
On Bridging Prolog and Python to Enhance an
Inductive Logic Programming System

Vítor Santos Costa[0000−0002−3344−8237] and Miguel Areias[0000−0003−1589−3174]

CRACS/INESC TEC
Dept. of Computer Science, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{vscosta,miguel.areias}@fc.up.pt

Abstract. Prolog is a programming language that provides a high-level
approach to software development. Python is a versatile programming
language that has a vast range of libraries including support for data
analysis and machine learning tasks. We present a Prolog-Python inter-
face that aims at exploiting Prolog deduction capabilities and Python’s
extensive libraries. Our novel interface was built using a divide and con-
quer methodology. In a first step, we implemented a set of C++ classes
that can be matched to Python classes; next, we used an interface gen-
erator to export the relevant classes. Finally, we use C code to actually
convert between the two realms. In order to demonstrate the usefulness of
the interface, we enhance an Inductive Logic Programming System with
a visualization capabilities and show how to interface with a standard
classifier.

Keywords: Prolog · Python · Inductive Logic Programming · Interop-
erability

1 Introduction

Prolog is a programming language that provides a high-level approach to pro-
gramming through the use of a subset of First Order Logic [17]. Prolog relies on
a very efficient querying mechanism, based on goal refutation for Horn clauses.
Prolog systems complement this foundation with support for state capture and
manipulation, and with mechanism for interaction. As Horn clause programs
consist of a set of predicate definitions, this extra functionality is made available
through "built-in" predicates; that is, through predicates that are defined as
part of the Prolog implementation. Collections of these built-ins correspond to
system libraries in traditional languages.

The design and implementation of these primitives is a large part of develop-
ing a Prolog system [11]. In fact, it is quite hard to support the different needs of
the very diverse Prolog applications. One answer is to allow the user to build by
herself some of these built-ins. To do so, the user will need to access the internal
structure of the Prolog engine. The bidirectional protocol that defines how to
access Prolog data-structures, on the one hand, and how logic programs may be



2 Vítor Santos Costa, Miguel Areias

allowed to manipulate external data, on the other hand, is called the Foreign
Language Interface (FLI).

Most often, the FLI is designed to interface with programs that were written
in the Prolog engine’s language. Arguably, most widely used systems are based
on C or Java, and so are the FLIs. Note that a single Prolog system may have
several FLIs, either to support different languages or for compatibility [31].

We introduce an interface that connects Python with a Prolog system. Python
is a very popular language, and at the moment dominates in areas such as ma-
chine learning. It includes a large collection of tools that can be well used in
Logic Programming Systems. Python programs are organized as modules, that
group related classes, which may contain variables and functions. Arguably, the
natural unit of sharing are instances of classes, and goals, the instances of pred-
icates. Our goal is to provide a mapping such that Prolog goals can be Python
objects, and Python goals can be Prolog calls.

Next, we describe our approach. Python is object oriented making it cum-
bersome to use a C based interface. Thus, the first step was to build a C++
interface for the Prolog system. We then used the SWIG interface generator to
export the classes to Python. The classes in the C++ interface are thus trans-
lated to classes in a Python module. SWIG is very good at re-targeting the
interface, but is not very good at writing all the nitty-grid of the translation. We
found out it was sensible to use a separate library to do the actual translation.

The paper is organized as follows. First, we briefly review prior work on
Prolog FLIs: there has been extensive work on these interfaces, but often this
is not documented. Next, we describe the three components in our design: the
C++ interface, the SWIG translator, and the support libraries. We then give an
example of how the interface can be applied to improve an existing application.
Last, we conclude and discuss further work.

2 Prolog and the world

Most Prolog systems provide a foreign language interface (FLI), both to extend
the language with user-defined built-ins, and to allow Prolog to be embedded as a
component in a larger system. As most Prolog systems were traditionally written
in C, FLIs supported C/Prolog. Quintus Prolog was one of the first systems to
include a full fledged FLI allowing passing integers, floats, terms and pointers
to the external code [21]. SICStus Prolog follows similar principles, but has a
richer set of base types and more support for handling terms. Interface predicates
are declared from types and modes [7]. A similar approach is implemented by
GNU-Prolog [12].

Most other Prolog systems FLIs are based on reading and writing terms,
built with C code. B-Prolog provides access to the engine internals [34]; YAP
provides a wrapper but essentially exports the functional approach used in inner
routines [10]; SWI-Prolog provides a handle-based abstraction of unification [33];
Ciao also implements term construction and access routines [15]; ECLiPSe pro-



Bridging Prolog and Python to Enhance an ILP System 3

vides a more object-oriented flavor [19]; XSB provides two interfaces: one for
direct access and the other for high-level access [24].

The advent of Java has generated interest in interfacing to other program-
ming languages. There are two approaches: the client-server approach allows for
distributed execution and is often more robust and cleaner. Examples include
SICStus PrologBeans [1], InterProlog [6], and Prolog to R real [3]. Monolithic,
or DLL based examples include Quintus Visual Prolog interface and the SWI-
Prolog JPL [22]. The latter is a merge of a Prolog to Java and Prolog to Java
interface and provides a very nice and complete API.

Python has also generated interest in the logic programming community.
Bedevere was a SWIG [5] interface for GNU-Prolog, geared at Python [20];
similarly, pwig was developed for SWI-Prolog. Both rely on the C-interface [14].
py-xsb [4] exports the XSB FLI to a Python environment using ctypes. A more
high-level approach is provided by PySWIP, that also uses Python ctypes to
provides a module Prolog with most common operations [29].

The approaches presented so far rely on the system’s FLI. Most FLIs provide
only access to a system’s functionality; these limitations are noticeable when try-
ing to generate code that will run across systems [31]. A tighter integration with
the external environment was proposed in Jinni [27] and Fluents [26]. External
code embedding is also possible [32]. Finally, some authors would argue that
object oriented logic languages provide a more natural integration with Object
Oriented languages [8].

Janus is a Prolog-Python interface originally developed by Swift for XSB
Prolog [25]. Janus was since adopted by SWI-Prolog and is the target of a joint
effort between the XSB, SWI, and ciao communities [2]. ON the Prolog side,
Janus provides a collection of built-in predicates, the py_ family of predicates.
These built-ins can execute arbitrary Python code and translate the results back
to Prolog. Important examples are py_call that can call a Python method, and
py_iter can be used to iterate over an object. In the specific case of SWI-Prolog
one can also the quasi-quotation mechanism to inject Python code in the Prolog
environment.

The Python to Prolog interface consists of five key classes: query, apply,
Term, Undefined, and PrologError. The query and the apply classes serve the
same goal, calling Prolog, but query is text based whereas apply is object based.

3 The C++ FLI

The C++ FLI task is to wrap C data structures as classes. Next, we detail the
main components that are concerned with term construction and manipulation,
database management, and execution. Figure 1 describes graphically the class
hierarchy of the interface.



4 Vítor Santos Costa, Miguel Areias

Prolog +
C++ Interface

Terms Data-Base Querying

PTerm

PApplTerm

PPairTerm

PIntegerTerm

PListerm

PConjTerm

PAtom

PProp

PFunctor

PPredicate

PEngineArgs

PEngine

PQuery

Error Handling

PError

Fig. 1. Class structure of the C++ interface

Terms The PTerm or T class exports handles to Prolog terms (type Term or
PTerm). The sub-classes are PApplterm, PPairterm, and sub-classes for the usual
types. PTerm is a collection of methods plus a handler pointing to the Prolog
term.

protected:
yhandle_t hdl; /// handle to term, equivalent to term_t

The private methods mk(Term t) generates the handle and copies it to
this->hdl; the getter Term gt() fetches the term. As an example, term type
checking is implemented through virtual methods such as isVar, that is defined
by PTerm as

{ virtual bool isVar() { return IsVarTerm(gt()); }

that is redefined by PIntegerTerm as:

bool isVar() { return false; }

The gt() method gets the Prolog term from the handler.
PTerm also provides interfaces for most term operations, e.g., to verify whether

our object is a variant of a term t1, we simply write:

virtual P_Term variant(PTerm t1) { return P_Variant(gt(), t1.term()); }



Bridging Prolog and Python to Enhance an ILP System 5

Notice that as gt() is a private method, we use term() to construct the the
external object.

The sub-classes do not have to be disjoint. The interface provides both
PPairTerm that refers to a pair of terms, and PListTerm that is used to ac-
cess a true list. The latter class allows for constructors such as:

PListTerm(std::vector<Term>).

The constructor uses an array with objects of Term. Whenever possible, one
should avoid creating intermediate C++ objects. It is much more efficient to work
with the engine C objects, and create a single C++ object as the final result.

The Prolog Database Our approach assumes that the Prolog database is organ-
ised as a symbol table, where symbols are Prolog atoms. Atoms have a variable
set of properties. One important property is PFunctor, that is special in the
sense that functors themselves can have properties of type PPredicate. The
classes Patom, PProp, PFunctor, and PPredicate wrap this functionality.

Run-Time The run-time consists of three classes: PEngine, PEngineArgs, and
PQuery. To boot the Prolog system, one must first fill the execution parameters at
PEngineArgs and create an PEngine object, whose main task is to create PQuery
object. The latter’s main task is to create an iterator for query execution, and
to provide access to the query state. There are several ways to start a query, the
example below is used by the interpreter to run a query from user input:

PQuery(const char *s) :-
PPredicate(s, goal, names, (nts = a1_ptr()))

In this example, PPredicate is given the query string s, parses it, stores
the goal’s argument in the register array, uses call by reference to pass the map
with the variable names, and finally returns itself. PQuery just needs to start the
engine.

Error Handling The PError class takes care of error objects. Errors are gener-
ated by all the Prolog components. In our approach, we assume that the Prolog
system ensures a fair treatment by storing the error as a dictionary, and storing
all the entries as constants or as text strings. Terms are presented as text.

4 The SWIG Translator

SWIG is a tool that promises that, if given a specification for a C or C++
library it will generate the corresponding stub in a target language, such as
Python, or Java. In practice the specification details the data structures that are
made visible in the library’s header file. A simple example is:

%include "pt.hh"



6 Vítor Santos Costa, Miguel Areias

This single line of code results in generating a set of Python classes, one per
C++ class. The classes are really just stubs: they wrap the arguments and pass
them to the source library.

Unfortunately, the wrappers just insulate the objects, and often we need too
access fields or call methods. One solution is to extend SWIG with libraries for
common data-structures:

%include stdint.i
%include std_string.i
%include std_vector.i
%include "pt.hh"

We now can use the methods for classes int_t, std::string, and std::vector<T>
from within Python. Although SWIG supports namespaces and templates, but
not full C++.

We can construct and manipulate PTerms, but objects of type Term are
opaque. This is a problem because Prolog programs only manipulate terms; as
such, all calls from Prolog to Python will have arguments of type Term. SWIG
addresses this problem through typemaps, such as the one in the followup code:

% typemap(out) Term {
return $result =

prolog_to_python($1, false, 0, true);
}

%

Unfortunately, writing SWIG extensions eventually becomes very hard. The in-
terface relies instead on auxiliary functions, p2py () (prolog_to_python) and
py2p () (python_to_prolog) interactions. Table 1 describes the main rules: no-
tice that these rules are applied recursively over terms or Python expressions.

4.1 From Prolog to Python

The function p2py() is the key to having transparent execution. It maps a Prolog
term to a Python object as follows:

– Integers and other numbers map to integers (integer objects). Prolog atoms
are used for two purposes: as symbols (e.g., fail is likely to refer to a built-
in), and as text, e.g., 'Where twinkling in the dewy light,' is probably
text. Unfortunately, these roles are in no way guaranteed: we can use the
atom fail to search for students who failed a course, and we could use
the text as the name of a predicate. This confusion stems from the origins
of Prolog and the Edinburgh syntax.
There is no perfect solution to this problem. Our approach is:
1. if the atom text can be a legal Python symbol, map it as symbol: return

pyLookup(str(t));



Bridging Prolog and Python to Enhance an ILP System 7

Table 1. Translation rules from Prolog to Python and from Python to Prolog; vnames
is the set of valid names for Python symbols

Prolog → p2py() → Python → py2p() → Prolog
int int int
float float float
true True true
false False false
none None none
atom ∈ vnames symbol atom
atom ̸∈ vnames string –
string string string
[A,B, . . . , C] Python List [A,B, . . . , C]

t(. . .) Python Tuple t(. . .)

{k1 : v1, . . . , kn : vn} Python Dictionary {k1 : v1, . . . , kn : vn}
F (a1, ..., kn = an) ϕ = F (a1, ..., kn = an) py2p(ϕ)
(compound term) or

Python Named Tuple F (a1, ..., kn = an)

A.B.F(...) Function call
obj ptr(&obj)

2. or alternatively, map it as a Python string (PyUnicode object): return
PyUnicode_Str(str(t)).

One alternative is to map atoms to symbols only if they are symbols in
Python; the problem is that the atom may be translated in different ways
as the program runs (in the worst case the translation will depend on the
Python garbage collector).

– True lists are translated into Python lists (PyList objects). Prolog lists are
linked lists, so the actual match for a Prolog list [1,2,3] should be an X
such that:
t0 = [3,[]]
t1 = [2,t0]
X = [1,t1]
In practice, users expect list to match list, and that is what we support when
atom [] matches the empty list: while list(t) .

– Terms of the form t(...) are translated to Python tuples (PyTuple). Python
tuples are similar to Python lists, but whereas Python lists can expand,
contract and be updated, tuples have fixed size and fixed arguments.

– Dictionaries: we assume that the Prolog system does not support dictionaries
at the engine level, instead, it will translate a Python dictionary to a term
of the form:

{ a1:t1, ... , am:tm, ... . an:tn }.
This representation allow us to send dictionaries to Python and back.

– we still have to translate partial lists and compound terms. By default,
Python does not construct compound terms; it evaluates functions (or meth-
ods). The interface thus tries T with functor named f , and arity a. It builds
and execute the function call as follows:



8 Vítor Santos Costa, Miguel Areias

1. set i← a, args← None, dict←
2. search for an object of name f ; proceed if the object is callable, otherwise

certify it matches a named tuple: if it does, return the tuple otherwise
an error;

3. while T [i] = (k = v), where k is an atom or a string dict[k] = p2py(v)
do i← i− 1;

4. create a tuple for the remaining arguments that must be represented:
args = (p2py(T [1]), . . . , p2py(T [i])).

5. execute the code and return code(f)(args, dict)
– Python uses A.B.C to represent module/class/method hierarchy. We use the

same syntax, taking advantage of the fact that early Prolog systems used the
dot operator to represent a pair, so A.B.C = [A|[B,C]. This makes the text
close to Python. Drawbacks include overloading even more the dot character,
and diverging from other packages.

Our approach goes a little bit further and defines ./2 as an existing predicate,
so that we can write A.B.C as a goal:

4.2 From Python to Prolog

The reverse function py2p python_to_prolog follows the same guidelines as
p2py:

– in Python there is no ambiguity about whether an object should be treated
as a string or not. It is natural to map strings to strings, but it would be
nice to translate to atoms, or list of codes or characters.

– If an object does not fit in the above mentioned rules, we assume that the
Prolog system will pass the address of the object.

4.3 Assignment

The library supports two different forms of assignment:

– If the target is a variable, that is V ← Exp, we should bind the variable to
the outcome of the p2py call.

– If the target is an atom and the atom is an attribute or a key already existing
in the symbol table, A← Exp should set the attribute to p2py(T ).

– If the target is a new atom create it in a system table, and then proceed as
before.

– if the target is indexed, A[I]← Exp, call py2p to obtain either a variable or
an address, and then proceed as before.

4.4 An Example

Next, we show a self-contained example of using the interface. The example was
adapted from the the seaborn package [30], based on matplotlib [16].



Bridging Prolog and Python to Enhance an ILP System 9

:- use_module(library(python)).
:- python_import(seaborn as sns).
:- python_import(matplotlib.pyplot as plt).

main :-
penguins := sns.load_dataset( "penguins" ),
sns.histplot(penguins, x="flipper_length_mm"),
plt.show().

After loading the Prolog library, we import seaborn and bind the package to two
symbols, seaborn and sns. The actual program starts by looking up sns in the
system table, and then creates a function call with the function load_dataset()
obtained from the module seaborn, a tuple with a string "penguins", and
an empty dictionary. The result of the function is assigned to a new sym-
bol, penguins. To call the procedure we lookup sns and build a function call
by looking up histplot in seaborn, constructing a tuple with a single entry
penguins, and a dictionary with a single entry with key "x" and value "flip-
per_length_mm". This call generates the plot. Finally, matplotlib is called to
show the result plot in a physical device.

A more complex example is shown next, with corresponding output presented
in Figure 2.

30 35 40 45 50 55 60
bill_length_mm

12

14

16

18

20

22

bi
ll_

de
pt

h_
m

m

species
Adelie
Chinstrap
Gentoo

:- use_module(library(python)).
:- python_import(seaborn as sns).
:- python_import(matplotlib.pyplot

as plt).

main :-
sns.set_theme(
style="ticks"),
penguins :=

sns.load_dataset(
"penguins"),

sns.jointplot(
data=penguins,
x="bill_length_mm",
y="bill_depth_mm",
hue="species",
kind="kde"

),
plt.show().

Fig. 2. Visualization of the Penguin dataset - showing the difference between three
penguin species



10 Vítor Santos Costa, Miguel Areias

4.5 Interface Libraries

The previous examples focused on the Prolog side. SWIG provides an extensive
set of classes for the Python side, but as the classes are based on C++, it cannot
take full advantage of the language. Thus, the Prolog system must include li-
braries to facilitate programming. We briefly discuss two of the most interesting
techniques.

Iterators

class Query (PQuery):
def __init__(self, engine, g):

...
def __iter__(self):

return self
def done(self):

gate = self.gate
completed = gate == ...
return completed

def __next__(self):
if self.done() or

not self.next():
raise StopIteration()

return self

Iterators are classes that implement a sequence generation protocol. In this
example, the class Query is a refinement of the C++ class that can be used it to
enumerate solutions in a for or while loop.

The two key methods are done and __next__. They rely on PQuery to pro-
vide the last port or gate crossed. A call to self.done() checks whether a query
us still active. self.__next__() either gets the next answer, or sends a signal
to stop iterating.

Named Tuples Named tuples are syntactically similar to Prolog terms, and we
use them to give a Prolog flavor to Python code. By adding an iterator to a
named tuple, we can have a Prolog goal:

class LoadLibrary(Predicate):
def __init__(self, eng):

self.engine = eng
self.goal = namedtuple('load_library', 'name' )

def run(self, c):
self.engine.run(self.goal(library(c)))

def __str__(self):



Bridging Prolog and Python to Enhance an ILP System 11

return self.goal.__str__()

load_library = LoadLibrary(PEngine).run

This code allows to call load_library("lists").

5 Pythonic Aleph

To conclude we show how the interface can be used to improve an existing ap-
plication. Aleph [23] is an Inductive Logic Programming learning system, based
on Progol [18]. Aleph implements relational machine-learning algorithms; the
reference algorithm, induce generates a theory by following these steps:

– Choose an example, and collect literals that are connected to the example.
Swap different constants by different variables and call the result bottom
clause;

– select subsets from the example and pick the clause that best separate pos-
itives from negatives.

The induce algorithm implements greedy coverage removal, that is, examples
covered by the chosen clause will be discarded from the step.

The bottom-clause dominates the search space. Its construction depends on
the user-provided predicates plus mode declarations that structure the clause.
Mode declarations are related, but quite different, from the usual mode declara-
tions in logic programming [11]. As an example, consider the following two mode
declarations for a chemical structure-activity dataset [13,9]:

:- modeb(*,atm(+drug,-atomid,#element,#integer,-charge)).
:- modeb(*,symbond(+drug,+atomid,-atomid,#integer)).

The first argument can be largely ignored: it just says we should look for all
the solutions. The main functors of the axioms argument, atm and symbond de-
clare that we were going to use atoms and bounding in a molecule. The symbols
drug, atomid, element, integer and charge name a set of disjoint concepts,
the types, that will be associated with clause variables. Finally, the mode decla-
rations are as follows, assuming we want to place a variable V at an argument
Ai whose type is T :

– +: V must have been used in a previous call C ′. Moreover, if A′
j = V then

type(A′
j) == T ;

– -: V may be a new variable of type T ;
– #: Ai must be set to a constant of type T .

The following example tries to clarify the application of modes:

active(Drug) :- atm(Drug, Atom, c, 4, Charge)).
active(Drug) :- symbond(Drug, Atom1, Atom2, 1)).
active(Drug) :- atm(Drug, Atom, c, 4, Charge)),

symbond(Drug, Atom, Atom0, 1).



12 Vítor Santos Costa, Miguel Areias

The first example receives the input variable Drug from the head, hence it
obeys the modes. The second clause is illegal, because the second argument is
input, and it is the first occurrence of Atom. The third clause calls atm and then
symbond, making it legal.

The first step in the induce algorithm is to create a maximal conjunction of
goals that (i) include the example and (ii) goals satisfy the input and constant
declarations. The saturated clause can be seen as clause but also as a graph
(or hypergraph) where the edges are nodes and the edges are mode-induced
dependencies: generating rules is enumerating sub-graphs.

Aleph can display the bottom-clause as a text clause, but as the bottom
clause can easily reach hundreds or thousands of nodes, it is difficult to extract
any useful insights. An alternative is to use graph visualization. Next we show
results from D3blocks [28], an interface between Python and the D3.js library.

firstgraph2d3(Edges,Nodes,_Groups,Colors,Weights,Names,Preds) :-
maplist(split_edge, Edges, Sources, Targets),
maplist(edge_weight, Edges, EWeights),
d3 := d3blocks.'D3Blocks'(),
df := pd.'DataFrame'.from_dict({"source":Sources,

"target":Targets,
"weight":EWeights}),

d3.elasticgraph(df, filepath="./SatClause.html",
figsize=[3000,2000]),

maplist(set_node(d3), Nodes, Preds, Colors, Names, Weights),
d3.'Elasticgraph'.'D3graph'.show().

set_node(Whom, Node, Pred, Color, Name, Size) :-
n := Whom.'Elasticgraph'.'D3graph'.node_properties[Node],

n["tooltip"] := Pred,
n["color"] := Color,
n["label"] := Name,
n["size"] := Size.

First, the edges are converted into a Pandas data-frame. This data-frame
is the main structure for the search object d3. This object also stores nodes
as the dictionary node_properties. Dictionaries are not guaranteed to always
maintain key order. The Prolog code uses map_list to iterates over the nodes.
The set_node predicate fetches this dictionary by using unification to combine
the D3 object, the path to the properties dictionary, and the code key. Finally,
we set the properties.

We use color to distinguish five type of predicates:

1. the seed is the concept we want to learn (dark green);
2. the attributes are properties of the compound (light blue).
3. entities are the atoms in the compound (red);
4. relations provide nearest of the structure of the graph, (light green)



Bridging Prolog and Python to Enhance an ILP System 13

5. constraints are relations between attributes, such as arithmetic comparisons
between numeric attributes, like A = 8 or B ≤ 7.3. (yellow).

The picture is centered in the example. There is a ring with the atom ls and
an external ring with the boundings. Looking closely one can notice clusters of
atoms, quite often hydrogens bonded to a larger atom. One can also observe
that the boundings are always duplicates: for all A1 → A2 there is a A2 → A1.
The bonds form a nice half-ring with a cluster of carbons on top. The attributes
cluster to the left; they are totally independent from the rest of the network.
There are many other opportunities for visualization in this application, namely
within the search process. Figure 3 shows a snapshot of plot of a drug discovery
application’s bottom clause using the elastic graph algorithm.

atm(A,M,c,22,N)

lteq(N,-0.123)
gteq(N,-0.123)

N= -0.123

symbond(M,O,7)
symbond(M,S,1)

symbond(M,I,7)

atm(A,O,c,22,N)

symbond(O,P,7)
symbond(O,W,1)

symbond(O,M,7)

atm(A,P,c,22,N)

symbond(P,Q,7)

symbond(P,AK,1)

symbond(P,O,7)atm(A,Q,c,22,N)

symbond(Q,R,7)

symbond(Q,Y,1)

symbond(Q,P,7)

atm(A,R,c,22,N)

symbond(R,I,7)
symbond(R,A@,1)

symbond(R,Q,7)

atm(A,S,h,3,T)

lteq(T,0.137)gteq(T,0.137)
T= 0.137

symbond(S,M,1)
atm(A,W,h,3,X)

lteq(X,0.138)
gteq(X,0.138)

X= 0.138

symbond(W,O,1)atm(A,Y,h,3,X)

symbond(Y,Q,1)
atm(A,A@,h,3,X)

symbond(A@,R,1)

atm(A,AA,c,22,N)

symbond(AA,AB,7)

symbond(AA,AF,7)

symbond(AA,AK,1)

atm(A,AB,c,22,N)

symbond(AB,AC,7)symbond(AB,AG,1)

symbond(AB,AA,7)

atm(A,AC,c,22,N)

symbond(AC,AD,7)

symbond(AC,AH,1)symbond(AC,AB,7)

atm(A,AD,c,22,J)

lteq(J,0.208)gteq(J,0.208)
J= 0.208

symbond(AD,AE,7)

symbond(AD,AO,1)

symbond(AD,AC,7)

atm(A,AE,c,22,N)

symbond(AE,AF,7)symbond(AE,AI,1)symbond(AE,AD,7)

atm(A,AF,c,22,N)

symbond(AF,AA,7)
symbond(AF,AJ,1)

symbond(AF,AE,7)

atm(A,AG,h,3,T)

symbond(AG,AB,1)

atm(A,AH,h,3,T)

symbond(AH,AC,1)

atm(A,AI,h,3,T)

symbond(AI,AE,1)

atm(A,AJ,h,3,T)

symbond(AJ,AF,1)

atm(A,AK,s,74,AL)
lteq(AL,-0.093)

gteq(AL,-0.093)
AL= -0.093

symbond(AK,AA,1)

symbond(AK,P,1)

ashby-alert(amino,A,B)

connected(B@,B)

connected(E,B)

connected(B,BD)

connected(B,B@)

connected(B,E)

atm(A,AO,n,32,AP)

lteq(AP,-0.772)
gteq(AP,-0.772)

AP= -0.772

symbond(AO,AX,1)
symbond(AO,AY,1)

symbond(AO,AD,1)

atm(A,AS,n,32,AP)

symbond(AS,AT,1)
symbond(AS,AW,1)

symbond(AS,I,1)

atm(A,AT,h,1,AU)lteq(AU,0.338)
gteq(AU,0.338)

AU= 0.338

symbond(AT,AS,1)

atm(A,AW,h,1,AU)

symbond(AW,AS,1)

atm(A,AX,h,1,AU)

symbond(AX,AO,1)

atm(A,AY,h,1,AU)

symbond(AY,AO,1)

amine(A,B@)

connected(B@,E)

connected(E,B@)

amine(A,BA)connected(BC,BA)

connected(BA,G)

connected(BA,D)

connected(G,BA)

connected(D,BA)

sulfide(A,BB)
connected(BD,BB)

non-ar-6c-ring(A,BC)

connected(BC,G)

connected(BC,D)
connected(D,BC)

ashby-alert(amino,A,D)

connected(G,D)connected(D,G)

non-ar-6c-ring(A,BD)

six-ring(A,BC)

six-ring(A,BD)

symbond(I,M,7)

symbond(I,AS,1)
symbond(I,R,7)

ashby-alert(di10,A,E)

ashby-alert(di10,A,G)

ind(A,amino,H)

lteq(H,2)

gteq(H,2)
H=2

ind(A,di10,H)

atm(A,I,c,22,J)

active(A)

ames(A)

Fig. 3. A Bottom-Clause according to D3.js



14 Vítor Santos Costa, Miguel Areias

Arguably, the relations described in the snapshot are too complex to be an-
alyzed in a static visualization. However, the reader should keep in mind that
D3.js is interactive, which for for molecular structure visualization offers signif-
icant advantages. D3.js enables precise control over the rendering of molecular
diagrams, allowing for customizable layouts that accurately depict atom posi-
tions and bond types, including visual distinctions like bond thickness or color
coding. Its interactivity supports also dynamic exploration, such as zooming,
panning, and tool-tips for displaying the atomic properties, enhancing the user’s
engagement and understanding.

5.1 Other Applications

Often one tries to improve the leaner performance by seeing each clause in the
theory as an attribute, so that the set of clauses become the attributes of a
classifier. The next procedure learns an SVM classifier from a set of clauses plus
a set of examples, and evaluates its performance on the training data:

learn :-
findall(t(Train,Label),

(example(_,Pol,Ex),
( Pol=pos -> Label = 1 ; Label = 0),
findall(V,(clause(Ex,B),

(once(B)->V=1;V=0)),
Train),

), TrainingData),
maplist(zip,TrainingData,Data,Labels),
clf := sklearn.svm.'SVC'(kernel= "linear".

class_weight="balanced").
clf.fit(Data, Labels),
Scores := clf.predict_proba(Data).transpose()[1].tolist(),

scipy.metrics.'RocCurveDisplay'.from_predictions(Labels,
Scores).

The algorithm constructs a list of labels, and a list of lists that represent the
data (or examples) as bitmaps. The classifier is initialized, and trained according
to the data and labels; the data is converted by the interface from Prolog list of
lists to Python list with lists, and then by the NumPy library to an array. The
reverse process is more complex because YAP does not convert NumPy matrices;
we first transpose to extract the second column, next convert the NumPy vector
to a list, and then pass the result to provide a first evaluation on the data set.

6 Conclusions

As the amount of reusable existing libraries keeps on growing, programming
becomes more about connecting. This interface tries to take advantage of this
trend, by making it as natural as possible to use both languages together.



Bridging Prolog and Python to Enhance an ILP System 15

The main challenge was the complexity of both environments. We used C++
to obtain object orientation, and SWIG to automatically cover the libraries. The
"piano lifting" is still in C. Reference handling and documentation need work.
Altogether, we hope that this work will be a step to exploit the overall advantages
of Prolog systems, making Prolog more helpful, but also more fun.

As future work, we plan to compare the performance of our approach against
Janus, the Prolog-Python interface originally developed by Swift for XSB Prolog,
adopted by SWI-Prolog and the target of a joint effort between the XSB, SWI,
and ciao communities.

Acknowledgments. This work is financed by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia, within projects UIDB/
04434/2020, UIDP/04434/2020 and UIDB/50014/2020. DOI 10.54499/UIDB/50014/2020.

References

1. et al., M.C.: SICStus Prolog Users Manual (December 2022), https://sicstus.
sics.se/sicstus/docs/latest4/html/prologbeans/

2. Andersen, C., Swift, T.: The janus system: A bridge to new prolog applications. In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowalski, R.A., Rossi, F.
(eds.) Prolog: The Next 50 Years, Lecture Notes in Computer Science, vol. 13900,
pp. 93–104. Springer (2023). https://doi.org/10.1007/978-3-031-35254-6_8,
https://doi.org/10.1007/978-3-031-35254-6_8

3. Angelopoulos, N., Costa, V.S., Azevedo, J., Wielemaker, J., Camacho, R., Wes-
sels, L.F.A.: Integrative functional statistics in logic programming. In: Sagonas,
K. (ed.) Practical Aspects of Declarative Languages - 15th International Sym-
posium, PADL 2013, Rome, Italy, January 21-22, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 7752, pp. 190–205. Springer (2013), https:
//doi.org/10.1007/978-3-642-45284-0_13

4. Bartsch, G.: py-xsb (12 2004), collected at https://github.com/gooofy/py-xsb
5. Beazley, D.M.: SWIG: an easy to use tool for integrating scripting languages with

C and C++. In: Diekhans, M., Roseman, M. (eds.) Fourth Annual USENIX Tcl/Tk
Workshop 1996, Monterey, California, USA, July 10-13, 1996. USENIX Association
(1996)

6. Calejo, M.: Interprolog: Towards a declarative embedding of logic programming
in java. In: Alferes, J.J., Leite, J.A. (eds.) Logics in Artificial Intelligence, 9th
European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Pro-
ceedings. Lecture Notes in Computer Science, vol. 3229, pp. 714–717. Springer
(2004), https://doi.org/10.1007/978-3-540-30227-8_64

7. Carlsson, M., Mildner, P.: Sicstus prolog - the first 25 years. Theory Pract. Log.
Program. 12(1-2), 35–66 (2012), https://doi.org/10.1017/S1471068411000482

8. Castro, S., Mens, K., Moura, P.: JPC: A library for categorising and applying
inter-language conversions between java and prolog. Sci. Comput. Program. 134,
75–99 (2017), https://doi.org/10.1016/j.scico.2015.11.008

9. Chen, J., Muggleton, S.H., Santos, J.C.A.: Learning probabilistic logic models from
probabilistic examples. Mach. Learn. 73(1), 55–85 (2008), https://doi.org/10.
1007/s10994-008-5076-4

https://doi.org/10.54499/uidb/50014/2020
https://sicstus.sics.se/sicstus/docs/latest4/html/prologbeans/
https://sicstus.sics.se/sicstus/docs/latest4/html/prologbeans/
https://doi.org/10.1007/978-3-031-35254-6\_8
https://doi.org/10.1007/978-3-031-35254-6_8
https://doi.org/10.1007/978-3-031-35254-6_8
https://doi.org/10.1007/978-3-642-45284-0_13
https://doi.org/10.1007/978-3-642-45284-0_13
https://github.com/gooofy/py-xsb
https://doi.org/10.1007/978-3-540-30227-8_64
https://doi.org/10.1017/S1471068411000482
https://doi.org/10.1016/j.scico.2015.11.008
https://doi.org/10.1007/s10994-008-5076-4
https://doi.org/10.1007/s10994-008-5076-4


16 Vítor Santos Costa, Miguel Areias

10. Costa, V.S., Rocha, R., Damas, L.: The YAP prolog system. Theory Pract. Log.
Program. 12(1-2), 5–34 (2012), https://doi.org/10.1017/S1471068411000512

11. Deransart, P., Ed-Dbali, A., Cervoni, L.: Prolog - the standard: reference manual.
Springer (1996)

12. Diaz, D., Abreu, S., Codognet, P.: On the implementation of GNU prolog. The-
ory Pract. Log. Program. 12(1-2), 253–282 (2012), https://doi.org/10.1017/
S1471068411000470

13. Finn, P., Muggleton, S., Page, D., Srinivasan, A.: Pharmacophore discovery using
the inductive logic programming system progol. Machine Learning 30, 241–270
(1998)

14. no García, S.F.: pwig wrapper and interface generator (12 2004), collected at
https://pwig.sourceforge.net/

15. Hermenegildo, M.V., Bueno, F., Carro, M., López-García, P., Mera, E., Morales,
J.F., Puebla, G.: An overview of ciao and its design philosophy. Theory
Pract. Log. Program. 12(1-2), 219–252 (2012), https://doi.org/10.1017/
S1471068411000457

16. Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing in Science En-
gineering 9(3), 90–95 (2007)

17. Körner, P., Leuschel, M., Barbosa, J., Costa, V.S., Dahl, V., Hermenegildo, M.V.,
Morales, J.F., Wielemaker, J., Diaz, D., Abreu, S.: Fifty years of prolog and beyond.
Theory Pract. Log. Program. 22(6), 776–858 (2022), https://doi.org/10.1017/
S1471068422000102

18. Muggleton, S.H.: Inverting entailment and progol. In: Furukawa, K., Michie, D.,
Muggleton, S.H. (eds.) Machine Intelligence 14, Proceedings of the Fourteenth
Machine Intelligence Workshop, held at Hitachi Advanced Research Laboratories,
Tokyo, Japan, November 1993. pp. 135–190. Oxford University Press (1993)

19. Schimpf, J., Shen, K.: Eclipse - from LP to CLP. Theory Pract. Log. Program.
12(1-2), 127–156 (2012), https://doi.org/10.1017/S1471068411000469

20. Seward, A.J.: bedevere (04 2002), collected at https://bedevere.sourceforge.
net/

21. SICS Swedish ICT AB: Quintus Prolog Manual (2015), collected at https:
//quintus.sics.se/isl/quintuswww/site/index.html

22. Singleton, P., Dushin, F.: JPL: A bidirectional Prolog/Java interface (2018), col-
lected at https://jpl7.org/

23. Srinivasan, A.: The Aleph Manual (2001)
24. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.

Theory Pract. Log. Program. 12(1-2), 157–187 (2012), https://doi.org/10.1017/
S1471068411000500

25. Swift, T., Andersen, C.: The janus system: Multi-paradigm programming in pro-
log and python. In: Pontelli, E., Costantini, S., Dodaro, C., Gaggl, S.A., Calegari,
R., d’Avila Garcez, A.S., Fabiano, F., Mileo, A., Russo, A., Toni, F. (eds.) Pro-
ceedings 39th International Conference on Logic Programming, ICLP 2023, Impe-
rial College London, UK, 9th July 2023 - 15th July 2023. EPTCS, vol. 385, pp.
241–255 (2023). https://doi.org/10.4204/EPTCS.385.24, https://doi.org/10.
4204/EPTCS.385.24

26. Tarau, P.: Fluents: A refactoring of prolog for uniform reflection an interopera-
tion with external objects. In: Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M.,
Lau, K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey, P.J. (eds.) Computa-
tional Logic - CL 2000, First International Conference, London, UK, 24-28 July,
2000, Proceedings. Lecture Notes in Computer Science, vol. 1861, pp. 1225–1239.
Springer (2000), https://doi.org/10.1007/3-540-44957-4_82

https://doi.org/10.1017/S1471068411000512
https://doi.org/10.1017/S1471068411000470
https://doi.org/10.1017/S1471068411000470
https://pwig.sourceforge.net/
https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1017/S1471068411000469
https://bedevere.sourceforge.net/
https://bedevere.sourceforge.net/
https://quintus.sics.se/isl/quintuswww/site/index.html
https://quintus.sics.se/isl/quintuswww/site/index.html
https://jpl7.org/
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.4204/EPTCS.385.24
https://doi.org/10.4204/EPTCS.385.24
https://doi.org/10.4204/EPTCS.385.24
https://doi.org/10.4204/EPTCS.385.24
https://doi.org/10.1007/3-540-44957-4_82


Bridging Prolog and Python to Enhance an ILP System 17

27. Tarau, P.: Agent oriented logic programming in jinni 2004. In: Haddad, H.,
Liebrock, L.M., Omicini, A., Wainwright, R.L. (eds.) Proceedings of the 2005 ACM
Symposium on Applied Computing (SAC), Santa Fe, New Mexico, USA, March
13-17, 2005. pp. 1427–1428. ACM (2005), https://doi.org/10.1145/1066677.
1067000

28. Taskesen, E.: D3blocks: The python library to create interactive and stan-
dalone d3js charts (Sep 2022), collected at https://towardsdatascience.com/
d3blocks-the-python-library-to-create-interactive-and-standalone-d3js-charts-3dda98ce97d4/

29. Tekol, Y.: Pyswip (2023), collected at https://github.com/yuce/pyswip
30. Waskom, M.L.: Seaborn: Statistical data visualization. Journal of Open Source

Software 6(60), 3021 (2021)
31. Wielemaker, J., Costa, V.S.: On the portability of prolog applications. In: Rocha,

R., Launchbury, J. (eds.) Practical Aspects of Declarative Languages - 13th In-
ternational Symposium, PADL 2011, Austin, TX, USA, January 24-25, 2011. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6539, pp. 69–83. Springer (2011),
https://doi.org/10.1007/978-3-642-18378-2_8

32. Wielemaker, J., Hendricks, M.: Why it’s nice to be quoted: Quasiquoting for prolog.
CoRR abs/1308.3941 (2013), http://arxiv.org/abs/1308.3941

33. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. The-
ory Pract. Log. Program. 12(1-2), 67–96 (2012), https://doi.org/10.1017/
S1471068411000494

34. Zhou, N.: The language features and architecture of b-prolog. Theory
Pract. Log. Program. 12(1-2), 189–218 (2012), https://doi.org/10.1017/
S1471068411000445

https://doi.org/10.1145/1066677.1067000
https://doi.org/10.1145/1066677.1067000
https://towardsdatascience.com/d3blocks-the-python-library-to-create-interactive-and-standalone-d3js-charts-3dda98ce97d4/
https://towardsdatascience.com/d3blocks-the-python-library-to-create-interactive-and-standalone-d3js-charts-3dda98ce97d4/
https://github.com/yuce/pyswip
https://doi.org/10.1007/978-3-642-18378-2_8
http://arxiv.org/abs/1308.3941
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000445
https://doi.org/10.1017/S1471068411000445

	On Bridging Prolog and Python to Enhance an Inductive Logic Programming System

