
On Extending a Fixed Size, Persistent and
Lock-Free Hash Map Design to Store Sorted Keys

Miguel Areias and Ricardo Rocha
CRACS & INESC TEC, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
Email: {miguel-areias,ricroc}@dcc.fc.up.pt

Abstract—Searching is a crucial time-consuming part of many
programs, and using a good search method instead of a bad one
often leads to a substantial increase in performance. Hash tries
are a trie-based data structure with nearly ideal characteristics
for the implementation of hash maps. In this paper, we present a
novel, simple and concurrent hash map design that fully supports
the concurrent search, insert and remove operations on hash tries
designed to store sorted keys. To the best of our knowledge, our
design is the first concurrent hash map design that puts together
the following characteristics: (i) use fixed size data structures;
(ii) use persistent memory references; (iii) be lock-free; and (iv)
store sorted keys. Experimental results show that our design is
quite competitive when compared against other state-of-the-art
designs implemented in Java.

Index Terms—Hash Tries, Lock-Freedom, Sorting.

I. INTRODUCTION

Hash maps is a very common and efficient data structure
used to store data that can be organized as pairs (K,C), where
the mapping between the unique key K and the associated
content C is given by a hash function. Hash tries (or hash
array mapped tries) are a tree-based data structure with nearly
ideal characteristics for the implementation of hash maps [1].
An essential property of the trie data structure is that common
prefixes are stored only once [2], which in the context of
hash maps leads to implementations using fixed size data
structures. This allows to efficiently solve the problems of
setting the size of the initial hash map and of dynamically
expanding/compressing it in order to deal with hash collisions.

Another important characteristic is the ability to maintain
the access to all internal data structures as persistent memory
references, i.e., avoid duplicating internal data structures by
creating new ones through copying/removing the older ones.
The persistent characteristic is very important in hash maps
that are used not standalone but as a component of a bigger
module/library which, for performance reasons, requires ac-
cessing directly the internal data structures. In such scenario,
it is mandatory to avoid changing the external memory refer-
ences to the internal hash map data structures.

Multithreading with hash maps is the ability to concurrently
execute multiple search, insert and remove operations in such
a way that each specific operation runs independently but
shares the underlying hash map data structure. The traditional
approach to synchronize access to critical sections in con-
current data structures is to use locking primitives, such as,
spinlocks, mutexs or semaphores. Lock-free techniques offer

several advantages over the traditional lock-based counterparts,
such as, being immune to deadlocks, lock convoying and pri-
ority inversion, and being preemption tolerant, which ensures
similar performance regardless of the thread scheduling policy.
Lock-free data structures have proved to work well in many
different settings [3] and they are available in several different
frameworks, such as, Intel’s Threading Building Blocks [4],
the NOBLE library [5] or the Java concurrency package [6].

Traditional hash maps do no store sorted keys, which makes
them unsuitable for non-exact match searches, such as to find
all keys in an interval. Searching is a crucial time-consuming
part of many programs, and using a good search method
instead of a bad one often leads to a substantial increase
in performance [7]. The earliest search algorithm — binary
search — was first mentioned by John Mauchly [8] more
than six decades ago, 25 years before the advent of relational
databases [9]. Nowadays, one of the most critical database
primitives is tree-structured index search, which is used for
a wide range of applications where low latency and high
throughput matter, such as data mining, financial analysis,
scientific workloads and more [10].

In this work, we propose a novel concurrent hash map
design that puts together the following characteristics: (i)
use fixed size data structures; (ii) use persistent memory
references; (iii) be lock-free; and (iv) store sorted keys. Our
proposal is based on hash tries to implement fixed size data
structures with persistent memory references, on single-word
CAS (compare-and-swap) instructions to implement lock-
freedom, and on xor operations to assist in sorting the hash
values corresponding to keys. In previous work [11], we have
already proposed a concurrent hash map design which supports
most of the characteristics above with the exception of sorting.
This work extends that previous design to also support sorting
of keys. To materialize the new design, we had to redesign
the existent search, insert and expand operations. To the best
of our knowledge, none of the available alternatives in the
literature fulfills all these four characteristics simultaneously.

The remainder of the paper is organized as follows. First,
we introduce relevant background and present the key ideas of
our design. Next, we discuss in more detail the key algorithms
required to easily reproduce our implementation by others.
Then, we present a set of experiments comparing our design
against other state-of-the-art concurrent hash map proposals.
At the end, we present conclusions and further work directions.

II. THE SKELETON OF OUR DESIGN

Our design combines hashing with sort and tree search
algorithms. It is based on hash tries, which include hash
arrays of buckets and leaf nodes. The leaf nodes store the
key/content pairs and the hash arrays of buckets implement a
hierarchy of hash levels of fixed size 2W . To map a key K
into this hierarchy, we first compute the hash value H for K
and then use chunks of W bits from H to index the entry
in the appropriate hash level, i.e., for each hash level HI ,
we use the W ∗ I highest significant bits of H to index the
entry in the appropriate bucket array of HI . Hash collisions
are solved by simply walking down the tree as we consume
successive chunks of W bits from the hash value H , creating
a unique path from the root level of the hash to the level
where K should be stored. For the sake of simplicity of
presentation, we will consider the identity function for hashing
(i.e., H = hash(K) = K) and we will only show the key
part of the key/content pair in the figures that follow. Figure 1
shows the configuration of a hash trie for keys with 3 bits
length (values from 0 to 7) and hash levels of size 2, i.e., with
chunks of W = 1 bit.

H1 H2 H3

0

1

K=0

K=1

K=2

0

1

0

1 0

1

K=4

K=5

Keys

Fig. 1. Sorting keys with hash tries

As keys are inserted us-
ing their high-order bits for
each level, they become im-
mediately sorted (from top
to down in Fig. 1) in the
hash trie. The hash lev-
els are only expanded when
inserting a key in a full
bucket entry. To expand a
level Hi with a full bucket
entry B, we apply a xor
operation between the new key and the existent key in B to
check in which chunk of bits the keys first differ. If they differ
in a higher chunk of bits than the hash level i, then we insert a
new hash level in a deeper level (we call this front-expansion).
Otherwise, we insert a new hash level in a shallow level (we
call this back-expansion). Figure 2 shows an example of both
expansions as a result of inserting the keys 3 (front-expansion)
and 6 (back-expansion) in the hash trie of Fig. 1.

H1 H2 H3

0

1

K=0

K=1

0

1

K=2

K=3

0

1

0

1 0

1

K=4

K=50

1
K=6

Keys

Fig. 2. Inserting keys 3 (front-
expansion) and 6 (back-expansion)

The insertion of key 3
(011 in binary) collides
with the bucket entry for
key 2 (010 in binary) in the
second hash level, which
results in the xor operation
leading to 011⊕010 = 001.
The two keys first differ in
the third bit chunk (from
left to right), thus leading
to a front-expansion (chunk
3 > level 2). Similarly, the
insertion of key 6 (110 in
binary) collides with the bucket entry for key 4 (100 in binary)
in the third hash level, which results in the xor operation

110 ⊕ 100 = 010. The two keys first differ in the second bit
chunk (chunk 2 < level 3), thus leading to a back-expansion.

K=18

K=29K=30

H1 H2

K=22

00

01

00

01

K=20

Keys

10

11

10

11

K=40

Fig. 3. Combining chunks of bits with
chains of keys

The base configuration
shown in Fig. 1 and Fig. 2,
with chunks of W = 1
bit and one key per bucket
entry (i.e., without hash
collisions), can be easily
adapted to different config-
urations. Figure 3 shows a
new configuration of a hash
trie for keys with 6 bits
length (values from 0 to
64), hash levels of size 4, i.e., with chunks of W = 2 bits
(00, 01, 10 and 11 in binary) and allowing collisions up to 4
keys. In this scenario, the hash levels are also expanded only
when inserting a key in a full bucket entry, i.e., with a chain of
4 keys in this case. These chains can be important to amortize
the number of hash levels per path. By default, the insertion
of keys in a chain is done at the end of the chain. Thus, chains
might not have sorted keys after insertion and a small sorting
operation might be required to sort the keys in a chain, if the
number of keys is higher than one.

In a worst case scenario, one would have key collisions
up to the last hash level, where the keys must be different,
otherwise they would be the same. Assuming that keys have
B bits then, in a worst case scenario, the hash trie maximum
depth is B

W and, for independent random N keys, it is expected
to converge to a perfect hash trie map with a logN/ log 2W

depth and have a O(logB N) complexity.

III. OUR DESIGN BY EXAMPLE

In this section, we focus the discussion on the key aspects
of our design, namely on how concurrent operations work in
a lock-free fashion. We begin with Fig. 4 showing a small
example that illustrates how the concurrent insertion of nodes
is done in a hash level.

(a) (b)

.
.
.

K1Bx

.
.
.

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

-
i

PrevPxPi
Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

2 W

Fig. 4. Insert operation in a hash level

Fig. 4(a) shows the initial configuration for a hash level Hi.
Each hash level is formed by a bucket array of 2W entries
(as mentioned before) and by a header, which includes a
backward reference to the previous hash level, a hash level
chunk identifier and a key representative of the hash level,
respectively, values Pi, i and K1 in Fig. 4 (in Fig. 4(a) the
key representative is marked as ‘–’ since the hash level is still
empty). For the root level, the backward reference is Null.

(b)

K1 K2 K3

.
.
.

By

Bz

Bx

.
.
.

.
.
.

K1 K2 K3

.
.
.

.
.
.

.
.
.

(a)

(d)

.
.
.

K3

By

Bx

.
.
.

.
.
.

K1 K2

(e)

.
.
.

K3

By

Bx

.
.
.

.
.
.

K1

K4 K2

.
.
.

K3

Bk

.
.
.

.
.
. K5

K4 K2

K1

(f)

V V V V V V

V

VV V

V V V

VV

V V V

Bx

Bz

By

Bz Bz Bz

By

(c)

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

Hi

K1
i

PrevPx
Hi

K1
i

PrevPx
Hk

K2
k

PrevPzPi Pk Pi
Hk

K2
k

PrevPzPk
Hi

K1
i

PrevPxPi
Hk

k
PrevPzPk

K2

Hi

K1
i

PrevPxPi
Hi

K1
i

PrevPxPi
Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk
Hk

K2
k

PrevPzPk
Hk

K2
k

PrevPzPk

Bx

Fig. 5. Front-expansion with the concurrent insertion of nodes

The bucket entries are initialized with a reference to the
current hash level. In Fig. 4(a), Bx represents a particular
bucket entry of Hi. Each bucket entry stores either a reference
to a hash level or a reference to a separate chaining mecha-
nism, using a chain of leaf nodes, that deals with the hash
collisions for that entry. Each leaf node includes a tuple that
holds both a reference to a next-on-chain leaf node and the
condition of the node, which can be valid (V) or invalid (I).
The initial condition of a node is valid. Figure 4(b) shows the
hash configuration after the insertion of node K1 on the bucket
entry Bx and Fig. 4(c) shows the hash configuration after the
insertion of nodes K2 and K3 also in Bx. The insertion of
nodes is done at the end of the chain and a new inserted node
closes the chain by referencing back the current hash level.

During execution, the memory locations holding references
are considered to be in one of the following states: black, white
or gray. A black state, which we also name an Interest Point
(IP), represents a memory location that will be used to update
the state of a chain or a hash level in a concurrent fashion. To
guarantee the property of lock-freedom, all updates to black
states are done using CAS operations. A gray state represents
a memory location that is not an IP but which can become an
IP at any instant, once the execution leads to it. A white state
represents a memory location used only for reading purposes.

Starting from the configuration in Fig. 4(c), Fig. 5 illustrates
the front-expansion operation to a second level hash for the
bucket entry Bx. The front-expansion operation is activated
whenever a thread T meets the following two conditions:
(i) the key at hand was not found in the chain and (ii) the
number of valid nodes in the chain observed by T is equal to
the threshold value corresponding to the number of collisions
allowed (in what follows, we consider a threshold value of
three keys). In such case, T starts by pre-allocating a second
level hash Hk, with all entries referring the respective level
and with a key representative consisting of the key in the chain
(K2 in the example of Fig. 5) which differs in the lower chunk
of bits from the new key that is being inserted by T .

The new hash level Hk is then used to implement a synchro-
nization point with the current IP (node K3 in Fig. 5(a)) that

will correspond to a successful CAS operation trying to update
Hi to Hk (Fig. 5(b)). From this point on, the insertion of new
nodes on Bx will be done starting from the new hash level
Hk. If the CAS operation fails, that means that another thread
has gained access to the IP and, in such case, T aborts its
front-expansion operation. Otherwise, T starts the remapping
process of placing the valid nodes K1, K2 and K3 in the cor-
rect bucket entries in the new level. Figures 5(c) to 5(f) show
the remapping sequence in detail. For simplicity of illustration,
we will consider only the entries By and Bz on level Hk

and assume that K1, K2 and K3 will be remapped to these
bucket entries. In order to ensure lock-free synchronization,
we need to guarantee that, at any time, all threads are able
to read all the available nodes and insert/remove new nodes
without any delay from the remapping process. To guarantee
both properties, the remapping process is thus done in reverse
order, starting from the last node on the chain, initially K3.

Fig. 5(c) shows the hash trie configuration after the success-
ful CAS operation that adjusted node K3 to entry Bz . After
this step, Bz passes to the gray state and K3 becomes the
next IP for the insertion of new nodes on Bz . Note that the
initial chain for Bx has not been affected yet, since K2 still
refers to K3. Next, on Fig. 5(d), the chain is adjusted and K2

is updated to refer to the second level hash Hk. The process
then repeats for K2 (the new last node on the chain for Bx).
First, K2 is remapped to entry Bz and then it is removed
from the original chain, meaning that the previous node K1

is updated to refer to Hk (Fig. 5(e)). Finally, the same idea
applies to node K1. In the continuation, K1 is also remapped
to a bucket entry on Hk (By in the figure) and then removed
from the original chain, meaning in this case that the bucket
entry Bx itself becomes a reference to the second level hash
Hk (Fig. 5(f)). Concurrently with the remapping process, other
threads can be inserting nodes in the same bucket entries for
the new level. This is shown in Fig. 5(e), where a node K4 is
inserted before K2 in Bz and in Fig. 5(f), where a node K5

is inserted before K1 in By .
We describe next the back-expansion operation. The back-

expansion operation has a lower priority than the front-

expansion operation, i.e., a back-expansion only begins if
no front-expansion is undergoing. If a front-expansion is
undergoing and a thread T wants to execute a back-expansion,
T begins by assisting the threads doing the front-expansion
and only then it begins the back-expansion. Figure 6 shows a
possible sequence of steps involving a back-expansion opera-
tion concurrently with a front-expansion operation.

(a)

K1 K2 K3

.
.
.

By

Bz

Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

(b)

.
.
.Bk

.
.
.

.
.
.

Bz

By

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

Bx

.
.
.

Bw

Hj

K4
j

PrevPzPj

K4 VBv

(d)

.
.
.Bk

.
.
.

.
.
.

Bz

By

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

Bx

...

...

...

...

.
.
.Bk

.
.
.

.
.
.

Bz

By

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPkPk

Bx

.
.
.

Bw

Hj

K4
j

PrevPzPj

Bv ...

...

(c)

Fig. 6. Back-expansion concurrently with a front-expansion

Figure 6(a) shows the initial configuration, where a front-
expansion operation is undergoing for the bucket entry Bx to
a second level hash Hk, and Fig. 6(b) shows the end of the
front-expansion, after the CAS operation updating Bx to Hk.
Assume now that during the front-expansion, a new thread T
reaches Bx looking to insert a key K4 and that K4 ⊕ K2
(note that K2 is the key representative of Hk) leads to a bit
chunk level j lower than k. Thus, a third hash level Hj must
be included between Hi and Hk.

Figure 6(c) shows the resulting configuration after the
insertion of the hash level Hj . The initialization of a hash
level in a back-expansion is sightly different from the front-
expansion, since one of the bucket entries must refer the front
hash level Hk. T uses the key representative of the front
hash level, K2 in Fig. 6(c), to compute the bucket entry Bw

that should refer to Hk. All the remaining bucket entries are
initialized referring back the respective level Hj . At the end
of the initialization step, T applies a CAS operation on Bx

setting it to refer to Hj . Finally, T can insert the key K4 in
the hash level Hj . Figure 6(d) shows this final configuration.

It is important to notice that while Hj is being initialized,
another thread can insert first a different hash level Hl in Bx.
In such case, the CAS operation on Bx will fail and T must
recover, considering now that the front hash level is Hl instead
of Hk. Then, T either moves to Hl if j >= l or, otherwise,
retries to insert Hj , now between Hi and Hl, after updating
the bucket entries as described above.

IV. ALGORITHMS

In this section, we present the key algorithms that implement
our design. We begin with Algorithms 1 and 2 showing the
pseudo-code for the search/insert operation of a given key K

in a given hash level H . Both algorithms execute recursively,
moving through the hierarchy of hash levels, until K is found
or inserted in H (for the entry call, H is the root level).
Algorithm 1 deals with the hash level data structures and
Algorithm 2 deals with the chain of leaf nodes.

Algorithm 1 SearchInsertOnHash(Key K, Hash H)
1: B ← GetBucket(H,Hash(K), ChunkId(H))

2: R← EntryRef(B)

3: if IsHash(R) then // R references a hash level
4: if ChunkId(R) <= ChunkDiffer(K ⊕KeyRep(R)) then
5: return SearchInsertOnHash(K,R)

6: else
7: return BackExpansion(K,H,R)

8: else // R references a leaf node
9: T ← 〈B,R, 0,MAXCHUNK〉

10: return SearchInsertOnChain(K,H, T)

In more detail, Algorithm 1 starts by applying the hash
function to K that allows obtaining the appropriate bucket
entry B of H that fits with the corresponding chunk of bits
(line 1). Next, the algorithm reads the reference R on the head
of B (line 2) and checks whether it references a hash level or
a leaf node. If R references a hash level (lines 4–7), then the
algorithm uses K and the key representative of R to find: (i)
if R can hold K, case in which it calls itself using now R for
the hash level (line 5), or (ii) if a back-expansion operation
must be executed (line 7). The back-expansion operation is
presented later on Algorithm 4. Otherwise, R references a leaf
node, in which case it calls Algorithm 2 to deal with the chain
of leaf nodes (lines 9–10).

Algorithm 2 receives an extra argument T , in the form
of a quadruplet, corresponding to information regarding the
leaf node where the traversal should start. Starting from T ,
the algorithm initializes a set of auxiliary variables (line 1):
CV R holds the candidate valid reference where new insertions
should take place; CV RN holds the chain reference of CV R;
C counts the number of valid nodes in the chain; and CHK
holds the lowest chunk of bits found. When called from
Algorithm 1 at line 10, CV R is the bucket entry from where
the chain starts, CV RN is the first node on the chain, C is 0
and CHK is MAXCHUNK.

After this initialization step, the algorithm traverses the
chain of leaf nodes until it finds a reference to a hash level
(lines 3–13). While traversing, the algorithm only considers
valid nodes. If the key K is found in a node, the algorithm
returns the corresponding node R (lines 5–6). Otherwise, the
auxiliary variables are updated accordingly (lines 7–11).

At the end of the traversal, the algorithm checks if R ended
in the same hash level H , which means that no expansion
operation is taking place at the same time, and it proceeds
trying to insert K (lines 15–41). Otherwise, R refers a deeper
hash level, case in which a front-expansion is going on, thus it
moves to assist in it (line 43). The front-expansion operation
is presented later on Algorithm 3.

If R ended in the same hash level then two situations might
occur: no valid chain nodes were found (lines 16–21) or,

Algorithm 2 SearchInsertOnChain(Key K, Hash H, Tuple T)
1: 〈CV R,CV RN,C,CHK〉 ← T

2: R← CV RN

3: repeat // traverse the chain of leaf nodes
4: if IsV alidNode(R) then
5: if Key(R) = K then
6: return R

7: CV R← R

8: CV RN ← NextRef(CV R)

9: C ← C + 1

10: if CHK > ChunkDiffer(K ⊕KeyRep(R)) then
11: CHK ← ChunkDiffer(K ⊕KeyRep(R))

12: R← NextRef(R)

13: until IsHash(R)

14: if R = H then // chain ended in the same hash level
15: if C = 0 then // no valid chain nodes found (empty bucket)
16: newN ← AllocInitNode(K,H, V alid)

17: if CAS(EntryRef(CV R), CV RN, newN) then
18: return newN

19: else
20: FreeNode(newN)

21: return SearchInsertOnHash(K,H)

22: else // at least one valid node was found
23: if C = MAXNODES then // chain is full
24: newH ← AllocInitHash(H,CHK,K)

25: if CAS(Next(CV R), (CV RN, valid), (newH, valid)) then
26: return FrontExpansion(K,H)

27: else
28: FreeHash(newH)

29: return FrontExpansion(K,H)

30: else // C 6= MAXNODES

31: newN ← AllocInitNode(K,H, V alid)

32: if CAS(Next(CV R), (CV RN, valid), (newN, valid)) then
33: return newN

34: else
35: FreeNode(newN)

36: R← NextRef(CV R)

37: if IsHash(R) then
38: return SearchInsertOnHash(K,H)

39: else
40: T ← 〈CV R,R,C,CHK〉
41: return SearchInsertOnChain(K,H, T)

42: else // R 6= H

43: return FrontExpansion(K,H)

at least, a valid node was found (lines 23–41). If no valid
nodes were found, then a new leaf node newN representing
K is allocated and properly initialized (line 16). Then, the
algorithm tries to insert K on the head of CV R by using a
CAS operation that updates it to newN (line 17). If the CAS
succeeds, newN was successfully inserted and the algorithm
ends by returning it (line 18). Otherwise, in case of CAS
failure, the head of CV R has changed in the meantime, so
the bucket entry is not empty anymore, and it calls back the
SearchInsertOnHash() algorithm (line 21).

Otherwise, at least one valid node was found, thus the
algorithm checks: (i) if the chain is full, or (ii) if the chain
can support another node. If the chain is full, then a new

hash level newH is allocated and properly initialized (line
24). Next, the algorithm applies a CAS operation on CV R,
trying to update its next reference to newH (line 25), and
executes the front-expansion operation (note that if the CAS
fails, that means that a front-expansion is already going on,
case in which it still moves to assist in it). Otherwise, if the
chain is not full, a new leaf node newN is created to hold
the key K, and the algorithm tries to insert newN in the head
of the chain (line 32). If the CAS succeeds, it returns newN
(line 33). Otherwise, in case of CAS failure, the algorithm
reads the next reference R in CV R (line 36). If R is a hash
level, the process is restarted in the same hash level H (line
38). Otherwise, R is a leaf node, and the process is restarted
in the same chain starting now from R (line 41).

Algorithm 3 shows the process of front-expansion. The al-
gorithm starts by obtaining the bucket entry B from where the
chain starts and by reading the reference R on the head of B
(lines 1–2). Next, it follows the chain of leaf nodes until it finds
a second hash level R (lines 3–4). If the second level hash R is
not immediately after H , that means that the front-expansion
operation has been already completed by others. Otherwise, if
the second level hash R is immediately after H , it calls the
AdjustNodesToSecondLevelHash() procedure (line 6), which
implements the remapping process of placing the valid nodes
on H in the correct bucket entries of R (as illustrated in Fig. 5).
We will not show the details about this procedure, since
it is quite similar to the SearchInsertOnChain() procedure.
In both scenarios, at the end, the algorithm calls again the
SearchInsertOnHash() procedure, thus restarting the process
of inserting the key K on H .

Algorithm 3 FrontExpansion(Key K, Hash H)
1: B ← GetBucket(H,Hash(K), ChunkId(H))

2: R← EntryRef(B)

3: while IsNode(R) do
4: R← NextRef(R)

5: if PrevHash(R) = H then
6: AdjustNodesToSecondLevelHash(H,R)

7: return SearchInsertOnHash(K,H)

Finally, Algorithm 4 presents the process of back-expansion
(for a better understanding, please remember the example
shown in Fig. 6). Note that the third argument NH represents
the hash level immediately after H , as called from Algorithm 1
at line 7.

Again, the algorithm starts by obtaining the bucket entry
B from where the chain starts and by computing the chunk
difference between K and the key representative of NH in
order to allocate and initialized a new hash level newH (lines
1–3). The bucket entry of newH corresponding to the key
representative of NH is then made to refer to NH (lines 4–
5). Next, the algorithm applies a CAS on the bucket entry
B trying to update NH to newH (line 6). If the CAS
succeeds, then the algorithm tries to update the previous field
from NH to refer to the new hash level newH using a
second CAS operation and, in the continuation, it calls the

Algorithm 4 BackExpansion(Key K, Hash H, Hash NH)
1: B ← GetBucket(H,Hash(K), ChunkId(H))

2: CHK ← ChunkDiffer(K ⊕KeyRep(NH))

3: newH ← AllocInitHash(H,CHK,K)

4: newB ← GetBucket(newH,Hash(KeyRep(NH)), CHK)

5: EntryRef(newB)← NH

6: if CAS(EntryRef(B), NH, newH) then
7: CAS(PrevHash(NH), H, newH)

8: return SearchInsertOnHash(K,newH)

9: else
10: FreeHash(newH)

11: return SearchInsertOnHash(K,H)

SearchInsertOnHash() procedure in order to restart the process
of inserting the key K but now on the new hash level newH
(lines 7–8). Note that if this second CAS operation (at line 7)
fails, that means that another back-expansion operation was
executed in the meantime, leading to the insertion of another
hash level between newH and NH . In such case, the update
of the previous field of NH is of the responsibility of this
back-expansion in between. Otherwise, if the CAS at line 6
fails, that means that another back-expansion succeeded in the
meantime and in such case the process is restarted by calling
again the SearchInsertOnHash() algorithm with K and H .

V. PERFORMANCE ANALYSIS

This section presents experimental results comparing our
design with other state-of-the-art concurrent hash map designs.
The environment for our experiments was a SMP (Symmetric
Multi-Processing) system, based in a NUMA (Non-Uniform
Memory Access) architecture with 32-Core AMD Opteron
(TM) Processor 6274 (2 sockets with 16 cores each) with
32GB of main memory, each processor with caches L1,
L2 and L3 respectively with sizes of 64KB, 2048KB and
6144KB, running the Linux kernel 3.18.6-100.fc20.x86 64
with Oracle’s Java Development Kit jdk-10.0.1.

Although our design is platform independent, we have
chosen to make its first implementation in Java, mainly for
two reasons: (i) rely on Java’s garbage collector to reclaim
invisible/unreachable data structures; and (ii) easy comparison
against other hash map designs. Some of the best-known hash
map implementations currently available are already imple-
mented in the Java library, such as the Concurrent Hash Maps
(CHM) and the Concurrent Skip-Lists (CSL) from the Java’s
concurrency package. Additionally, we will be comparing our
design against Prokopec et al. CTries (CT)1, a non-blocking
concurrent hash trie design based on shared-memory single-
word CAS instructions [12], [13]. The CTries introduce a non-
blocking, atomic constant-time snapshot operation, which can
be used to implement operations requiring a consistent view
of a data structure at a single point in time.

We have ran our design with a threshold value of 3 chain
nodes for the hash collisions, 16 buckets entries per hash level,

1Downloaded on January 18, 2016 from https://github.com/romix/
java-concurrent-hash-trie-map/tree/master/src/main/java/com/romix/scala/
collection/concurrent

and with two configurations, the original design (as presented
in [11]) and the new design with sorted keys. In what follows,
we will name such designs as Free Fixed Persistent Hash
Map (FFP) and those two configurations as FFPO and FFPS ,
respectively. To put all the designs in perspective, Table I
shows how they support/implement the features of: (i) use
fixed size data structures; (ii) maintain the access to all internal
data structures as persistent memory references; (iii) be lock-
free; and (iv) store sorted keys.

TABLE I
FEATURES SUPPORTED BY THE DESIGNS EVALUATED

Features / Designs CHM CSL CT FFPO FFPS

Fixed size structures 7 - 3 3 3
Persistent references 7 3 7 3 3
Lock-freedom 7 7 3 3 3
Sorted Keys 7 3 7 7 3

A. Experimental Results

For the experiments, we developed a testing environment2

containing different benchmark sets of 3 ∗ 106 randomized
items, with each set divided in four different operations: (i)
insertion of new items; (ii) removal of items; (iii) search for
existing items (i.e., to be found); and (vi) search for missing
items (i.e., to be not found). To spread threads among a set
S items, we divide the size of S by the number of running
threads and place each thread in a position within S in such
a way that all threads perform the same number of different
operations on S. For the remove and search for existing items
operations, the corresponding items are inserted beforehand
and without counting to the execution time. To warm up
the Java Virtual Machine, we ran each benchmark 5 times
beforehand and then we took the average execution time of
the next 20 runs. Table II shows the results obtained for the
CHM, CSL, CT, FFPO and FFPS designs using six benchmark
sets that vary in the percentage of concurrent operations to
be executed. The 1st benchmark only performs inserts, the
2nd only removes, and the 3rd only searches for existing
items. The remaining benchmarks perform mixed operations
with different percentages of inserts, removes and searches.
For each benchmark, Table II shows the execution time, in
milliseconds, and speedup ratio for 1, 8, 16, 24 and 32 threads.

Analyzing the general picture of the table, one can observe
that, for these benchmarks, each design has it own advantages
and disadvantages, i.e., there is no single design that over-
comes all the remaining designs. For the execution times, the
table shows a clear trade-off balance between the concurrent
insertion, removal and search of items. The designs with the
best execution times in the concurrent insertions are not so
good in the concurrent removals and the same happens with
the concurrent searches of items.

When the weight of insertions is high, as in the 1st and
5th benchmarks, the FFPS design shows the best base times,
i.e., with one thread. However, as we increase the number of

2Available from https://github.com/miar/ffps

TABLE II
EXECUTION TIME, IN MILLISECONDS, FOR THE EXECUTION WITH 1, 8, 16, 24 AND 32 THREADS AND THE CORRESPONDING SPEEDUP RATIOS AGAINST 1

THREAD, FOR SIX BENCHMARK SETS USING DIFFERENT RATIOS FOR THE NUMBER OF CONCURRENT INSERT, REMOVE AND SEARCH OPERATIONS (FOR
EACH CONFIGURATION, THE BEST EXECUTION TIMES AND SPEEDUPS ARE IN BOLD)

Threads Execution Time (ETp) Speedup Ratio (ET1
/ETp)

(Tp) CHM CSL CT FFPO FFPS CHM CSL CT FFPO FFPS

1st – Insert: 100% Remove: 0% Search (existing items): 0% Search (missing items): 0%
1 1,166 2,079 3,285 1,304 1,019
8 771 560 745 398 697 1.51 3.71 4.41 3.28 1.46

16 729 348 573 313 608 1.60 5.97 5.73 4.17 1.68
24 913 298 588 366 623 1.28 6.98 5.59 3.56 1.64
32 869 276 531 317 765 1.34 7.53 6.19 4.11 1.33

2nd – Insert: 0% Remove: 100% Search (existing items): 0% Search (missing items): 0%
1 385 2,983 4,178 2,174 1,067
8 105 905 607 470 633 3.67 3.30 6.88 4.63 1.69

16 104 525 452 350 294 3.70 5.68 9.24 6.21 3.63
24 102 447 436 424 428 3.77 6.67 9.58 5.13 2.49
32 101 455 334 343 191 3.81 6.56 12.51 6.34 5.59

3rd – Insert: 0% Remove: 0% Search (existing items): 100% Search (missing items): 0%
1 198 2,715 2,043 977 327
8 79 451 359 196 151 2.51 6.02 5.69 4.98 2.17

16 82 319 228 163 171 2.41 8.51 8.96 5.99 1.91
24 94 325 196 172 174 2.11 8.35 10.42 5.68 1.88
32 90 409 230 162 170 2.20 6.64 8.88 6.03 1.92

4th – Insert: 0% Remove: 0% Search (existing items): 50% Search (missing items): 50%
1 135 1,874 1,258 815 288
8 55 301 241 142 102 2.45 6.23 5.22 5.74 2.82

16 59 201 180 107 96 2.29 9.32 6.99 7.62 3.00
24 66 202 142 113 110 2.05 9.28 8.86 7.21 2.62
32 70 252 161 103 89 1.93 7.44 7.81 7.91 3.24

5th – Insert: 50% Remove: 0% Search (existing items): 25% Search (missing items): 25%
1 832 3,717 2,736 1,259 786
8 688 539 493 272 396 1.21 6.90 5.55 4.63 1.98

16 475 341 301 238 351 1.75 10.90 9.09 5.29 2.24
24 519 295 261 222 390 1.60 12.60 10.48 5.67 2.02
32 395 307 236 135 573 2.11 12.11 11.59 9.33 1.37

6th – Insert: 20% Remove: 10% Search (existing items): 35% Search (missing items): 35%
1 505 3,709 2,457 996 497
8 183 566 396 206 270 2.76 6.55 6.20 4.83 1.84

16 88 334 250 145 310 5.74 11.10 9.83 6.87 1.60
24 106 283 247 185 271 4.76 13.11 9.95 5.38 1.83
32 96 298 244 146 187 5.26 12.45 10.07 6.82 2.66

threads, it is not able to scale properly, showing a scalability
ratio in line with the CHM design. The other three designs,
CSL, CT and FFPO, start from worst base times but are
able to scale better as we increase the number of threads.
Comparing with FFPO, FFPS achieves better results for one
thread because FFPO uses a hash function that consumes
chunks of 4 bits (24 = 16 buckets entries per level) from
the lowest to the highest bits, while the FFPS design has a
hash function that disperses better the keys among the hash
levels, once it uses a xor operation to detect where the keys
differ from the highest to the lowest bits, which can potentially
lead to an average small number of hash levels (trie depth).
On the other hand, for the remaining thread launches, i.e.,
with more than one thread, FFPS is more suitable to cache-
misses in a concurrent environment. This is because the FFPS

design implements a hash header that has more fields than the
one used in FFPO requiring reading the chunk identifier and
the hash representative when traversing a hash level, while in
the FFPO design these fields do not exist. Also, the previous
field can be updated concurrently in FFPS , while in the FFPO

design it remains unchangeable.

On the other hand, when the weight of removals is high,
as in the 2nd benchmark, or when the weight of search
operations is high, as in the 3rd and 4th benchmarks, the
FFPS design achieves the second best results, being only
overcome by the CHM design. In the 3rd benchmark, the
difference between FFPS and CHM remains stable, while in
the 2nd and 4th benchmarks the difference tends to decrease,
as we increase the number of threads. In these benchmarks,
most of the time is spent traversing the hash trie, and this is
where the FFPS design shows its advantages compared to the
other designs and, in particular, compared to CSL, the other
design also supporting sorted keys. Comparing with FFPO,
the FFPS design shows better results, meaning that it seems
quite effective in avoiding traversing so many hash levels.

Regarding scalability, in general, the CSL and CT designs
show the best speedup ratios. This mostly happens because
they also show the worst base times, generally. The FFPO

design consistently has better speedups than FFPS , which
again can be partially explained by the worst base times of
FFPO. Compared to CHM, FFPS shows similar speedups.

B. Scalability Issues

One can observe that all designs seem to have scalability
problems, once the best speedup of all experiments is only
13.11 (obtained for the CSL design with 24 threads on
the 5th benchmark). Additionally, the lowest base execution
time is often associated with the lowest speedup ratio. For
example, on the 3rd benchmark, where threads execute read-
only operations, the speedups of the CHM and FFPS designs
are consistently very low.

To better understand these results, one must remember that
the environment for our experiments was a SMP/NUMA based
architecture. A SMP system is a share everything system
where multiple processors are working under the supervision
of a single operating system and all processors access memory
using a common bus or inter-connect path. This means that,
as we increase the number of processors in the computation,
the bus becomes overloaded which can result in a performance
bottleneck. NUMA tries to mitigate the burden of the main bus
by adding intermediate levels of memory shared among some
of the processors so that several data accesses do not need
to travel on the main bus. However, on applications that have
irregular data requests, the efficiency of the intermediate levels
of memory is lower and in some situations can even have a
negative impact in the performance. These SMP/NUMA bot-
tlenecks are analyzed in detail in Drepper’s work [14], where
Drepper describes how data flows between processors, bus
and memory controllers and shows benchmarks that present a
clear performance degradation. For example, Drepper presents
a read-only benchmark that has a performance degradation of
34% on the number of cycles required to satisfy data requests
when using four threads against using one thread only.

Unfortunately, since applications using hash designs have
irregular data requests, the probability of using intermediate
levels of memory to satisfy data requests is not as high as
expected. Thus, the higher the number of levels in a hash
design the higher the probability of cache-misses. As an
additional experiment for the search operation, we measured
the time that threads spent just in hash trie levels for the FFPS

design and we noticed that, if we subtract such time to the
overall execution time, we got execution times similar to those
of CHM. As further work, we plan to extend our design with
a compress-on-removal operation that compresses empty hash
levels, thus reducing the potential number of data requests.

VI. CONCLUSIONS & FURTHER WORK

We have presented a novel, simple and scalable hash map
design that fully supports the concurrent search, insert and
remove operations. To the best of our knowledge, this is the
first concurrent hash map design that puts together being lock-
free, using fixed size data structures and persistent memory ref-
erences with storing sorted keys, which we consider to be char-
acteristics that have the best trade-off between performance,
correctness and computational environment independence. Our
design can be easily implemented in any type of language,
library or within other complex data structures.

Experimental results show that our design is quite com-
petitive when compared against other state-of-the-art designs
implemented in Java, with particular emphasis on removal
and search operations, whenever most of the time is spent
traversing the hash trie levels.

As further work, we plan to: (i) extend the API of our design
to support the return of sets of keys, such as keys between
two threshold values; (ii) extend the design with an additional
compress-on-removal operation aimed to compress empty hash
levels; (iii) evaluate the performance of our design in different
architectures; and (iv) implement our design as an external
library in order to be easily included in bigger systems, such
as the Yap Prolog system [15], where the characteristics of our
design and, in particular, the possibility of storing sorted keys,
is a very important feature for the efficiency of the system.

ACKNOWLEDGMENTS

Work funded by ERDF through Project 9471-RIDTI and
the COMPETE 2020 Programme within project POCI-01-
0145-FEDER-006961, and by National Funds through the FCT
as part of project UID/EEA/50014/2013. Miguel Areias was
funded by the FCT grant SFRH/BPD/108018/2015.

REFERENCES

[1] P. Bagwell, “Ideal Hash Trees,” Es Grands Champs, vol. 1195, 2001.
[2] E. Fredkin, “Trie Memory,” Communications of the ACM, vol. 3, pp.

490–499, 1962.
[3] P. Tsigas and Y. Zhang, “Evaluating the performance of non-blocking

synchronization on shared-memory multiprocessors,” SIGMETRICS Per-
form. Eval. Rev., vol. 29, no. 1, pp. 320–321, 2001.

[4] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. O’Reilly, 2007.

[5] H. Sundell and P. Tsigas, “NOBLE: Non-blocking Programming Support
via Lock-free Shared Abstract Data Types,” SIGARCH Comput. Archit.
News, vol. 36, no. 5, pp. 80–87, 2009.

[6] “The java concurrency package (JSR-166).”
[7] D. E. Knuth, The Art of Computer Programming: Volume 3: Sorting

and Searching (2nd Ed.). Addison-Wesley Longman, 1998.
[8] J. Mauchly, Theory and Techniques for Design of Electronic Digital

Computers, 1946.
[9] E. F. Codd, “A relational model for large shared data banks,” Commu-

nications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.
[10] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,

V. W. Lee, S. A. Brandt, and P. Dubey, “Designing fast architecture-
sensitive tree search on modern multicore/many-core processors,” ACM
Trans. Database Syst., vol. 36, no. 4, pp. 22:1–22:34, 2011.

[11] M. Areias and R. Rocha, “Towards a Lock-Free, Fixed Size and Persis-
tent Hash Map Design,” in Proceedings of the International Symposium
on Computer Architecture and High Performance Computing Applica-
tions and Technologies (SBAC-PAD 2017), M. Valero and A. Melo, Eds.
Campinas, Brazil: IEEE Computer Society, October 2017, pp. 145–152.

[12] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky, “Concurrent
Tries with Efficient Non-Blocking Snapshots,” in ACM Symposium on
Principles and Practice of Parallel Programming. ACM, 2012, pp.
151–160.

[13] A. Prokopec, “Cache-tries: Concurrent lock-free hash tries with
constant-time operations,” in Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’18. New York, NY, USA: ACM, 2018, pp. 137–151.

[14] U. Drepper, “What Every Programmer Should Know About Memory -
Version 1.0,” Red Hat, Inc., Tech. Rep., 2007.

[15] V. Santos Costa, R. Rocha, and L. Damas, “The YAP Prolog System,”
Journal of Theory and Practice of Logic Programming, vol. 12, no. 1
& 2, pp. 5–34, 2012.

