
Memory Reclamation Methods for
Lock-Free Hash Tries

Pedro Moreno and Miguel Areias and Ricardo Rocha
CRACS & INESC TEC, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
Email: {pmoreno,miguel-areias,ricroc}@dcc.fc.up.pt

Abstract—Hash tries are a trie-based data structure with
nearly ideal characteristics for the implementation of hash maps.
Starting from a particular lock-free hash map data structure,
named Lock-Free Hash Tries (LFHT), we focus on solving
the problem of memory reclamation without losing the lock-
freedom property. We propose an approach that explores the
characteristics of the LFHT structure in order to achieve efficient
memory reclamation with low and well-defined memory bounds.
Experimental results show that our approach obtains better
results when compared with other state-of-the-art memory recla-
mation methods and provides a competitive and scalable hash
map implementation, if compared to lock-based implementations.

Index Terms—Memory Reclamation, Lock-Freedom, Hash
Maps, Hazard Pointers.

I. INTRODUCTION

The traditional approach to synchronize access to critical
sections is to use blocking primitives, such as, mutexes or
semaphores. An algorithm is non-blocking if failure or sus-
pension of any thread cannot cause failure or suspension of
another thread. In general, non-blocking algorithms use atomic
read-modify-write primitives, the most notable of which is the
CAS instruction. A non-blocking algorithm is also lock-free if
there is guaranteed system-wide progress, i.e., there is no per-
thread progress guarantee (individual threads can starve) but it
is guaranteed that at least one thread progresses in some well-
defined number of steps, regardless of the scheduling policy.

There are multiple implementations of lock-free data struc-
tures, but most of them are not entirely usable in a lock-free
manner, as they delegate the task of memory reclamation to a
garbage collector. This is a problem as it avoids portability to
environments where a garbage collector is not available or, if
available, it is not lock-free. This leads to the loss of the overall
lock-freedom property, as one of the pieces does not have
the property. On the other hand, many memory reclamation
schemes were developed for general lock-free data structures.

This work is funded by Project 9471 – Reforçar a Investigação, o De-
senvolvimento Tecnológico e a Inovação – and by the European Regional
Development Fund (ERDF) within project POCI-01-0145-FEDER-016844,
and by National Funds through the Portuguese Foundation for Science and
Technology (FCT) within project UID/EEA/50014/2019. Miguel Areias is
funded by the FCT grant SFRH/BPD/108018/2015.

However, some are not lock-free themselves [1]–[3] or not
compatible with all lock-free data structures [4]–[7].

The memory reclamation of removed elements on a lock-
free data structure is not as simple as in a lock-based one. To
ensure lock-freedom, we need to allow concurrent accesses
to the elements on the data structure and, as such, we
cannot guarantee that an element is not being accessed by
other threads at the moment it is removed. Overcoming this
limitation requires sophisticated methods to postpone, dele-
gate and determine when the reclamation may occur. These
methods should also offer some guarantees on performance
and memory usage bounds while keeping the lock-freedom
property. For example, if the memory reclamation method is
not able to reclaim the removed elements (i.e., progress) at
the same rate as they are removed from the data structure,
we may end up with unbounded memory consumption. In this
work, we focus on extending a sophisticated implementation
of a lock-free hash map data structure, named Lock-Free Hash
Tries (LFHT) [8], to support efficient memory reclamation in
a lock-free manner. The LFHT implements a hash map that
settles for a hierarchy of hash tables instead of a monolithic
expanding one, granting it good latency and throughput char-
acteristics. Additionally, we propose a novel method based
on the idea of using a hazard hash and a hazard level to
represent, respectively, a path and a level in LFHT’s hierarchy.
This results in a small and well-defined portion of memory
being protected from reclamation by every thread, and in
fewer updates done on such hazard pairs during an operation.
The resulting lock-free memory reclamation method, which
we named Hazard Hash and Level (HHL), achieves lower
synchronization overhead than any of the state-of-the-art lock-
free memory reclamation methods, while providing very well-
defined and flexible memory bounds.

Experimental results show that LFHT with the HHL method
is able to achieve performance and scalability results surpass-
ing current lock-based implementations, such as the concurrent
hash map design in Intel’s TBB library [9]. We also show
that the current state-of-the-art based methods cause extreme
performance degradation on high throughput data structures,
such as LFHT. This is caused by their inherent need for
updating global information accessed frequently by all threads,
which is not the case in the HHL method.978-1-7281-4194-7/19/$31.00 ©2019 IEEE

II. BACKGROUND

To motivate for the problem of lock-free memory reclama-
tion, we start by introducing, as an example, Harris’ lock-free
linked list [10] for storing key/value pairs that is implemented
as follows. Each node in the list consists of a key, a value
associated with the key, a reference to the next node in the
chain and a flag with the state of the node, which can be valid
(V) or invalid (I). The flag is considered to be embedded in
the next node reference (often the least significant bit of the
reference, as it does not store any information due to memory
alignment). The list begins with a special header node H ,
which references the first node on the list. To mark the end of
the list, the last node references back to the header node H .

K3V IK1 K2 IH

Fig. 1: Node states

During its lifetime, a node
can be in one of the following
states: valid, invalid, unreach-
able or reclaimable. Fig. 1
shows a possible configuration
illustrating these states. Node K1 is considered valid because
it is reachable from the header node H and its flag is set to
valid (V). Node K3 is considered invalid since it is reachable
but its flag is set to invalid (I). Finally, node K2 is considered
unreachable (i.e., logically removed from the list) since it is not
reachable from H . An unreachable node is always an invalid
node. Despite node K2 being unreachable, some threads may
still have local references to it, as a result of reaching K2
before it was made unreachable. When it is determined that
there are no longer references to an unreachable node by any
thread, then it is safe to physically reclaim the node’s memory.
A node in this state is considered reclaimable.

remove node

T2

T3

T4

invalid reclaimableunreachable

T1

Fig. 2: Node states after removal

Fig. 2 shows how
the remove operation
changes a node state.
First, the node is made
invalid by changing
its flag from V to
I , which informs the
other threads that the
node is being removed from the list. Next, the node is logically
removed from the list by updating the corresponding next
on chain reference of the previous valid node, which makes
the node unreachable for the upcoming threads accessing the
list. After these two steps, the node is considered removed
and the remove operation ends by adding it to a local/global
reclamation queue. In general, the reclamation procedure
begins when the amount of nodes in a reclamation queue
reaches a threshold. That threshold can be tuned in order to
exchange memory usage by execution time.

The problem arises in deciding when a node in a recla-
mation queue becomes reclaimable, i.e., when no thread has
a reference to it. This can happen after the node was made
unreachable and until the end of the last operation, that started
before the node was made unreachable, finishes. From this
point forward, it is impossible for any other thread to have
a reference to the node, making it certain to be reclaimable

after this point. This is the case of thread T4 in Fig. 2, which
started its operation after the node was made unreachable.

There are two main methodologies to determine if a node
can be reclaimed, one is to use the order of events in time,
another is to track the spacial location of threads. For time
based methods, a quiescent state is a moment in time where a
thread has no access to shared resources and a grace period is
a period of time in which all threads have been in at least one
quiescent state. When a node is made unreachable, we can be
certain that, after a grace period has elapsed, no thread still
references it. Based on this idea, some well-know methods
to establish relative temporal orders between events are the
usage of global epochs [1] or Lamport clocks [11]. A general
problem with these methods is that the starvation of a single
thread prevents the occurrence of grace periods, which can
prevent unbounded amounts of memory from being reclaimed.
In space based methods, hazard pointers [5] are shared vari-
ables that hold pointers to shared resources currently in use
by a thread. They are used to inform the other threads of
what data structures are being accessed by a thread and that
thus cannot be reclaimed by others. Hazard pointers usually
imply a significant overhead caused by threads having to share
their location every time they move on the data structure.
More recent methods, such as Hazard Eras [7] and Drop the
Anchor [6], use mixed methodologies to guarantee bounds on
the amount of irreclaimable memory and low overheads.

III. LOCK-FREE HASH TRIES

The LFHT data structure has two kinds of nodes: hash
nodes and leaf nodes. The leaf nodes store key/value pairs
and the hash nodes implement a hierarchy of hash levels of
fixed size 2w. To map a key/value pair (k,v) into this hierarchy,
we compute the hash value h for k and then use chunks of
w bits from h to index the appropriate hash node, i.e., for
each hash level Hi, we use the ith group of w bits of h
to index the entry in the appropriate bucket array of Hi. To
deal with collisions, the leaf nodes form a linked list in the
respective bucket entry until a threshold is met and, in such
case, an expansion operation updates the nodes in the linked
list to a new hash level Hi+1, i.e., instead of growing a single
monolithic hash table, the hash trie settles for a hierarchy
of small hash tables of fixed size 2w. Fig. 3 shows how the
insertion of nodes is done in a hash level.

K3

(c)

.
.
.

Hi

.
.
.

V V

(b)

.
.
.

(a)

Prev

K1

.
.
.

Prev

.
.
.

Bk
entries

Hi

V K1 K2
w

Hi

2

Prev

V

.
.
.

Bk Bk

Fig. 3: Insertion of nodes in a hash level

Fig. 3a shows the initial configuration for a hash level. Each
hash level is formed by a hash node Hi, which includes a
bucket array of 2w entries and a backward reference Prev to
the previous hash level, and by the corresponding chain of
nodes per bucket entry. Initially, all bucket entries are empty.
In Fig. 3, Bk represents a particular bucket entry of Hi. A

bucket entry stores either a reference to a hash node (initially
the current hash node) or a reference to a separate chain of
leaf nodes, corresponding to the hash collisions for that entry.
Fig. 3b shows the configuration after the insertion of node K1
on Bk and Fig. 3c shows the configuration after the insertion
of nodes K2 and K3. A leaf node holds both a reference to a
next-on-chain node and a flag with the condition of the node,
which can be valid (V) or invalid (I).

When the number of valid nodes in a chain reaches a given
threshold, the next insertion causes the corresponding bucket
entry to be expanded to a new hash level. Fig. 4 shows how
nodes are remapped in the new level. The expansion operation
starts by inserting a new hash node Hi+1 at the end of the
chain with all its bucket entries referencing Hi+1 and the Prev
field referencing Hi (as shown in Fig. 4a). From this point on,
new insertions will be done on the new level Hi+1 and the
chain of leaf nodes on Hi will be moved, one at a time, to
Hi+1. Fig. 4b and Fig. 4c show how node K3 is first mapped
in Hi+1 (bucket Bn) and then moved from Hi (bucket Bk).
It also shows a new node K4 being inserted simultaneously
by another thread. When the last node is expanded, the bucket
entry in Hi references Hi+1 and becomes immutable (Fig. 4d).
Immutable fields are represented with a white background.

(c) (d)

(a) (b)

K3

.
.
.

Hi+1

Bk

.
.
.

Hi

.
.
.

V VK1 K2

Prev Prev

V

.
.
.

Hi+1

K3

.
.
.

Hi

.
.
.

K2

Prev

V

VV

Prev

K1

K4 V

.
.
.

Hi+1

K3

.
.
.

Hi

.
.
.

K1 K2

Prev

VV

V

Prev

.
.
.

Hi+1

K3

.
.
.

Hi

.
.
.

Prev

V

V V

Prev

K2

VK1

K4

Bm

Bk Bk

Bk

Bm

BmBm

Bn Bn

BnBn

Fig. 4: Expansion of nodes in a hash level
Next, Fig. 5 shows an example illustrating how a node is

removed from a chain. The remove operation can be divided
in two steps: (i) the invalidation of the node (shown in Fig. 5a)
and (ii) making the node unreachable (shown in Fig. 5b). The
invalidation step starts by finding the node N we want to
remove and by changing its flag from valid (V) to invalid (I).
If the flag is already invalid, it means that another thread is
also removing the node and, in such case, nothing else needs
to be done. Next, to make the node unreachable, first we need
to find the next valid node A on the chain (note that it can be
the hash node corresponding to the level N is at). Then, we
continue traversing the chain until we find a hash node H (if
we have not yet). If H is the same hash node we have started
from, we traverse again the chain until we find the last valid
node B before N (or we consider the bucket entry if no valid
node exists). If, while searching for B we do not find node N ,
it means that N has already been made unreachable and our
job is done. Otherwise, we just need to change the reference
of B to A. This is shown in Fig. 5b, where K1 refers to K3.

If H is not the same hash node we have started from,

K3

.
.
.

Hi

.
.
.

V IK1 K2

Prev

VK3Bk

.
.
.

Hi

.
.
.

V IK1 K2

Prev

V

(a) (b)

Bk

Fig. 5: Removal of nodes in a hash level

this means that a concurrent expansion is happening simul-
taneously and we restart the process in the next level (note
that node N could either have been expanded before we
have invalidated it or is currently in the process of being
expanded). In the case N has been expanded before we made
it invalid, we will be able to make it unreachable in the next
level. Otherwise, if N is in the process of being expanded,
we do not need to make it unreachable, as the expanding
thread will not expand it or will make it unreachable, if it
only sees N as invalid after completing its expansion. In this
situation, the thread doing the expansion becomes responsible
for making the node unreachable. The process of transferring
this responsibility to the expanding thread is called delegation.

IV. PROBLEM DEFINITION & CHALLENGES

By default, all the state-of-the-art memory reclamation
methods rely on the fact that an element being removed
from a data structure is left in an unreachable state when the
remove operation terminates. However, in the original design
of the LFHT data structure, a node is not guaranteed to be
unreachable at the end of the remove operation, if a concurrent
expansion is happening simultaneously and the task of making
the node unreachable was delegated to the expanding thread.

remove node

T2

T3

T4

invalid reclaimableunreachable

T1

expansion

Fig. 6: Node states during expansion

Fig. 6 illustrates how
an expansion operation
can change the mo-
ment where a node
is considered unreach-
able and reclaimable.
In particular, the as-
sumption that a thread
starting after the end of the remove operation cannot have a
reference to the removed node is not valid anymore. This is
the case of thread T4 in Fig. 6, which started its operation
after thread T1 finished the remove operation, but before the
node was made unreachable by the expanding thread T2. In
this scenario, a node can become reclaimable later than what
would be expected if no delegation happened. Avoiding this
delegation mechanism is not possible since T2 can always
reinsert the node in the new hash level before realizing that it
was marked as invalid and made unreachable. Fig. 7 illustrates
this situation in more detail.

The problem resides exclusively in the case where a thread
T1, doing an expansion, reads a valid node K3 and, before
changing the corresponding bucket reference in the new level
Hi+1 in order to expand K3 (Fig. 7a), another thread T2
is able to invalidate K3 (Fig. 7b) and make it unreachable
(Fig. 7c). As the removing thread T2 does not interfere with
the reference in Hi+1, the expanding thread T1 can succeed

(a)

(d)

.
.
.

Hi+1

K3

.
.
.

Hi

.
.
.

K2

Prev

I

VV

Prev

K1

K3

.
.
.

Hi+1

Bk

.
.
.

Hi

.
.
.

V VK1 K2

Prev Prev

V

(c)

K3

.
.
.

Hi+1

.
.
.

Hi

.
.
.

V VK1 K2

Prev Prev

I

(b)

K3

.
.
.

Hi+1

.
.
.

Hi

.
.
.

V VK1 K2

Prev Prev

I

Bm

Bn

Bk

Bk

Bk

Bm

Bn

Bm

Bn

Bm

Bn

Fig. 7: Reinsertion of an invalid node during expansion

in updating the bucket reference Bn in Hi+1 to K3 and
effectively reinsert K3 making it reachable again (Fig. 7d).

To apply the state-of-the-art reclamation methods to LFHT
we need to avoid the problem and guarantee that a node
becomes (permanently) unreachable within the execution of
the corresponding remove operation. Our approach was to
change the remove operation when a node N is being marked
as invalid in a chain that is being expanded (i.e., before making
N unreachable). The idea is to search for the spot where
N would be expanded to and mark that spot with a special
tag. That tag would cause the CAS done by the expanding
thread to fail and thus avoid N from being reinserted. The
expanding thread would then verify that N was made invalid
in the meantime and skip its expansion. This method was
implemented and tested extensively without showing any
wrong results. However, there is a critical flaw that, under
very specific circumstances, can lead to nodes being reinserted
after being made unreachable. If multiple expansions occur
simultaneously in different hash levels of the same path, they
can be trying to expand different nodes into the same point and
thus overflow the tag and make the reinsertion of an invalid
node possible again. This tag overflow reflects what is known
as an ABA problem [12]. Since it is unlikely to happen in
practice, and this solution to the delegation problem does not
affect the performance of the data structure, we still used this
method for benchmarking purposes.

V. HAZARD HASH AND LEVEL APPROACH

Hazard pointers have good memory bounds in memory
reclamation, however they rely on thread synchronization
based in performing sequentially consistent atomic writes on
every node being traversed. Reducing this synchronization
overhead, while keeping good memory bounds, is a difficult
task and, to the best of our knowledge, there is not a good way
to merge nodes in well-defined groups and protect them with
a single hazard pointer. An interesting characteristic of LFHT
is that leaf nodes are already grouped in chains that have a
well-defined maximum size. Thus, instead of having a single
hazard reference to protect a single node, we have designed
a novel approach, named Hazard Hash and Level (HHL), that
is able to protect a well-defined group of leaf nodes. In this
novel approach, each thread maintains a special hazard pair
<HH, HL>, formed by a Hazard Hash (HH) and a Hazard
Level (HL), to indicate in which part of the data structure it is

positioned. HH represents a path in LFHT and HL represents
a portion of this path.

To implement the HHL approach, we had to extend the
original LFHT’s algorithms and data structures to ensure that
a thread cannot have access to nodes outside the portion of
the path defined by its current hazard pair. We now ensure the
following properties: (i) threads recovering from preemption
must progress to a valid data structure (hash node or leaf node)
within the same path; and (ii) no new nodes are inserted in
a path with an expansion in course. In the original design,
threads can be moved to a different path and recover by
moving in that path. In the new design, if a thread is moved
to a different path, it now returns immediately to the last
known hash node and recovers from that point. Also, in the
original LFHT design, the insert and expand operations have
the same priority, which means that they could be performed
concurrently in the same path. In the new design, it is given
a higher priority to the expand operation, such that threads
must collaborate to finish the undergoing expansions in a path,
before inserting new nodes. To implement these properties,
the following changes were made to the LFHT data structure:
(i) a bucket entry now includes a hash flag to indicate if it
stores a reference to a next level hash (the hash flag is part
of the atomic field that includes the reference); and (ii) a
leaf node now includes a generation field, indicating the hash
level where it was first inserted, and a level tag, indicating
the hash level where it is at the moment (the level tag is
part of the atomic field that also includes the validity flag
and the reference to the next-on-chain node). This means
that the state information of a leaf node is now given by
a generation field Gi and by an atomic tuple with three
arguments <NextNode, LevelTag, ValFlag>. For example, in
Fig. 8c, the value of the generation field for node K1 is G1,
meaning that it was inserted in the hash level H1, and the
value of the atomic tuple is <K3, 2, V>, meaning that it is
referring to node K3 (1st argument), it is in the hash level
H2 (2nd argument) and it holds a valid key (3rd argument).

Next, we describe the key ideas behind the HHL approach.
In a nutshell, it is based on the fact that each thread executing
on the LFHT data structure protects from reclamation a single
and well-defined chain of leaf nodes. Therefore, a leaf node
N can only be reclaimed if: (i) N is not in a protected chain;
and (ii) N has never been there in the past, as a thread could
have seen it there and still have a reference to it, despite the
fact that, in the meantime, N could have been expanded to a
deeper level. As discussed before, a node N being removed
is added to the thread’s local reclamation queue at the end
of the corresponding remove operation. We know that N was
invalidated during the remove operation, but we do not know
if it was made unreachable, since this process could have been
delegated to a thread doing a concurrent expansion. A delayed
delegation can further postpone the moment where N can be
considered reclaimable. To guarantee that the reclamation of
N is safe, the following information is required: (i) the hash
value corresponding to the key stored in N , which defines
the path where N could have been; (ii) the generation field,

which defines the entry point in that path; and (iii) the level
tag, that becomes immutable when N is invalidated and thus
defines the last hash level where N was in. The reclamation
process is then triggered when a local queue reaches a pre-
defined threshold number of nodes. The reclamation procedure
begins by reading the list of hazard pairs of all threads and
by copying them in a local data structure, much like as in the
hazard pointers method. However, for the HHL method, this
reading needs to be done twice and use the two copies of the
hazard pairs before performing any reclamation of memory
for a node. With only one read we cannot avoid the situation
where a thread T1 is not protecting N , when its hazard pair
is read, and then T1 accesses N before a second thread T2,
performing the delegation process, turns N unreachable. If the
hazard pair for T2 is read next, then it can happen that T2 is
not protecting N either. The second read of the list of hazard
pairs solves the problem because N is now unreachable and
thus the previous situation cannot happen again. After reading
twice the list of hazard pairs, a node N in the reclamation
queue cannot be reclaimed if it is protected by any hazard pair
<HH, HL>, i.e., if HH equals the hash value of N up to the
hazard level HL and if HL is between the generation and the
level tag of N . If such hazard pair exists, then the node is
kept in the reclamation queue. Otherwise, the thread removes
the node from its local queue and reclaims its memory.

Finally, we discuss the safe traversal of nodes in the HHL
approach. To guarantee that each thread protects the correct
chain of leaf nodes from reclamation, we take advantage of the
hash flag in the bucket entries, the level tag in the leaf nodes
and the knowledge that no node is inserted in a path being
expanded. We use the example in Fig. 8 to better illustrate
the key ideas of a safe traversal in the HHL approach. Fig. 8a
shows the initial state. Assume that a thread T reached the
hash level H1 and has updated its hazard level HL to refer to
H1. Assume also that T was preempted in node K1 before
reading the next-on-chain reference to K2. While preempted,
the configuration of the chain may change due to a concurrent
expansion. Later, to guarantee that when T resumes, it can
safely follow the reference in K1, one must ensure that the
reference is protected by HL. Next, we discuss three situations
that can occur once T resumes from preemption.

.
.
.

H1
.
.
.

V V
K1 K2

Prev

1 1
G1 G1Bk

(a)

K2

.
.
.

H1

.
.
.

V

.
.
.

H2
Prev

K1

Prev

2

2

V

G1

G1

Bm

Bn

Bk

(b)

K1

.
.
.

H1

.
.
.

V.
.
.

H2
Prev

K2

Prev

2

2

V

G1

G1

V
K3 2
G2

Bk

Bm

Bn

(c)

Fig. 8: Safe traversal of nodes in the HHL approach

The first situation is the case where the reference in K1 still
refers to K2 as shown in Fig. 8a. Since the level tag in K1
is the same as HL (1=1), T can safely follow the next-on-
chain reference to K2. The second situation is the case where
the reference in K1 changed due to a concurrent expansion
and it refers now to the hash node H2 as shown in Fig. 8b.
Since the level tag in K1 is now higher than HL (2>1), T
is able to detect the concurrent expansion. T then rereads the

reference in the bucket entry Bk in order to understand if the
expansion has already finished. As Bk is still referring to the
same level, T knows that the expansion is still undergoing and,
as no new nodes can be inserted during an expansion, T can
safely follow the reference in K1 to H2. The last situation
is the case where the reference in K1 also changed due to a
concurrent expansion and it refers now a different node K3
as shown in Fig. 8c. Since the level tag in K1 is again higher
than HL (2>1), T rereads the reference in Bk. However, in
this scenario, Bk refers to the next level H2, thus it is not
safe to follow its reference, since T can reach a node not
being protected by HL. T then restarts the traversal from the
reference in Bk instead of following the reference in K1.

In summary, when traversing a chain, T relies on the level
tag to know if an expansion is happening concurrently. If T
finds a level tag that is higher than the current hazard level
under protection and it knows that the level in which it started
the traversal has already been completely expanded, then T
should not follow any reference because it can reach a node
N not being protected by its hazard level.

VI. ALGORITHMS

This section discusses in more detail the key algorithms that
implement our proposal. We begin with Alg. 1 showing the
pseudo-code for the SearchKey() procedure that given a key,
returns the corresponding value associated with it.

Algorithm 1 SearchKey(key K)
1: UpdateHazardLevel(Level(ROOT HASH NODE))

2: UpdateHazardHash(K)

3: 〈N,H〉 ← SearchKeyOnHash(K,ROOT HASH NODE)
4: if N = Null then // leaf node not found
5: return Null
6: else
7: return V alue(N)

The algorithm starts by updating the corresponding hazard
pair, using the given key K and the level of the root hash
node, in order to inform the other threads that a new thread
is starting a traversal procedure (lines 1–2). Next, it calls the
SearchKeyOnHash() procedure to search for K within the hash
map, starting from the root hash node (line 3). At the end, it
returns the value associated with K or Null if no leaf node
N holding K was found (lines 4–7).

Alg. 2 then shows the pseudo-code for the SearchKeyOn-
Hash() procedure given a key K and a hash node H . The
SearchKeyOnHash() returns a tuple with two arguments – the
first argument N refers to the leaf node holding K and the
second argument H refers to the hash node that starts the chain
where N was found (in Alg. 1, this argument is not relevant
and could have been omitted). If K does not exist in the hash
map, SearchKeyOnHash() returns Null in the first argument.

The SearchKeyOnHash() algorithm begins by calling the
TraverseHashLevels() procedure to traverse the path of hash
levels associated with K (starting from the hash node H), until
reaching the first hash node NewH within that path that does
not refer to another hash node (line 1). This traversal returns

Algorithm 2 SearchKeyOnHash(key K, hash node H)
1: 〈NewH,N〉 ← TraverseHashLevels(K,H)

2: if H 6= NewH then // NewH references a deeeper hash level
3: UpdateHazardLevel(Level(NewH))
4: return SearchKeyOnHash(K,NewH)

5: else // H and NewH are the same
6: HL← GetHazardLevel()
7: if Level(H) = HL then // no expansion going on
8: B ← GetHashBucket(H,K)
9: else // check if expansion completed ...

10: B ← GetHashBucket(PrevHash(H),K)

11: if EntryRef(B) = 〈H,NextLevel〉 then // ... and restart
12: UpdateHazardLevel(Level(H))

13: return SearchKeyOnHash(K,H)

14: while N 6= H do
15: 〈NextN,LevelTag, V alF lag〉 ← NextRef(N)

16: if V alF lag = V alid ∧Key(N) = K then // leaf node found
17: return 〈N,H〉
18: if LevelTag > HL then // check if expansion completed ...
19: 〈NewH,F lag〉 ← EntryRef(B)

20: if Flag = NextLevel then // ... and restart
21: UpdateHazardLevel(Level(NewH))

22: return SearchKeyOnHash(K,NewH)
23: if IsHashNode(NextN)∧NextN 6= H then // new expansion
24: return SearchKeyOnHash(K,NextN)

25: N ← NextN
26: return 〈Null, 〉

also the reference N stored in the bucket entry within NewH
corresponding to K, i.e., N refers to the head of the chain of
nodes where the leaf node holding K could be found.

Next, if the given hash node H is different from NewH ,
that means that at least one level was traversed by the former
procedure, thus the executing thread updates its hazard level
and restarts the search in NewH (lines 2–4). This is necessary
to synchronize the update of the hazard level with the reference
N obtained from TraverseHashLevels(). Otherwise, H and
NewH are the same, thus the algorithm has the conditions to
proceed with the search for K (lines 6–26). Before proceeding
with the search, the executing thread T reads its current hazard
level HL (line 6) and checks if there is a concurrent expansion
going on (recall that a concurrent expansion can interfere with
the position of a thread by placing it in a deeper hash level).
If the level of H and HL are the same then, for the moment,
there is no expansion going on, thus T proceeds by computing
the bucket entry B for H (line 8). Otherwise, a concurrent
expansion was detected, which means that T is executing in
a hash node deeper than the current hazard level HL, thus T
gets the bucket entry B from the previous level and checks if
the expansion has been completed in the meantime, in which
case it updates the hazard level to protect the hash level H
and restarts the search from it (lines 11–13).

Finally, T traverses the chain of leaf nodes searching for K
(lines 14–25). To keep a safe traversal, the main idea is that
a next-on-chain reference is only followed if it is protected
by the hazard level HL. There are three possible scenarios
in this traversal: (i) K is found in a valid leaf node N and
the algorithm ends returning the tuple 〈N,H〉 (lines 16–17);
(ii) the full chain of leaf nodes is traversed and K is not

found, and the algorithm ends returning Null (line 26); or (iii)
an expansion has interfered somehow with the search (lines
18–24). Two types of interference can happen: (i) T reaches
a node with a LevelTag higher than the hazard level HL it
is protecting, case in which it rereads the bucket entry B to
check if the ongoing expansion has been completed in the
meantime, in order to update the hazard level and restart the
search as before (lines 18–22); or (ii) T reaches a new hash
node, meaning that a new expansion has started, case in which
T restarts the search from that node (lines 23–24).

Next, we present the procedure that supports the remove
operation. Alg. 3 shows the pseudo-code for the SearchRe-
moveKey() procedure that removes a given key K from the
data structure, if it exists. The algorithm also starts by updating
the corresponding hazard pair and by searching for K starting
from the root hash node (lines 1–3). If K is found in a leaf
node N , then a three-step removal process is done (lines 5–7).
First, the MakeInvalid() procedure marks the node as invalid
(it fails if another thread has already marked the node as
invalid). The MakeUnreachable() procedure (shown next in
Alg. 4) then proceeds trying to make N unreachable. Finally,
the AddToReclamationQueue() procedure adds N to the local
reclamation queue of the executing thread.

Algorithm 3 SearchRemoveKey(key K)
1: UpdateHazardLevel(Level(ROOT HASH NODE))

2: UpdateHazardHash(K)
3: 〈N,H〉 ← SearchKeyOnHash(K,ROOT HASH NODE)

4: if N 6= Null then // leaf node found
5: if MakeInvalid(N) then
6: MakeUnreachable(N,H)

7: AddToReclamationQueue(N)

8: return

To make a leaf node unreachable, Alg. 4 receives as
arguments the leaf node N and the hash node H where
N was last found. In a nutshell, the algorithm searches for
the valid nodes before and after N in the chain of nodes,
respectively BeforeN and AfterN in Alg. 4, in order to
bypass node N by chaining BeforeN to AfterN , thus
making N unreachable. In more detail, the algorithm begins
by calling the SearchLeafNodeOnHash() procedure to traverse
the chain of nodes (starting from H), looking if N is still
reachable (line 1). If N is already unreachable, it returns Null.
Otherwise, it returns the hash node that starts the chain where
N is found (which can be different from the initial H). While
traversing the hash levels, the SearchLeafNodeOnHash() pro-
cedure updates the hazard level similarly to the way presented
before for the SearchKeyOnHash() procedure.

In the continuation, if N is already unreachable, the Make-
Unreachable() procedure simply returns (lines 2–3). Other-
wise, it is ready to search for the valid nodes BeforeN
and AfterN . That process is done in three steps. First, find
AfterN starting from N (line 5). Second, find H starting
from AfterN (line 11). Third, find BeforeN starting from
H (line 15). If one of these three steps returns Null, then
it means that an expansion has interfered with the process,
cases in which the MakeUnreachable() procedure restarts, if

Algorithm 4 MakeUnreachable(leaf node N, hash node H)
1: H ← SearchLeafNodeOnHash(N,H)

2: if H = Null then // N is already unreachable
3: return
4: HL← GetHazardLevel()

5: AfterN ← GetV alidNodeAfter(N,H)

6: if AfterN = Null then
7: if HL = GetHazardLevel() then // delegation case
8: return
9: else // expansion completed in the meantime

10: return MakeUnreachable(N,H)

11: NewH ← GetNextHashNode(AfterN,H)
12: if NewH = Null then
13: ... // same as lines 7–10
14: H ← NewH
15: 〈BeforeN,OldRef〉 ← GetV alidNodeBefore(N,H)

16: if BeforeN = Null then // N is already unreachable
17: return
18: if IsLeafNode(BeforeN) then
19: Address← NextRef(BeforeN)

20: NewRef ← 〈AfterN,Level(H), V alid〉
21: else // bucket entry
22: Address← EntryRef(BeforeN)
23: NewRef ← 〈AfterN, SameLevel〉
24: if CAS(Address,OldRef,NewRef) then // try to bypass N
25: return
26: else // CAS failed
27: return MakeUnreachable(N,H)

the interfering expansion completed in the meantime (line 10),
or returns, either because the process of making N unreachable
will be delegated to the interfering expansion (line 8) or
because N is already unreachable (line 17). If all three steps
are successful, the algorithm begins the process of trying to
bypass N . A successful bypass means that a CAS operation
(line 24) is successfully executed in the corresponding address
of BeforeN . If the CAS fails, the bypass was unsuccessful
and the unreachability process restarts (line 27).

VII. EXPERIMENTAL RESULTS

The environment for our experiments was a machine with
2x16-Core AMD Opteron - 6274 with 32GB of main memory,
running the Linux kernel 3.18.fc20 with the memory allocator
jemalloc-5.0. By default, we used the LFHT data structure
with a configuration of 24 bucket entries per hash node, a
threshold of 3 for the chain node size and a threshold of 28

for the reclamation queue. Finally, we used a fixed size of 107

operations and the execution time is the average of 5 runs. To
put the results in perspective, we compared the HHL method
with three other approaches that we also implemented:
OF (Optimistic Free) implements an optimistic approach

where each thread has a private and big enough reclama-
tion ring buffer that fills with the nodes being removed.
Each time it goes around, it reclaims the memory for
the nodes in the buffer entries, before refilling them with
newly removed nodes. Despite incorrect, this approach
represents a best-case scenario for memory reclamation.

GPE (Grace Periods with Eras) implements a grace period
method based on eras on top of our approach with the

ABA problem. It uses a global clock that is atomically
incremented at every removal and a local clock that every
thread updates to the global clock at each quiescent state
(which is declared at every operation).

GPL (Grace Periods with Lamport clocks) implements a
grace period method on top of our approach with the
ABA problem, but using Lamport clocks. At a quiescent
state (declared at every operation), each thread reads all
of the other threads’ clocks and updates its own with the
maximum value read plus one.

Fig. 9 shows the execution time for the OF, GPE, GPL and
HHL approaches when running four benchmarks with different
ratios of insert, search and remove operations and a number of
threads from 1 to 32. To better show the overhead implied by
each method, all results are normalized to the OF approach.

For the benchmark with inserts only (Fig. 9a), the GPE
approach behaves very closely to ideal, as the global clock
is never updated, resulting in almost no synchronization for
the memory reclamation done in practice. The same happens
for the HHL approach, since the hazard pairs are never
synchronized between threads. For the remaining benchmarks
(Fig. 9b to Fig. 9d), one can observe a heavy degradation
on both grace period methods, while HHL remains almost
stable. This is explained by the synchronization required per
quiescent state declared, which happens once per insert, search
or remove operation. The reason to compare with the GPE and
GPL methods was the fact that they map to the state-of-the-
art Hazard Eras and Drop the Anchor methods. The Hazard
Eras method follows our GPE method for clock management
but, instead of doing the equivalent of a quiescent state at
every operation, it does so at every node traversed in order to
guarantee a memory bound. Similarly, the Drop the Anchor
method follows our GPL method for clock management, but
adds procedures for anchor maintenance and recovery, in order
to guarantee a memory bound. As such, if any of these
methods were fully implemented, they would achieve, at best,
a similar performance to the one obtained with the GPE and
GPL approaches. We argue that any method based on grace
periods that requires at least one quiescent state per operation,
would not be competitive with our HHL method in workloads
that require a non trivial amount of remove operations. In
Fig. 9c, we can observe that just 5% of insertions and removals
is enough to more than double the execution time with 32
threads, if comparing HHL with the best grace period method.

Next, Fig. 10 compares throughput (in operations per sec-
ond) between the LFHT with the HHL memory reclamation
method and the lock-based concurrent hash maps design from
the TBB library [9]. We used the LFHT data structure with a
configuration of 24 and 28 bucket entries per hash level node,
which we named HHL 4 and HHL 8, respectively.

In a nutshell, both HHL 4 and HHL 8 approaches scale
well in all benchmarks, while TBB shows some limitations
in the benchmarks performing inserts and/or removes. For
the benchmark with mostly searches (Fig. 10c), the results
are very competitive but, even so, HHL 8 is still better
than TBB. For the benchmarks mainly with inserts and/or

(a) inserts only (100–0–0) (b) removes only (0–0–100) (c) mostly searches (5–90–5) (d) half searches (25–50–25)

Fig. 9: Execution time normalized to the OF approach (lower is better) for the OF, GPE, GPL and HHL approaches when
running four benchmarks with different ratios (Ri–Rs–Rr) of insert, search and remove operations

(a) inserts only (100–0–0) (b) removes only (0–0–100) (c) mostly searches (5–90–5) (d) half searches (25–50–25)

Fig. 10: Throughput in operations per second (higher is better) for the HHL and TBB approaches when running four benchmarks
with different ratios (Ri–Rs–Rr) of insert, search and remove operations

removes, TBB suffers from a heavy performance degradation.
In particular, for the benchmarks with 0% of searches (Fig. 10a
and Fig. 10b), TBB does not scale when exposed to around
5 × 106 modification operations per second independently
of the number of threads used, while HHL is able to scale
almost linearly with any kind of operation, being able to
produce about 5 times the throughput for a workload of only
modification operations with 32 threads. For a 50% search
ratio (Fig. 10d), the behavior is similar, but TBB stops scaling
at a higher value, around 107 operations per second, which
still corresponds to the same 5× 106 modification operations
per second. In general, these results clearly show the impact
of our HHL lock-free approach compared to TBB.

VIII. CONCLUSIONS & FURTHER WORK

We have presented an efficient memory reclamation method
for a lock-free hash map data structure. Our new design,
named HHL (Hazard Hash and Level), uses hazard pairs to de-
fine small and well-defined regions of memory to be protected
from reclamation. Since this requires very few updates to such
hazard pairs during an operation, the HHL method achieves
lower synchronization overheads than any of the state-of-the-
art lock-free memory reclamation methods, while providing
very well-defined and flexible memory bounds. Experimental
results also showed that the HHL method provides a com-
petitive and scalable thread safe hash map implementation, if
compared to lock-based implementations.

As further work, we plan to study how the HHL memory
reclamation method can be adapted to similar lock-free data
structures and how the LFHT design can be extended to also
support the removal and reclamation of hash nodes.

REFERENCES

[1] K. Fraser, “Practical lock-freedom,” University of Cambridge, Computer
Laboratory, Tech. Rep. UCAM-CL-TR-579, 2004.

[2] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole, “Performance
of memory reclamation for lockless synchronization,” Journal of Parallel
and Distributed Computing, vol. 67, no. 12, pp. 1270–1285, 2007.

[3] D. Alistarh, W. M. Leiserson, A. Matveev, and N. Shavit, “Threadscan:
Automatic and scalable memory reclamation,” in Proceedings of the
27th ACM symposium on Parallelism in Algorithms and Architectures.
ACM, 2015, pp. 123–132.

[4] M. Herlihy, V. Luchangco, and M. Moir, “The Repeat Offender Problem:
A Mechanism for Supporting Dynamic-sized Lock-free Data Structures,”
Tech. Rep., 2002.

[5] M. M. Michael, “Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects,” Transactions on Parallel and Distributed Systems, vol. 15,
no. 6, pp. 491–504, 2004.

[6] A. Braginsky, A. Kogan, and E. Petrank, “Drop the Anchor: Lightweight
Memory Management for Non-blocking Data Structures,” in Symposium
on Parallelism in Algorithms and Architectures. ACM, 2013, pp. 33–42.

[7] P. Ramalhete and A. Correia, “Brief Announcement: Hazard Eras -
Non-Blocking Memory Reclamation,” in Symposium on Parallelism in
Algorithms and Architectures. ACM, 2017, pp. 367–369.

[8] M. Areias and R. Rocha, “Towards a Lock-Free, Fixed Size and
Persistent Hash Map Design,” in International Symposium on Computer
Architecture and High Performance Computing. IEEE, 2017, pp. 145–
152.

[9] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. O’Reilly, 2007.

[10] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,”
in 15th International Conference on Distributed Computing. Springer-
Verlag, 2001, pp. 300–314.

[11] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[12] D. Dechev, P. Pirkelbauer, and B. Stroustrup, “Understanding and
effectively preventing the ABA problem in descriptor-based lock-free
designs,” in International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing. IEEE, 2010, pp. 185–192.

