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Abstract. Lock-free implementation techniques are known to improve
the overall throughput of concurrent data structures. A hash map is an
important data structure used to organize information that must be ac-
cessed frequently. A key role of a hash map is the ability to balance
workloads by dynamically adjusting its internal data structures in or-
der to provide the fastest possible access to the information. This work
extends a previous lock-free hash map design to also support lock-free
compression. The main goal is to significantly reduce the depth of the
internal hash levels within the hash map, in order to minimize cache
misses and increase the overall throughput. To materialize our design,
we redesigned the existent search, insert, remove and expand operations
in order to maintain the lock-freedom property of the whole design. Ex-
perimental results show that lock-free compression effectively improves
the search operation and, in doing so, it outperforms the previous de-
sign, which was already quite competitive when compared against the
concurrent hash map design supported by Intel.
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1 Introduction

Hash maps are a very common and efficient data structure used to map keys to
values, where the mapping between the unique key K and the associated value
V is given by a hash function. Hash tries (or hash array mapped tries) are a trie-
based data structure with nearly ideal characteristics for the implementation of
hash maps [3]. An essential property of the trie data structure is that common
prefixes are stored only once [6], which in the context of hash maps allows us to
efficiently solve the problems of setting the size of the initial hash table and of
dynamically resizing it in order to deal with hash collisions.
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However, trie-based hash maps are prone to generate higher cache misses
than traditional hash maps, thus they tend to perform worse as the depth of
the trie increases. Fortunately, tries are widely used in different domains and
literature shows a significant amount of effort in studying their properties and
implementations [9] and, in particular, for cache-based architectures, in study-
ing how to mitigate cache effects to achieve better performance [1]. Recently,
Li et al. studied the throughput of several kinds of hash map designs and pre-
sented a high-throughput and memory-efficient concurrent cuckoo-based hashing
technique that supports multiple readers and writers [10].

Lock-freedom is an important concurrency technique that is known to im-
prove the overall throughput of concurrent data structures. Lock-freedom allows
individual threads to starve but guarantees system-wide throughput. In particu-
lar, lock-free trie-based hash maps offer a viable alternative to memory-efficient
hash-mapping [14, 2]. However, the cache misses problem was also observed by
Prokopec et al. when they compared the CTries data structure [13], a lock-free
trie-based hash map, against other state-of-the-art hash map designs.

Arguably, a well-know workaround to improve the performance of a trie-
based data structure is to apply some sort of compression technique [11, 7] as
a way to reduce the average depth of the trie data structure. Compression can
be done at shallow or deeper trie levels, but a key advantage is that it can
be done concurrently with the other operations. Two good examples are: (i)
the B*-tree proposal [16], which supports a compression procedure that runs
concurrently with regular operations, such as searches, insertions and removals,
to merge nodes that are underfull; and (ii) the relaxed B-slack trees proposal [4]
that supports a similar concurrent absorb operation that reduces the number of
levels in the data structure.

In this work, we focus on extending a sophisticated implementation of a lock-
free trie-based hash map, named Lock-Free Hash Map (LFHT) [12], to support
lock-free compression. The original LFHT implements a hierarchy of hash levels
whose branching factor is given by a fixed (and pre-defined) number of bucket
entries per hash level. Traversing the hash levels in the LFHT data structure is
O(logB K), where B represents the fixed number of bucket entries in a hash level
and K is the overall number of keys inserted in the hash map. Our compress
operation will be working on adjusting B to significantly reduce the average
depth of the internal hash levels within the hash map, i.e., instead of a fixed
number of bucket entries per hash level, we now support hash levels of different
sizes. Compression is done incrementally, affecting well-defined clusters of hash
levels, in order to meet varying (local) workloads. Since the number of levels to
be traversed is expected to be lower, this reduces cache misses and increases the
overall throughput. Experimental results show that lock-free compression effec-
tively improves the search operation and, in doing so, it outperforms the pre-
vious design [12], which was already quite competitive, when compared against
the concurrent hash map design in Intel’s TBB library [15]. To materialize our
design, we redesigned the existent search, insert, remove and expand operations
in order to maintain the lock-freedom property of the whole design.
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The remainder of the paper is organized as follows. First, we introduce some
background regarding the LFHT design. Next, we discuss the main aspects of our
design by example. Then, we describe implementation details and present the key
algorithms required to easily reproduce our implementation by others. Finally,
we show experimental results and end by outlining conclusions and further work.

2 Lock-Free Hash Tries

The LFHT data structure has two kinds of nodes: hash nodes and leaf nodes.
The leaf nodes store key/value pairs and the hash nodes implement a hierarchy
of hash levels of fixed size 2w. To map a key/value pair (k,v) into this hierarchy,
we compute the hash value h for k and then use chunks of w bits from h to index
the appropriate hash node, i.e., for each hash level Hi, we use the ith group of
w bits of h to index the entry in the appropriate bucket array of Hi. To deal
with collisions, the leaf nodes form a linked list in the respective bucket entry
until a threshold is met and, in such case, an expansion operation updates the
nodes in the linked list to a new hash level Hi+1, i.e., instead of growing a single
monolithic hash table, the hash trie settles for a hierarchy of small hash tables of
fixed size 2w. Figure 1 shows how the insertion of nodes is done in a hash level.
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Fig. 1. Insertion of nodes in a hash level

Figure 1(a) shows the initial configuration of a hash level Hi. A hash level is
formed by: (i) a hash node, which includes a header where control information
is stored and a bucket array of 2w entries; and by (ii) the corresponding chain
of leaf nodes per bucket entry. Initially, all bucket entries are empty. In Fig. 1,
Bk represents a particular bucket entry of Hi. A bucket entry stores either a
reference to a hash node (initially the current hash node) or a reference to a
separate chain of leaf nodes, corresponding to the hash collisions for that entry.
Figure 1(b) shows the configuration after the insertion of node K1 on Bk and
Fig. 1(c) shows the configuration after the insertion of nodes K2 and K3. The
insertion of nodes is done at the end of the chain and a new inserted node closes
the chain by referencing back the current hash level. A leaf node holds both
a reference to a next-on-chain node and a flag with the condition of the node,
which can be valid (V ) or invalid (I). The initial condition of a node is valid
and turns invalid when the node is marked for removal.

When the number of valid nodes in a chain reaches a given threshold, the next
insertion causes the corresponding bucket entry to be expanded to a new hash
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level (in what follows, we consider a threshold value of three). Figure 2 shows
how nodes are remapped in the new level. The expansion operation starts by
inserting a new hash node Hi+1 at the end of the chain with all its bucket entries
referencing Hi+1 (as shown in Fig. 2(a)). From this point on, new insertions will
be done on the new level Hi+1 and the chain of leaf nodes on Bk will be moved,
one at a time, to Hi+1. Figure 2(b) and Fig. 2(c) show how node K3 is first
remapped in Hi+1 (bucket Bn) and then moved from Hi (bucket Bk). When the
last node is moved, the bucket entry Bk in Hi is made to refer to the new hash
node Hi+1 (Fig. 2(d)).
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Fig. 2. Expansion of nodes in a hash level

In what follows, we base our work on the LFHT implementation [12] which
supports the search, insert, remove and expand operations concurrently in a lock-
free fashion and where threads collaborate to finish the undergoing expansions in
a path before inserting new nodes. This implementation also supports a memory
reclamation design, named HHL (Hazard Hash and Level), that uses hazard
pairs to define well-defined regions of memory to be protected from reclamation,
which explores the characteristics of the LFHT data structure in order to achieve
efficient memory reclamation with low and well-defined memory bounds.

3 Our Design by Example

In this section, we present our design by example. Our design takes advantage
of the fine-grained and fully synchronized atomic CAS operation, which is at the
heart of many lock-free data structures [8].

In a nutshell, the key idea of our design is to apply lock-free compression to
clusters of hash nodes in order to reduce the average depth of hash levels needed
to be traversed within the hash map. To activate compression on a cluster,
the condition is to have a hash node (called the head node of the cluster of
hash nodes) with all its bucket entries referring other hash nodes. A second
condition is that the head node does not belong to a second cluster where another
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compression is undergoing. If two or more compressions intersect, then priority
is given to the compression whose head node has the lowest depth (i.e., near to
the root of the hash map). Non-priority compressions are postponed (or aborted)
until the top priority one completes. At the end of a compression, the cluster of
hash nodes is replaced by a single hash node representing the cluster and the
depth of any path traversing the cluster is reduced in one level.

Figure 3 shows an example of applying lock-free compression to a cluster of
hash levels. For the sake of simplicity of illustration, we consider that hash nodes
are initially allocated with two bucket entries and that R1 to R6 represent refer-
ences to arbitrary hash or leaf nodes. Figure 3(a) shows the initial configuration
where one can observe the existence of two clusters of hash nodes: cluster C1

with head node Hi and including Hk and Hl; and cluster C2 with head node
Hk and including Hm and Hn. Since Hk, the head node of C2, also belongs to
C1, priority is given to the compression of cluster C1. Figure 3(b) shows the
configuration after the compression of cluster C1 where one can observe that Hi,
Hk and Hl were replaced by a single new hash node Hx that has twice the size
of bucket entries (four bucket entries in this case).
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Fig. 3. Compression of a cluster of hash levels

Consider a thread traversing the configuration in Fig. 3 looking for reference
R3. Without compression (Fig. 3(a)), the thread begins by visiting Hi, then
follows the reference in the first bucket to access Hk, next the reference in the
second bucket to access Hn, and finally the reference in the first bucket to reach
R3. In the worst case, if the header and the corresponding bucket entry for
each hash node do not fit inside the same cache line, reaching R3 will require
six memory accesses (two times the number of hash levels). After compression
(Fig. 3(b)), the thread begins by visiting Hx and reaching R3 requires one less
hash level, corresponding to four memory accesses, in the worst case.

Let us consider now that lock-free compression is first triggered and success-
fully applied to C2 and only then Hl is concurrently added to the hash map
data structure to form cluster C1. Figure 4(a) shows the resulting configuration,
where one can observe that Hk, Hm and Hn were replaced by a single new hash
node Hz with four bucket entries. As before, the access to references R1, R2,
R3 and R4 were all reduced by one level, but the access to R5 and R6 remains
unchanged and still requires traversing two hash levels. This illustrates one of



6 P. Moreno et al.

the advantages of prioritizing the compressions near the root of the hash map. A
second advantage is that the application of compressions following the priority
order of being near the root of the hash map converges to a canonical structure,
while any other order of application can lead to different configurations at the
end. A key motivation of lock-free compression is that regardless of which cluster
is compressed first, the hash hierarchy will converge to a canonical structure. We
next discuss how this is done in our design.
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Fig. 4. Splitting of previously compressed hash levels

Starting from the configuration in Fig. 4(a), we now have a cluster C1 formed
by the head node Hi and including Hz and Hl. The problem is that, due to
the fact that Hz already represents two hash levels as a result of a previous
compression, Hz and Hl have a different number of bucket entries (4 and 2
entries, respectively) and, therefore, we cannot replace cluster C1 by a single new
hash node, as done previously. Figure 4(b) and Fig. 4(c) show two alternative
approaches for compressing C1 in this case.

The approach illustrated in Fig. 4(b) tries to preserve previous compressions.
A new hash node Hx is introduced to represent C1 (thus replacing Hi and Hl)
but Hz is maintained. As intended, this approach succeeds in reducing the access
to R5 and R6 in one level. However, since Hz represents two hash levels, the first
two bucket entries of Hx are made to refer to Hz. This violates an invariant of the
LFHT design, which requires not having more than one bucket entry referencing
the same hash node, and makes it impossible to swap references to hash nodes
with just a single word CAS operation.

The approach illustrated in Fig. 4(c) tries to preserve the canonical struc-
ture. Since Hz represents a less priority compression, it proceeds by undoing the
previous compression and, for that, it splits Hz in two hash levels (Hv and Hw

in Fig. 4(c)), each with half the bucket entries. Then, a new hash node Hx is
still introduced to represent C1, thus replacing Hi, Hl and part of Hz. As before,
this approach succeeds in reducing the access to all references in one level, but
now each bucket entry in Hx holds a reference to different hash nodes. One can
observe that this configuration is similar to the one presented in Fig. 3(b), which
represents the canonical form. This example shows that, regardless of the order
of cluster compression, the hash hierarchy will converge to a canonical structure
although, as in this situation, the compress operation would require extra steps.
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4 Implementation Details

Starting from the high-level description of the previous section, we now discuss
in more detail how lock-free compression is implemented on top of the LFHT
data structure. Such detail is important since we want to show that lock-free
compression is implemented by following a well-defined sequence of CAS opera-
tions. To implement lock-free compression, the following extensions were made
to the LFHT data structure: (i) bucket entries now include a freeze flag that,
when set, indicates that further updates cannot be made to the corresponding
bucket entry; and (ii) the header of the hash nodes now includes a compression
representative field, which refers to the new hash node representing the cluster
being compressed, and a compression count field, which counts the number of
bucket entries referring to hash nodes (and is used to trigger compression).

Figure 5 details the sequence of steps involved in the compression of a stan-
dard cluster of hash nodes, i.e., without splitting. For that, it considers a bucket
entry Bk referring to a cluster with head node Hi and including Hk and Hl. As
before, R1, R2, R3 and R4 represent references to arbitrary hash or leaf nodes.
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Fig. 5. A step by step compression operation without splitting

Figure 5(a) shows the first step of the compression procedure, where CAS
operations are used to set the freeze flag of each bucket entry in the head node Hi

(in what follows, frozen entries are marked gray). Remember that a frozen entry
remains unchanged for the remaining lifetime. This freezing process is important
because it implements the strategy where priority is given to the compression
whose head node has the lowest depth. For example, if a less priority compression
is being done on cluster with head node Hk, it will be aborted because it cannot
update the corresponding first (frozen) bucket entry of Hi.

Next, Fig. 5(b) shows the second step of the compression procedure, where a
new hash node Hx is first allocated and then initialized by copying the references
from the bucket entries in Hi. In this case, since Hk and Hl are default sized
(non-compressed) hash nodes, the size of Hx corresponds to doubling the size of
Hi, and each pair of bucket entries in Hx is initialized to match the corresponding
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Hi’s entry. For example, the first two bucket entries of Hx are set to Hk, which is
the reference in Hi’s first entry, whereas the second two bucket entries of Hx are
set to Hl, which is the reference in Hi’s second entry. After this initialization,
Hx is ready to be inserted in the LFHT data structure and, for that, a CAS
operation is applied to Bk trying to replace Hi with Hx. Figure 5(c) shows the
resulting configuration. It is important to notice that lock-freedom requires that,
at any moment of the compression procedure, no thread can be blocked from
traversing and accessing the available hash and leaf nodes. Figure 5(c) show us
that, even in a scenario where a thread T is preempted in Hi, T is still able to
traverse forward to the deeper levels Hk and Hl.

At this point, it is also important to notice that the configuration in Fig. 5(c)
violates the invariant of not having more than one bucket entry referencing the
same hash node. However, here, this is not a problem because the bucket entries
in Hx are not yet the synchronization points for further updates on the cluster,
since they are still referring to Hk and Hl. Thus, the next steps involve copying
R1 to R4 from the bucket entries of Hk and Hl to the bucket entries of Hx.
Figure 5(d) to Fig. 5(f) show how this is done for reference R1. The same process
applies to the remaining references (not shown here to simplify the illustration).

The next step is to set the new compression representative (header) fields
of Hk and Hl to refer to Hx. Figure 5(d) shows the configuration after setting
the compression representative field of Hk. The same process applies to Hl (not
shown here to simplify the illustration). Note that copying the references R1 and
R2 to Hx, will turn Hk invalid. The compression representative field implements
a kind of reconnection path for invalid hash nodes. For example, in a scenario
where a thread T is preempted in Hk and Hk turns invalid, the compression
representative field allows T to recover to Hx.

The final steps involve freezing the first bucket entry of Hk, meaning that
no further updates can be done there, and applying a CAS to the corresponding
bucket entry in Hx in order to update it to R1. Figure 5(e) shows the configura-
tion after the freezing and Fig. 5(f) shows the configuration after the updating
of R1 in Hx. The same process is applied afterwards to the remaining bucket en-
tries in Hx, adjusting R2, R3 and R4, to finish the compression procedure. Note
that these final steps do not violate the lock-freedom property of a search, insert,
remove or expand operation being done concurrently, since the synchronization
point in Hk is being moved to the corresponding bucket entry in Hx. In other
words, an operation that would require updating the frozen bucket entry in Hk,
will now follow the compression representative field to reach Hx and change the
corresponding bucket entry there.

We conclude this section by describing a second compression situation, but
now for a scenario leading to the splitting of previously compressed hash levels,
as illustrated in Fig. 4. Figure 6 details the sequence of steps involved in the
compression of a cluster with head node Hi and including Hz and Hl, where Hz

is already the result of a previous compression.

As before, Fig. 6(a) shows the first step of the compression procedure, where
CAS operations are used to set the freeze flag of each bucket entry in the head
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Fig. 6. A step by step compression operation with splitting

node Hi. Then, Fig. 6(b) shows the second step of the compression procedure,
where new hash nodes Hx, Hv and Hw are first allocated (Hv and Hw represent-
ing the splitting of Hz in two hash levels, each with half the bucket entries) and
then initialized by copying the references from the bucket entries in Hi. Next,
Fig. 6(c) shows the configuration after updating the compression representative
field of Hz to refer to Hx. The same process applies to Hl (not shown here to
simplify the illustration). Note that Hv and Hw are not set as representative as,
in general, this would require not a single representative field but an array of
representatives (equal to the number of bucket entries per hash node). Finally,
Fig. 6(d) shows the configuration after freezing the first bucket entry of Hz and
after applying a CAS to the corresponding bucket entry in Hv in order to update
it to R1. The same process is then applied to the remaining bucket entries in Hv

and Hw, adjusting references R2 to R6, to finish the compression procedure.

5 Algorithms

This section presents the key algorithms required to easily reproduce our im-
plementation1. We begin with Alg. 1 to show the pseudo-code for the lock-free
compression procedure for a given head node Hi.

Algorithm 1 Compression(hash node Hi)

1: FreezeBucketEntries(Hi)
2: Hx ← CompressionInit(Hi)

3: if CompressionCommit(Hi, Hx) then

4: CompressionReps(Hx)
5: CompressionRefs(Hx)

1 Available from https://gitlab.com/pedromoreno/lfht-hhl/
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FreezeBucketEntries() starts by implementing the first step of the compres-
sion procedure, as shown in Fig. 5(a) and Fig. 6(a). Then, CompressionInit()
implements the second step, as shown in Fig. 5(b) and Fig. 6(b). Next, the
conditional call to CompressionCommit() implements the step where Hi is
replaced by Hx, as shown in Fig. 5(c). If it fails, meaning that there is an over-
lapping high priority compression being done, then Hx is simply deallocated.
Otherwise, CompressionReps() sets the compression representative fields, as
shown in Fig. 5(d) and Fig. 6(c), and CompressionRefs() updates the ref-
erences in the bucket entries of the new hash nodes, as shown in Fig. 5(e–f)
and Fig. 6(d). Pseudo-code for CompressionInit(), CompressionReps() and
CompressionRefs() is presented in more detail in Alg. 2, 3 and 4, respectively.

Algorithm 2 CompressionInit(hash node Hi)

1: Hx ← AllocHashNode(HashSize(Hi)×HS)

2: for i← 0 to HashSize(Hi) do
3: Hj ← Hi.bucket[i]

4: if HashSize(Hj) = HS then

5: for j ← 0 to HS do
6: Hx.bucket[i×HS + j]← Hj

7: else {splitting case}
8: for j ← 0 to HS do
9: Hv ← AllocHashNode(HashSize(Hj)÷HS)

10: Hx.bucket[i×HS + j]← Hv

11: for v ← 0 to HashSize(Hv) do

12: Hv .bucket[v]← Hj

13: return Hx

Algorithm 3 CompressionReps(hash node Hx)

1: i← 0

2: while i < HashSize(Hx) do
3: Hk ← Hx.bucket[i]

4: if HashLevel(Hk) 6= HashLevel(Hx) then {splitting case}
5: Hk ← Hk.bucket[0]
6: Hk.compr representative← Hx

7: i← i+HS

In these algorithms, HS is the default number of bucket entries for a standard
hash node, HashSize() returns the number of bucket entries in a hash node, and
HashLevel() returns the initial depth of a hash node. In Alg. 4, the compr count
field counts the number of bucket entries in a hash node referring to deeper hash
nodes and is used to trigger lock-free compression when all bucket entries are
referring to deeper hash nodes (lines 18–21 in Alg. 4).
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Algorithm 4 CompressionRefs(hash node Hx)

1: xCount← 0
2: for x← 0 to HashSize(Hx) do

3: Hk ← Hx.bucket[x]

4: if GetLevel(Hk) = GetLevel(Hx) then
5: R← FreezeBucketEntry(&(Hk.bucket[x mod HS]))

6: CAS(&(Hx.bucket[x]), Hk, R)

7: if IsHash(R) then
8: xCount← xCount+ 1

9: else

10: xCount← xCount+ 1
11: kCount← 0

12: for k ← 0 to HashSize(Hk) do
13: Hz ← Hk.bucket[k]

14: R← FreezeBucketEntry(&(Hz .bucket[(x mod HS)×HashSize(Hk) + k]))

15: CAS(&(Hk.bucket[k]), Hz , R)
16: if IsHash(R) then

17: kCount← kCount+ 1

18: if AtomicAdd(Hk.compr count, kCount = HashSize(Hk) then
19: Compression(Hk)

20: if AtomicAdd(Hx.compr count, xCount) = HashSize(Hx) then
21: Compression(Hx)

6 Performance Analysis

The environment for our experiments was a SMP system based in a NUMA
architecture with two Intel Xeon X5650, each having 6 cores (12 hyperthreads)
at 2.66GHz, 12MB Intel Smart Cache, 96GB of main memory, and running the
Linux kernel 4.15.0-72. To measure execution time, all programs were compiled
with GCC 9.2.0 with -O3 and using the jemalloc memory allocator 5.0 [5]. We
ran each benchmark 5 times and took the mean of those runs.

6.1 Compression Benefits

Compression benefits heavily rely on the memory environment where we are
running our benchmarks. Factors like cache sizes, placement policies, prefetching
optimizations can have a significant impact on the overall performance of the
LFHT design. To put our results in perspective, first we ran a specific benchmark
designed to address the potential gains that one would expect to have when
using compression. For that, we used a static version of the LFHT design that
implements fixed predefined configurations of hash levels, with a different number
of bucket entries on each hash node, and we measured the execution time for
one thread performing only search operations on those configurations.

Starting from a maximal configuration of 24 uncompressed hash levels, all
with the same minimal size of 21 bucket entries, we studied the effect of apply-
ing two different types of compression operations: (i) by reducing the number
of hash levels from the root hash node to the leaf hash nodes; and (ii) by re-
ducing the number of hash levels from the leafs to the root. Figure 7 shows the
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execution time, in seconds, for executing 224 search operations with one thread
when reducing the number of hash levels in both directions (Fig. 7(a) for the
root to leafs compression and Fig 7(b) for the leafs to root compression) until
reaching the configuration with just a single hash node with 224 bucket entries.
The x-axis represents the number of hash levels compressed in a configuration.
In both figures, the x-axis value of 1 represents the maximal configuration of 24
uncompressed hash levels and the x-axis value of 24 represents the single fully
compressed hash node with 224 bucket entries. The other x-axis values represent
intermediate configurations. For example, the x-axis value of 10, in Fig. 7(a)
represents the configuration whose first hash node includes 210 bucket entries
followed by 14 uncompressed hash levels, and in Fig. 7(b) represents the config-
uration with 14 initial uncompressed hash levels followed by a final hash node
with 210 bucket entries.

(a) Compression from root to leafs (b) Compression from leafs to root

Fig. 7. LFHT’s compression effects for 224 search operations with one thread

In Fig. 7(a), one can observe that, for root hash nodes with less than 214

bucket entries, the benefits are small, but then, for higher compression ratios, the
results show a significant impact on reducing the execution time. This happens
because most of the execution time is spent on waiting for swaps between the
different levels of memory and because the hash nodes closest to the root tend to
remain in cache. Consequently, compressing the first 14 levels only reduces the
amount of cache accesses, which results in a poor impact on the total executing
time. On the other hand, further compression is able to reduce effectively the
number of memory accesses and memory swaps.

In Fig. 7(b), one can observe that compressions up to a size of about 210 are
quite effective in reducing the execution time, whereas after that size they are
not as much. This can be explained by the fact that, after a certain size, the
benefits of compression are absorbed by the caching effects.

As a result of this study, in what follows, we have chosen to set the root hash
node of the LFHT design with 216 bucket entries, thus ensuring that compres-
sions would have an impact in the execution time. This will create a memory
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overhead, which can be considered negligible, since it amounts to just 512KB. All
the other hash nodes, allocated during execution, begin with 24 bucket entries,
which is the minimum size allowed by the original LFHT design.

6.2 Performance Results

In this subsection, we analyze the performance of our compression design in three
different scenarios: (i) Search Only, where threads search for N keys in a hash
map with the N keys inserted; (ii) Insert Only, where threads insert N keys in an
empty hash map; and (iii) Remove Only, where threads remove N keys in a hash
map with N random keys.2 On each scenario, we used two sets of N random
keys, namely 108 and 109 keys. To support concurrent randomicity on each
thread, we used glibc PRNG (Pseudo Random Number Generator), such that,
for insertions we just insert random keys by giving each thread a different seed,
and for search and remove, we reuse the seeds used for insertion, ensuring that
we search or remove each key only once. Although these scenarios are not real-
world applications, they do provide a strong insight about the expected behavior
of the design. Note that, since hash-maps use hash functions to disperse keys
among the internal data structures, we argue that real-world applications should
provide similar results to the ones that we present next.

Figure 8 shows throughput results (higher is better) comparing our com-
pressed design (LFHT-Compress) against the original design (LFHT-Original),
and the Concurrent Hash Map design (CHM) of Intel-TBB library [15], when
running a number of threads from 1 to 24 with 108 and 109 keys in the three
previously mentioned scenarios.

Figure 8(a) and Fig. 8(b) show throughput results for the Search Only sce-
nario. Comparing the two LFHT designs, one can observe that LFHT-Compress
obtains improvements against LFHT-Original of around 50% with 108 keys and
around 100% with 109 keys. When comparing against CHM, LFHT-Compress
has almost always the best results, with CHM very close. This can be explained
by the fact that the final configuration of both designs is quite similar, since
CHM also uses only a root hash level to do the initial scatter of keys.

Figure 8(c) and Fig. 8(d) show throughput results for the Insert Only sce-
nario. Comparing the two LFHT designs, one can observe that both achieve
similar results for 108 keys but LFHT-Compress is clearly better for 109 keys.
Even though LFHT-Compress is doing more work by compressing hash levels,
it is able to improve the overall throughput. This happens because the cost of
doing extra work on compression is compensated by the shorter paths leading to
the insertion points. When comparing with CHM, LFHT-Compress has almost
always the best results, however in this scenario the difference is more signif-
icant as we increase the number of threads. One reason that can explain this

2 We have also tested other scenarios that mix the search, remove and insert opera-
tions, but have not obtained relevant results. This can be explained by the fact that
the interference between different types of operations is rare enough to not impact
performance.
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(a) Search Only with N = 108 keys (b) Search Only with N = 109 keys

(c) Insert Only with N = 108 keys (d) Insert Only with N = 109 keys

(e) Remove Only with N = 108 keys (f) Remove Only with N = 109 keys

Fig. 8. Throughput for the Search Only, Insert Only and Remove Only scenarios

difference is the fact that, since CHM is lock-based, it seems unable to scatter
the concurrency spots as we increase the number of threads, since each lock is
being used to block a large portion of paths within the hash map. On the other
hand, since LFHT-Compress is lock-free, it is able to control the concurrency
spots with the fine grain given by the CAS operation.
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Finally, Fig. 8(e) and Fig. 8(f) show throughput results for the Remove
Only scenario. Comparing the two LFHT designs, one can observe that LFHT-
Compress is again better than LFHT-Original and that the difference increases
as we increase the number of threads. This can be explained by the gains
observed for LFHT-Compress on the search operation. When comparing with
CHM, LFHT-Compress is again better by far than CHM in the 108 scenario,
with the difference increasing as the number of threads increases, whereas in the
109 scenario the difference is almost constant. This can be explained by the same
reasons mentioned before for the Insert Only scenario (lock-based vs lock-free).

7 Conclusions & Further Work

We have presented a novel lock-free compression design for a lock-free trie-based
hash map, named LFHT, that is able to significantly reduce the depth of the
internal hash levels within the hash map structure. By doing so, our design is
able to minimize cache misses and increase the overall throughput of the default
search, insert and remove operations. To materialize our design, we redesigned
the LFHT data structure in order to maintain the lock-freedom property of the
existent search, insert, remove and expand operations.

Experimental results show that lock-free compression effectively improves
the default operations and, in doing so, it outperforms the previous design,
which was already quite competitive when compared against the concurrent
hash map design in Intel’s TBB library. We argue that our experimental results
are very interesting and show the potential of our design since it was able to
achieve better throughput ratios than CHM, in almost all scenarios, and, for
some thread launches, the difference between the two is very significant. This
is quite an accomplishment if we consider that both the CHM design and the
hardware architecture are implemented by Intel.

As further work, we plan to extend our design to implement a scheme that
allows lock-free compression to be split into several subtasks that can be executed
concurrently by different threads, instead of just a single thread as it is now, and
compare its performance in different hardware architectures using real-world
applications.
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