first and the fol-
lowing runs of a program, being such differences more clear
for the operating system’s default memory allocator. This
happens because the memory allocated for the first runs is
not really freed, which allows to be reused in the following
runs. Hence, and in order to differentiate such runs, in what
follows, we show two types of evaluations: first runs, where
we just consider the first execution times; and second runs,
where we discard the first runs and consider only the second
execution times.

Tables II and III show the overhead ratios for the average
of five first and five second runs, respectively, when running



TABLE II
OVERHEAD RATIOS (AVERAGE OF FIVE FIRST RUNS) COMPARING THE NS, NSP , SS, SSP , FS, FSP , FSG AND FSGP DESIGNS WITH 16 AND 24

THREADS AGAINST THE NS DESIGN WITH 1 THREAD (BEST RATIOS ARE IN BOLD)

Bench 16 Threads 24 Threads
NS NSP SS SSP FS FSP FSG FSGP NS NSP SS SSP FS FSP FSG FSGP

Large Joins
Join2 7.39 3.83 7.41 3.87 2.95 2.01 2.40 1.85 23.05 5.86 23.39 6.02 3.80 2.58 2.77 2.29
Mondial 1.10 1.13 1.08 1.15 3.10 1.43 1.48 1.45 1.20 1.14 1.18 1.15 4.10 1.50 1.91 1.60
WordNet
Clusters 6.35 1.61 5.45 2.14 3.82 2.13 3.65 2.07 19.84 2.58 11.94 3.08 4.53 2.36 4.26 2.23
Hypo 5.71 2.05 5.43 2.42 2.91 2.31 2.97 2.14 15.84 2.92 9.51 3.29 4.25 2.69 4.35 2.47
Holo 6.30 1.52 5.40 2.06 3.67 1.95 3.56 1.90 17.57 2.58 9.41 2.59 4.88 2.04 4.59 1.99
Hyper 8.10 3.64 7.48 4.20 3.01 2.20 2.91 2.10 23.79 5.94 15.29 6.31 3.38 2.30 3.26 2.24
Tropo 6.24 1.19 4.94 2.07 3.93 2.20 3.83 2.14 17.95 1.88 8.02 2.29 5.80 2.37 5.54 2.25
Mero 5.10 1.37 4.91 1.93 3.66 1.99 3.36 1.91 13.99 1.95 8.37 2.30 4.81 2.19 4.27 2.15
Model Checking
IProto 4.36 1.09 4.39 1.07 1.59 1.26 1.58 1.39 15.05 1.18 14.94 1.17 1.70 1.37 1.63 1.36
Leader 1.02 1.06 1.03 1.06 1.03 1.02 1.03 1.03 1.02 1.07 1.04 1.06 1.03 1.03 1.03 1.03
Sieve 1.01 1.04 1.01 1.04 0.99 1.00 1.00 1.01 1.01 1.04 1.01 1.04 0.99 1.00 1.00 1.01
Path Left
BTree 9.89 2.66 9.79 2.66 4.09 3.31 3.59 2.74 32.13 4.48 33.45 4.44 5.62 4.41 4.52 3.66
Pyramid 7.48 1.87 7.49 1.83 3.15 2.26 2.78 2.19 23.73 3.31 24.24 3.33 4.34 3.03 3.43 2.90
Cycle 7.39 1.73 7.32 1.66 2.82 2.21 2.95 2.10 22.70 3.18 22.79 3.25 4.10 2.89 3.84 3.08
Grid 5.75 1.43 5.71 1.50 2.92 2.18 2.56 2.16 16.55 2.30 16.30 2.29 4.09 2.73 3.32 2.66
Path Right
BTree 13.74 3.77 12.97 4.01 4.99 3.86 4.47 3.42 43.98 6.09 34.15 6.32 6.22 4.86 6.46 4.24
Pyramid 16.76 4.78 16.80 4.70 7.47 5.44 6.23 4.85 55.54 8.15 52.79 8.15 9.32 7.36 7.58 6.39
Cycle 17.71 4.71 17.68 4.67 7.56 6.20 6.56 4.95 52.25 8.11 53.73 8.12 9.81 7.94 8.10 6.72
Grid 9.47 2.60 9.46 2.64 4.64 2.46 4.59 2.81 30.84 4.25 31.02 4.30 6.16 2.93 5.59 4.23
Total Average 7.41 2.27 7.14 2.46 3.59 2.50 3.24 2.33 22.53 3.58 19.61 3.71 4.68 3.03 4.08 2.87

TABLE III
OVERHEAD RATIOS (AVERAGE OF FIVE SECOND RUNS) COMPARING THE NS, NSP , SS, SSP , FS, FSP , FSG AND FSGP DESIGNS WITH 16 AND 24

THREADS AGAINST THE NS DESIGN WITH 1 THREAD (BEST RATIOS ARE IN BOLD)

Bench 16 Threads 24 Threads
NS NSP SS SSP FS FSP FSG FSGP NS NSP SS SSP FS FSP FSG FSGP

Large Joins
Join2 1.15 0.94 1.17 0.96 2.30 1.86 2.29 1.80 1.17 0.99 1.15 0.99 2.96 2.60 2.72 2.29
Mondial 0.90 1.02 0.88 1.03 3.15 1.29 1.62 1.30 0.91 1.02 0.95 1.05 4.20 1.37 2.01 1.45
WordNet
Clusters 1.01 0.65 1.16 1.05 1.54 1.46 1.69 1.47 1.26 0.89 1.41 1.16 1.75 1.59 1.82 1.58
Hypo 1.56 1.17 1.48 1.13 2.06 1.96 2.06 1.80 2.44 1.48 2.13 1.59 2.60 2.29 2.43 2.23
Holo 1.01 0.58 1.27 1.14 1.45 1.36 1.62 1.31 1.36 0.76 1.47 1.19 1.57 1.41 1.79 1.38
Hyper 1.03 0.80 1.10 1.01 1.97 1.78 2.07 1.73 1.19 0.93 1.18 1.07 2.11 1.87 2.16 1.82
Tropo 0.96 0.50 1.24 1.07 1.29 1.20 1.42 1.20 1.29 0.65 1.52 1.20 1.49 1.31 1.54 1.29
Mero 1.08 0.57 1.23 1.10 1.42 1.32 1.51 1.29 1.56 0.70 1.53 1.24 1.64 1.52 1.74 1.38
Model Checking
IProto 1.26 1.14 1.24 1.14 1.44 1.31 1.41 1.37 1.27 1.24 1.20 1.26 1.49 1.35 1.45 1.48
Leader 0.99 1.06 1.01 1.06 1.03 1.02 1.03 1.04 1.00 1.06 1.00 1.06 1.03 1.03 1.03 1.03
Sieve 0.99 1.05 1.00 1.05 1.00 1.00 1.00 1.01 1.00 1.04 1.00 1.03 1.00 1.00 1.01 1.01
Path Left
BTree 2.05 1.30 1.87 1.28 3.62 3.39 3.35 2.60 2.98 1.67 2.58 1.60 4.89 4.23 3.50 3.60
Pyramid 1.87 1.27 1.86 1.30 2.49 2.16 2.39 2.20 3.08 1.58 2.84 1.61 3.61 2.93 3.58 3.03
Cycle 1.71 1.23 1.70 1.22 2.46 2.11 2.60 2.04 2.44 1.50 2.43 1.49 3.41 2.84 3.28 2.85
Grid 1.47 1.16 1.44 1.15 2.57 2.33 2.22 2.12 1.73 1.28 1.70 1.37 3.26 2.77 3.09 2.59
Path Right
BTree 2.08 1.42 2.08 1.54 4.36 3.70 3.95 3.30 3.26 2.32 3.88 2.96 5.15 4.75 4.65 4.19
Pyramid 2.35 1.95 2.39 1.93 6.19 5.31 5.41 4.88 5.88 4.96 5.27 4.54 8.14 6.26 7.66 6.52
Cycle 2.30 1.91 2.42 1.87 6.63 6.18 6.47 4.99 4.83 4.69 4.93 3.85 8.83 7.68 7.01 6.84
Grid 1.58 1.17 1.57 1.17 3.26 2.45 3.20 2.66 2.63 2.49 2.29 1.81 3.86 3.21 4.47 3.61
Total Average 1.44 1.10 1.48 1.22 2.64 2.27 2.49 2.11 2.17 1.64 2.13 1.69 3.31 2.74 3.00 2.64

the benchmark set with 16 and 24 threads for the three
table designs using the old and the new memory allocator.
To compute the ratios we used the NS base times from
Table I. Columns NS, SS and FS correspond to the execution
using the operating system’s default memory allocator, and

columns NSP , SSP , FSP show the results for the new page
based memory allocator (in all cases, both SS and FS designs
implement the TLWL locking scheme using a locking field in
the trie nodes). Additionally, columns FSG and FSGP show
the results for the FS design implementing the TLWL locking



scheme using a global array of lock entries.
In order to create a worst case scenario that stresses either

the memory allocator and both trie data structures, we ran
all threads starting with the same query goal. By doing this,
it is expected that all threads will request memory (specially
the NS design) and/or access the table space, to check/insert
for subgoals (the NS and FS designs) and answers (the FS
design), at similar times, thus causing a huge stress on the
same critical regions. In particular, this will be specially the
case for the answer tries, since the number of answers clearly
exceeds the number of subgoals on most benchmarks.

In general, the experiments on Tables II and III show that
the results with the new memory allocator are, on average,
always better (no exceptions) than the operating system’s
default memory allocator. In particular, for first runs executions
with the NS and SS designs, the gain is overwhelming. For
example, with 24 threads, the reduction goes from 22.53
to 3.58, for the NS design, and from 19.61 to 3.71, for
the SS design. Moreover, our experiments also show that
the new memory allocator scales better than the previous
implementation, when we increase the number of threads. On
average, the cost of moving from 16 to 24 threads is always
less (no exceptions) with the new memory allocator.

By comparing the NS with the NSP ratios, we can ob-
serve the impact of the new memory allocator in reducing
synchronization when requesting memory. This reduction is
more clear for the benchmarks that allocate an higher number
of trie nodes, such as the Join2 and IProto benchmarks and
the WordNet, Path Left and Path Right sets.

When we compare the NSP with the SSP ratios, and since
both designs benefit from the gain introduced by the new
memory allocator, we can observe the impact of having the
subgoal tries shared across threads. On one hand, with the SS
design, we request less trie nodes for the subgoal tries (thus
reducing synchronization when requesting memory for the
memory allocator) but, on the other hand, we are introducing
a new cost when synchronizing the insertion of nodes into
the shared subgoal trie structures. This cost is more clear for
the benchmarks that allocate an higher number of subgoal trie
nodes, such as the WordNet benchmark set.

Finally, the FSP ratios show the impact of having also
the answer tries shared across threads. On one hand, we
request less trie nodes for the answer tries (thus reducing
synchronization when requesting memory for the memory
allocator) but, on the other hand, we introduce an extra cost
when synchronizing the insertion of nodes into the shared
answer trie structures. Our results confirm that the Mondial,
Leader and Sieve benchmarks are least susceptible to this
extra cost.

Our results also show that, with a global array of lock
entries, we can still improve performance by using the new
memory allocator (the FSGP design). Note that both mech-
anisms are orthogonal to each other. From Table II, we can
observe that, the total average for 24 threads, moves from a
ratio of 4.68 and 4.08, for the FS and FSG designs, to a ratio
of 3.03 and 2.87, for the FSP and FSGP designs, on average.

VI. CONCLUSIONS

We have presented a novel, efficient and scalable memory
allocator for multithreaded tabled evaluation of logic programs
based on local and global pages, to split memory among
specific data structures and different threads, together with a
page based mechanism, where data structures of the same type
are pre-allocated within a page. Our main goal is to minimize
the performance degradation that the system suffers, when it is
exposed to simultaneous memory requests made by multiple
threads. Experimental results show that our new memory
allocator is always better than the previous implementation
and that, for first runs executions with the NS and SS designs,
it can achieve significant reductions on the execution time. Our
experiments also show that the new memory allocator scales
better when we increase the number of threads. Further work
will include studying alternative memory allocators and new
approaches to reduce lock contention when inserting nodes
into the shared trie structures.

ACKNOWLEDGMENTS

This work is partially funded by the ERDF (European
Regional Development Fund) through the COMPETE Pro-
gramme and by FCT (Portuguese Foundation for Science and
Technology) within projects PEst (FCOMP-01-0124-FEDER-
022701), HORUS (PTDC/EIA-EIA/100897/2008) and LEAP
(PTDC/EIA-CCO/112158/2009). Miguel Areias is funded by
the FCT grant SFRH/BD/69673/2010.

REFERENCES

[1] W. Chen and D. S. Warren, “Tabled Evaluation with Delaying for
General Logic Programs,” Journal of the ACM, vol. 43, no. 1, pp. 20–74,
1996.

[2] P. Moura, “ISO/IEC DTR 13211–5:2007 Prolog Multi-threading
Predicates,” 2008. [Online]. Available: http://logtalk.org/plstd/threads.
pdf

[3] R. Marques and T. Swift, “Concurrent and Local Evaluation of Normal
Programs,” in International Conference on Logic Programming, ser.
LNCS, no. 5366. Springer-Verlag, 2008, pp. 206–222.

[4] M. Areias and R. Rocha, “Towards Multi-Threaded Local Tabling Using
a Common Table Space,” Journal of Theory and Practice of Logic
Programming, International Conference on Logic Programming, Special
Issue, vol. 12, no. 4 & 5, pp. 427–443, 2012.

[5] V. Santos Costa, R. Rocha, and L. Damas, “The YAP Prolog System,”
Journal of Theory and Practice of Logic Programming, vol. 12, no. 1
& 2, pp. 5–34, 2012.

[6] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard:
A Scalable Memory Allocator for Multithreaded Applications,” ACM
SIGPLAN Notices, vol. 35, no. 11, pp. 117–128, 2000.

[7] W. Gloger, “Ptmalloc.” [Online]. Available: http://www.malloc.de/en/
[8] S. Ghemawat and P. Menage, “TCMalloc: Thread-Caching Malloc.”

[Online]. Available: http://goog-perftools.sourceforge.net/doc/tcmalloc.
html

[9] J. Evans, “A Scalable Concurrent malloc(3) Implementation for
FreeBSD,” in The Technical BSD Conference, 2006.

[10] J. Bonwick, “The Slab Allocator: An Object-Caching Kernel Memory
Allocator,” in Usenix Summer 1994 Technical Conference. Usenix
Association, 1994, pp. 87–98.

[11] J. Wielemaker, “Native Preemptive Threads in SWI-Prolog,” in In-
ternational Conference on Logic Programming, ser. LNCS, no. 2916.
Springer-Verlag, 2003, pp. 331–345.

[12] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren,
“Efficient Access Mechanisms for Tabled Logic Programs,” Journal of
Logic Programming, vol. 38, no. 1, pp. 31–54, 1999.


