
This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within projects UIDB/04434/2020, UIDP/04434/2020 and UIDB/50014/2020.
DOI 10.54499/UIDB/50014/2020

On Exploring Safe Memory Reclamation Methods
with a Simplified Lock-Free Hash Map Design

Pedro Moreno1,2, Miguel Areias1 and Ricardo Rocha1

1 CRACS/INESC TEC, Department of Computer Science, Faculty of Sciences,
University of Porto, Portugal

2 Instituto de Astrofísica e Ciências do Espaço, University of Porto, Portugal

Hash maps are a very common and efficient data structure used to organize
information that must be accessed frequently. Hash tries are a tree-based data
structure with nearly ideal characteristics for the implementation of hash maps,
which allows to efficiently solve the problems of setting the size of the initial hash
table and of dynamically resizing it in order to deal with hash collisions.
In this work, we focus on simplifying a sophisticated implementation of a lock-free
trie-based hash map, named Lock-Free Hash Tries (LFHT) by making it simpler,
more cache friendly and compatible with most safe memory reclamation (SMR)
methods.

The original LFHT design has two kinds of nodes: hash nodes and leaf nodes.
The leaf nodes store key/value pairs and the hash nodes implement a hierarchy
of hash levels, each node with a fixed size bucket array of 2w entries. To map a
key/value pair (k,v) into this hierarchy, a hash value h is computed for k and then
chunks of w bits from h are used to index the appropriate hash node, i.e., for
each hash level Hi , the ith group of w bits of h are used to index the entry in the
appropriate bucket array of Hi . To deal with collisions, the leaf nodes form a
linked list in the respective bucket entry.

When a collision threshold is met an expansion operation updates the nodes in
the linked list to a new hash level Hi+1 , i.e., instead of growing a single monolithic
hash table, the hash trie settles for a hierarchy of small hash tables of fixed size
2w .

This expansion strategy renders the data structure Incompatible with most SMR
methods.

The key idea behind the new SLFHT design is to replace these collision chains
with a specialized array of leaf nodes with a header that specifies the number of
nodes in the array, followed by the nodes that collide in the corresponding bucket
entry sequentially in memory. We call these arrays of leaf nodes as leaf arrays.
The insertion procedure, instead of adding a node to the chain, replaces the
entire leaf array with a new one containing all the previous leaf nodes plus the
new node.

In the expansion procedure we simply replace the leaf array with a new hash
node that has the nodes present in the previous leaf array pre-inserted.

Similarly, the removal procedure replaces the entire leaf array with a new one
that contains all the previous nodes except the one being removed.

Safe memory reclamation (SMR) on lock-free data structures is a much harder
problem, since exclusive access to any region of the data structure can not be
expected without violating the lock-free properties.
Often, most lock-free data structure designs start by relying on garbage collection
systems in order to reclaim memory, even though that such an option destroys
the lock-freedom property of the system as a whole and can have a significant
performance impact. Since garbage collection is not an option to ensure lock-
freedom and there is no ideal SMR method, there is increasing pressure to
design data structures such that they are easily integrated with more SMR
methods.
We implemented two different SMR methods for the SLFHT design. We chose
the Hazard Pointers (HP) method, as it is the most commonly used one and
tends to achieve good performance in data structures with low depth with tight
memory bounds. As a second option, we chose the Optimistic Access (OA)
method that is one of the most efficient memory reclamation methods while
being robust and simple to implement.

Our experimental environment was a machine with 2 x AMD Opteron™
Processor 6274 with 16 cores each and a total of 32 GiB of DDR3 memory. The
machine was running Ubuntu 22.04 with kernel 5.15.0-91 and all designs were
compiled with GCC version 13.2.1.
For the performance analysis, we evaluate SLFHT against LFHT and the
Concurrent Hash Map design (CHM) of Intel-TBB library version 2021.5.0. The
scenarios in the figures specify the design and the memory reclamation method
in use, e.g., LFHT-HHL means the LFHT design with the HHL memory
reclamation method. The HHL (Hazard Hash and Level) method is the original
memory reclamation method implemented for LFHT, the HP (Hazard Pointers)
and OA (Optimistic Access) are the two SMR methods discussed for SLFHT, and
NR are the versions without memory reclamation support.

 50% Inserts and 50% Removes 90% Searches, 5% Inserts 5% Removes

Introduction

Original Lock-Free Hash Tries

Safe Memory Reclamation

Experimental Results

(c)

Bk

...

Hi

...

(b)

...

(a)

Bk

...

Bk

...

entries

Hi

K2
w

Hi

2

...

K12 K11K11

...

Hi+1

Bk

...

Hi

...

K1

Bm

Bn

(c) (d)

(a) (b)

3 K2 K3

...

Hi+1

Bk

...

Hi

...

K1

Bm

Bn

3 K2 K3

K12 K3

K21
...

Hi+1

Bk

...
Hi

...

K1

Bm

Bn

3 K2 K3

K12 K3

K21

...

Hi+1

Bk

...

Hi

... Bm

Bn

K12 K3

K22 K21K4

(c)

Bk

...

Hi

...

(b)(a)

...

Bk

...

Hi

K11K11Bk

...

Hi

...

K2K12 K2K12

Simplified Lock-Free Hash Tries

...

Hi+1

K3

...

Hi

...

Prev

V

V V

Prev

K2

...

Hi+1

K3

...

Hi

...

K2

Prev

V

VV

Prev

K1

K3

...

Hi+1

...

Hi

...

V V

...

Hi+1

K3

...

Hi

...

K1 K2

Prev

VV
V

K1 K2

PrevPrev Prev

V

(c) (d)

(a) (b)

K4 V

VK1

K4

Bk

Bk

Bn

Bm

Bm

Bn

Bk

Bk

Bm

Bn

Bm

Bn

K3

(c)

...
Hi

...

V V

(b)

...

(a)

Prev

K1

...

Prev

...

entries

Hi

V K1 K2
w

Hi

2

Prev

V

...

Bk Bk Bk

	Slide 1

