
On Scaling Dynamic Programming Problems
with a Multithreaded Tabling Prolog System

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

{miguel-areias, ricroc}@dcc.fc.up.pt

Abstract

Tabling is a powerful implementation technique that improves the declarativeness and expressiveness of
traditional Prolog systems in dealing with recursion and redundant computations. It can be viewed as a
natural tool to implement dynamic programming problems, where a general recursive strategy divides a
problem in simple sub-problems that are often the same. When tabling is combined with multithreading,
we have the best of both worlds, since we can exploit the combination of higher declarative semantics
with higher procedural control. However, at the engine level, such combination for dynamic programming
problems is very difficult to exploit in order to achieve execution scalability as we increase the number
of running threads. In this work, we focus on two well-known dynamic programming problems, the
Knapsack and the Longest Common Subsequence problems, and we discuss how we were able to scale
their execution by using the multithreaded tabling engine of the Yap Prolog system. To the best of our
knowledge, this is the first work showing a Prolog system to be able to scale the execution of multithreaded
dynamic programming problems. Our experiments also show that our system can achieve comparable or
even better speedup results than other parallel implementations of the same problems.

Keywords: Dynamic Programming, Multithreading, Tabling, Prolog, Scalability

1. Introduction

Dynamic programming [1] is a general recursive
strategy that consists in dividing a problem in sim-
ple sub-problems that, often, are the same. The
idea behind dynamic programming is to reduce
the number of computations: once an answer to a
given sub-problem has been computed, it is memo-
rized and the next time the same answer is needed,
it is simply looked up. Dynamic programming
is especially useful in solving dynamic optimiza-
tion problems and optimal control problems when
the number of overlapping sub-problems grows
exponentially as a function of the size of the input.
Dynamic programming can be implemented using
both bottom-up or top-down approaches. In bottom-
up, it starts from the base sub-problems and recur-
sively computes the next level sub-problems until
reaching the answer to the given problem. On the
other hand, the top-down approach starts from the

given problem and uses recursion to subdivide a
problem into sub-problems until reaching the base
sub-problems. Answers to previously computed
sub-problems are reused rather than being recom-
puted. An advantage of the top-down approach
is that it might not need to compute all possible
sub-problems.

However, dynamic programming has some limi-
tations, such as, the curse of dimensionality [1] which
might occur in problems with high-dimensional
spaces. One possible solution to overcome these
limitations is the usage of adaptive dynamic pro-
gramming (ADP) algorithms that approximate the
optimal solution of the cost function in the dynamic
programming problem. More recently, Zhang et al.
studied the quality of the approximation of ADP al-
gorithms by analyzing multiple factors, such as,
their convergence and the execution time hori-
zon [2]. In this work, we focus on problems with
low-dimensional spaces.

Preprint submitted to Elsevier June 27, 2016

Most of the proposals that can be found in the lit-
erature to parallelize dynamic programming prob-
lems with low-dimensional spaces follow the par-
allelization of a sequential bottom-up algorithm.
All these proposals are usually based on a care-
ful analysis of the sequential algorithm in order to
find the best way to minimize data dependencies
in the supporting data structures of memorization,
which are often a matrix or an array. The result-
ing parallelization requires then a synchronization
mechanism before recursively computing the next
level sub-problems. Alternatively, a generic pro-
posal to parallelize top-down dynamic program-
ming algorithms is Stivala et al.’s work [3], where
a set of threads solve the entire dynamic program
independently but with a randomized choice of
sub-problems. In other words, each thread runs ex-
actly the same function, but a randomized choice of
sub-problems results in threads diverging to com-
pute different sub-problems, while reusing the sub-
problem’s results computed, in the meantime, by
the other threads.

Tabling [4] is a recognized and powerful imple-
mentation technique that proved its viability and
efficiency to overcome Prolog’s susceptibility to in-
finite loops and redundant computations. Tabling
consists of saving and reusing the results of sub-
computations during the execution of a program
and, for that, the calls and the answers to tabled
subgoals are memorized in a proper data structure
called the table space. Tabling can thus be viewed as
a natural tool to implement dynamic programming
problems. When tabling is combined with multi-
threading, we have the best of both worlds, since
we can exploit the combination of higher declar-
ative semantics with higher procedural control.
However, such combination for dynamic program-
ming problems is very difficult to exploit in order
to achieve execution scalability as we increase the
number of running threads. To the best of our
knowledge, XSB [5] and Yap [6] are the only Pro-
log systems that support the combination of mul-
tithreading with tabling, but none of them showed
until now to be able to scale the execution of mul-
tithreaded dynamic programming problems. This
is a difficult task since we need to combine the ex-
plicit thread control required to launch, assign and
schedule tasks to threads, with the built-in tabling
evaluation mechanism, which is implicit and can-
not be controlled by the user.

In this work, we focus on two well-known dy-
namic programming problems, the Knapsack and

the Longest Common Subsequence (LCS) prob-
lems, and we discuss how we were able to scale
their execution by taking advantage of the mul-
tithreaded tabling engine of the Yap Prolog sys-
tem. For each problem, we present a multithreaded
tabled top-down and bottom-up approach. For the
top-down approach, we use Yap’s mode-directed
tabling support [7] that allows to aggregate an-
swers by specifying pre-defined modes such as min
or max. For the bottom-up approach, we use Yap’s
standard tabling support [8]. To the best of our
knowledge, no previous Prolog system showed to
be able to scale the execution of multithreaded dy-
namic programming problems.

A key contribution of this work is our new asyn-
chronous version of the table space data structures,
where threads view their tables as private but are
able to use the answers of a sub-problem, if an-
other thread has already computed them. By shar-
ing only completed tables, we avoid the problem of
dealing with concurrent updates to the table space
and, more importantly, the problem of dealing with
concurrent deletes, as in the case of using mode-
directed tabling.

Our experiments on a 32-core AMD machine
show that using Yap’s simple and efficient multi-
threaded table space design, we were able to scale
the execution of both knapsack and LCS problems
for both top-down and bottom-up approaches. To
put our experiments in perspective, we compare
our results with other systems and, in particular,
we experimented with the state-of-the-art XSB Pro-
log system [5]. In general, Yap’s speedup results are
comparable and sometimes better than other par-
allel implementations of the same problems. Re-
garding the particular comparison with XSB, Yap’s
results clearly outperform those of XSB for the ex-
ecution time and for the speedups.

The remainder of the paper is organized as fol-
lows. First, we describe some background about
Yap’s standard, mode-directed and multithreaded
tabling support and discuss XSB’s approach to
multithreaded tabling. Next, for both Knapsack
and LCS problems, we introduce the problem and
present in detail our parallel implementations us-
ing either a top-down and bottom-up dynamic pro-
gramming approach. Then, we present a set of ex-
periments and discuss the results. At the end, we
discuss related work and outline some conclusions
and further work.

2

2. Background

This section introduces some background
needed for the following sections.

2.1. Standard Tabling

The basic idea behind tabling is straightforward:
programs are evaluated by storing answers for
tabled subgoals in an appropriate data space, called
the table space. Variant calls1 to tabled subgoals are
not re-evaluated against the program clauses, in-
stead they are resolved by consuming the answers
already stored in their table entries. During this
process, as further new answers are found, they
are stored in their tables and later returned to all
variant calls.

With these requirements, the design of the table
space is critical to achieve an efficient implemen-
tation. Yap uses tries which is regarded as a very
efficient way to implement the table space [9]. Tries
are trees in which common prefixes are represented
only once. The trie data structure provides com-
plete discrimination for terms and permits look up
and possibly insertion to be performed in a sin-
gle pass through a term, hence resulting in a very
efficient and compact data structure for term rep-
resentation. Figure 1 shows the general table space
organization for a tabled predicate in Yap.

Tabled Predicate
Compiled Code

Table Entry

Subgoal
Frame
call_C1

Subgoal Trie Structure

Answer
Trie

Structure

Subgoal
Frame
call_C2

Answer
Trie

Structure

Subgoal
Frame
call_Cn

Answer
Trie

Structure

. . .

. . .

Figure 1: Yap’s table space organization

1Two terms are considered to be variant [of each other, i.e.,
are equivalent] if they are the same up to variable renaming.

At the entry point we have the table entry data
structure. This structure is allocated when a tabled
predicate is being compiled, so that a pointer to the
table entry can be included in its compiled code.
This guarantees that further calls to the predicate
will access the table space starting from the same
point. Below the table entry, we have the subgoal
trie structure. Each different tabled subgoal call to
the predicate at hand corresponds to a unique path
through the subgoal trie structure, always starting
from the table entry, passing by several subgoal
trie data units, the subgoal trie nodes, and reaching a
leaf data structure, the subgoal frame. The subgoal
frame stores additional information about the sub-
goal and acts like an entry point to the answer trie
structure. Each unique path through the answer
trie data units, the answer trie nodes, corresponds to
a different tabled answer to the entry subgoal.

2.2. Mode-Directed Tabling

In a traditional tabling system, all the arguments
of a tabled subgoal call are considered when storing
answers into the table space. When a new answer
is not a variant of any answer that is already in the
table space, then it is always considered for inser-
tion. Therefore, traditional tabling is very good for
problems that require storing all answers. How-
ever, with dynamic programming, usually, the goal
is to dynamically calculate optimal or selective an-
swers as new results arrive. Writing dynamic pro-
gramming algorithms can thus be a difficult task
without further support.

Mode-directed tabling is an extension to the tabling
technique that supports the definition of modes for
specifying how answers are inserted into the table
space. Within mode-directed tabling, tabled pred-
icates are declared using statements of the form
‘table p(m1, ...,mn)’, where the mi’s are mode opera-
tors for the arguments. The idea is to define the
arguments to be considered for variant checking
(the index arguments) and how variant answers
should be tabled regarding the remaining argu-
ments (the output arguments). In Yap, index ar-
guments are represented with mode index, while
arguments with modes first, last, min, max, sum and
all represent output arguments [7]. After an an-
swer is generated, the system tables the answer
only if it is preferable, accordingly to the meaning of
the output arguments, than some existing variant
answer.

3

2.3. XSB’s Approach to Multithreaded Tabling
The XSB system supports two types of models

for the combination of multithreading with tabling:
private tables and shared tables [5, 10]. On the pri-
vate tables model, each thread keeps its own copy
of the table space. On one hand, this avoids con-
currency over the tables but, on the other hand, the
same table entry can be repeatedly computed by
several threads, thus increasing the memory usage
necessary to represent the table space. Moreover,
since no information is shared between threads, a
thread cannot reuse the results being tabled by an-
other thread to reduce execution time in a parallel
environment.

For shared tables, the running threads store only
once the same table entry, even if multiple threads
use it. This model can be viewed as a varia-
tion of the table-parallelism proposal [11], where a
tabled computation can be decomposed into a set of
smaller sub-computations, each being performed
by a different thread. Each sub-computation is
computed independently by the first thread call-
ing it, the generator thread, and each generator is the
sole responsible for fully exploiting and obtaining
the complete set of answers for a sub-computation.
Variant sub-computations by other threads are re-
solved by consuming the answers stored by the
generator thread. When a set of sub-computations
being computed by different threads is mutually
dependent, then a usurpation operation [12] syn-
chronizes threads and a single thread assumes the
computation of all sub-computations, turning the
remaining threads into consumer threads. This
maintains the correctness of the table space but
has a major disadvantage: it restricts the poten-
tial of concurrency to non-mutually dependent
sub-computations. As our experiments will show,
this severely constrains the goal of scaling multi-
threaded dynamic programming problems.

Concerning the single threaded version, XSB
does not support mode-directed tabling, but in-
stead supports two answer subsumption mecha-
nisms [13] that can reproduce the same behavior.
Since the main focus of this work is the multi-
threaded tabling environment, we will use XSB
without support for answer subsumption in the
performance analysis section.

3. Our Approach to Multithreaded Tabling

Yap implements a SWI-Prolog compatible mul-
tithreading library [14]. Like in SWI-Prolog, Yap’s

threads have their own execution stacks and only
share the code area where predicates, records, flags
and other global non-backtrackable data are stored.
For tabled evaluation, a thread views its tables as
private but, at the engine level, we use a common
table space. From the thread point of view, the ta-
bles are private but, from the implementation point
of view, the tables are shared among all threads.

In previous work [6], we have proposed three
designs for the common table space. This work
uses the Subgoal Sharing (SS) design. In the SS de-
sign, the subgoal trie structures are shared among
all threads and the leaf data structures representing
each tabled subgoal call Ci, instead of pointing to a
single subgoal frame, point to a list of private sub-
goal frames, one per thread that is evaluating the
call Ci. The answers for call Ci for each thread are
then also stored in an answer trie structure, but pri-
vate to each thread. As a consequence, no sharing
of answers between threads is done.

In this work, we propose a new asynchronous
version of the SS design, where threads view their
tables as private but are able to use the answers of
a sub-problem, if another thread has already com-
puted them. The idea is as follows. Whenever a
thread calls a new tabled subgoal, first it searches
the table space to lookup if any other thread has
already computed the answers for that call. If
so, then the thread reuses the available answers.
Otherwise, it computes the subgoal call itself in
a private fashion. Several threads can work on
the same subgoal simultaneously, i.e., we do not
protect a subgoal from further evaluation while
other threads have picked it up already. The first
thread completing a computation, shares the re-
sults by making them available (public) to the other
threads.

Figure 2 illustrates the table data structures for
the subgoal sharing design with shared answers.
Threads can concurrently access the subgoal trie
structures, for both read and write operations,
and the answer trie structures, but only for read-
ing (black data structures in Fig. 2). Concurrent
updates to the subgoal trie structures are imple-
mented through a simpler and efficient lock-free
design based on hash tries that minimizes the prob-
lems of false sharing and cache memory effects by
dispersing the concurrent areas as much as pos-
sible [15]. Lock-freedom is implemented by us-
ing the CAS atomic instruction that nowadays is
widely found on many common architectures.

All subgoal frames and answer tries are initially

4

Thread_1
Subgoal
Frame
call_Ci

Shared Subgoal Trie Structure

Private
Answer Trie
Structure

Completed
Subgoal
Frame
call_Ci

Shared
Answer Trie
Structure

Thread_k
Subgoal
Frame
call_Ci

Private
Answer Trie
Structure

. . .

Figure 2: Subgoal sharing design with shared answers

private to a thread. Later, when the first subgoal
frame is completed, i.e., when we have found the
full set of answers for it, it is marked as completed
and put in the beginning of the list of private sub-
goal frames (configuration shown in Fig. 2). Fol-
lowing calls made by other threads to this subgoal
call simply consume the answers from the com-
pleted subgoal frame, thus avoiding recomputing
the subgoal call at hand. By sharing only com-
pleted answer tries, we avoid the following prob-
lems: (i) dealing with concurrent updates to the
answer tries; (ii) managing the different set of an-
swers that each thread has found; (iii) dealing with
concurrent deletes, as in the case of using mode-
directed tabling.

4. 0-1 Knapsack Problem

The Knapsack problem [16] is a well-known
problem in combinatorial optimization that can be
found in many domains such as logistics, manufac-
turing, finance or telecommunications. Given a set
of items, each with a weight and a profit, the goal
is to determine the number of items of each kind
to include in a collection so that the total weight
is equal or less than a given capacity and the total
profit is as much as possible. In this paper, for the
sake of simplicity, we will use a special case of the
0-1 Knapsack problem with integer weights and prof-
its. The 0-1 Knapsack problem restricts the number
of copies of each kind of item to be zero or one.
We formulate the problem as follows. Given a set
of items i ∈ {1, ...,n}, each with a weight wi ∈ N+

0
and a profit pi ∈ N+

0 , and a Knapsack with ca-
pacity C ∈ N+

0 , the following formulas define the
Knapsack problem (KS) and the restriction (KSR)

that avoids any trivial solution, by insuring that
each item fits into the Knapsack and that the total
weight of all items exceeds the Knapsack capacity.

KS =

max

n∑
i=1

pi.xi,

s.t.
n∑

i=1
wi.xi ≤ C,

xi ∈ {0, 1}, i ∈ {1, ...,n}.

KSR =

∀i ∈ {1, ...,n},wi ≤ C,
n∑

i=1
wi > C.

4.1. Top-Down Approach

We first introduce a standard top-down ap-
proach that solves the Knapsack problem using
mode-directed tabling. Figure 3 shows our Yap’s
implementation adapted from [17] to include the
dimension of profitability.

% table declaration

:- table ks(index, index, max).
% base case

ks(0, C, 0).

% exclude case

ks(I, C, P) :-

I > 0, ks_exc(I, C, P, 1).

% include case

ks(I, C, P) :-

I > 0, ks_inc(I, C, P, 1).

% exclude N items starting from I

ks_exc(I, C, P, N) :-

J is I - N, ks(J, C, P).
% include I and

% exclude the next N-1 items

ks_inc(I, C, P, N) :-

item(I, Ci, Pi), Cj is C - Ci,
Cj >= 0, J is I - N,
ks(J, Cj, Pj), P is Pi + Pj.

Figure 3: A top-down approach for the Knapsack problem with
mode-directed tabling

The table directive declares that predicate ks with
arity 3 (or ks/3 for short) is to be tabled using
modes (index, index,max), meaning that the third
argument (the profit) should store only the max-
imal answers for the first two arguments (the in-
dex of the number of items being considered and
Knapsack’s capacity). The remaining part of the

5

program implements a recursive top-down defini-
tion of the Knapsack problem. The first clause is
the base case and defines that the empty set is a
solution with profit 0. The second clause excludes
the current item from the solution set and the third
includes the current item in the solution if its in-
clusion does not overcome the current capacity of
the Knapsack. For simplicity of integration with
the parallel approach presented next, we are al-
ready using two auxiliary predicates, ks exc/4 and
ks inc/4, as a way to implement the exclude and in-
clude cases. These auxiliary predicates take an ex-
tra argument N (fourth argument) that represents
the number of items to jump (or exclude) in the re-
cursion procedure. Here, for the sequential version
of the problem, N is always 1, i.e, we always move
to the next item.

To parallelize top-down dynamic programming
algorithms, we followed Stivala et al.’s work [3]
where a set of threads solve the entire program
independently but with a randomized choice of
the sub-problems. For the Knapsack problem, we
have two sub-problems, the exclude and include
cases. We can thus consider two alternative execu-
tion choices at each step: (i) exclude first and in-
clude next (as in the sequential version presented
in Fig. 3), or (ii) include first and exclude next.
The randomized choice of sub-problems results in
the threads diverging to compute different sub-
problems simultaneously while reusing the sub-
problems’ results computed in the meantime by
the other threads. Since the number of overlap-
ping sub-problems is usually high in these kind of
problems, it is expected that the available set of
sub-problems to be computed will be evenly di-
vided by the number of available threads resulting
in less computation time required to reach the final
result.

For the parallel version of the Knapsack prob-
lem, we have implemented two alternative ver-
sions. The first version simply follows Stivala et
al.’s original random approach. The second ver-
sion extends the first one with an extra step where
the computation is first moved forward using a
random displacement of the number of items to
be excluded and only then the computation is per-
formed for the next item, as usual. By doing this, it
is expected that the sub-problems closer to the base
cases are computed earlier, meaning that their sub-
goal frames are also marked as completed earlier,
which avoids recomputation when other threads
call the same sub-problems. Figure 4 shows the

implementation. The difference between the two
versions is that the first version does not consider
the first extra clause in the aux exc/4 and aux inc/4
auxiliary predicates.

% table declaration

:- table ks(index, index, max).
% base case

ks(0, C, 0).

% random choice

ks(I, C, P) :-

I > 0, random(2, maxRandom , N),

R is N mod 2,
(R = = 0 ->

aux_exc(I, C, P, N)

;

aux_inc(I, C, P, N)).

% try exclude first and include next

aux_exc(I, C, P, N) :-

ks_exc(I, C, P, N).

aux_exc(I, C, P, _) :-

ks_exc(I, C, P, 1).

aux_exc(I, C, P, _) :-

ks_inc(I, C, P, 1).

% try include first and exclude next

aux_inc(I, C, P, N) :-

ks_inc(I, C, P, N).

aux_inc(I, C, P, _) :-

ks_inc(I, C, P, 1).

aux_inc(I, C, P, _) :-

ks_exc(I, C, P, 1).

Figure 4: A top-down parallel version of the Knapsack problem
with mode-directed tabling

4.2. Bottom-Up Approach
A straightforward method to solve the Knap-

sack problem bottom-up, for a fixed capacity c, is
to consider all 2n possible subsets of the n items
and choose the one that maximizes the profit. The
recursive application of this algorithm to increas-
ing capacities c ∈ {1, ...,C}, yields a Knapsack of
maximum profit for the given capacity C [18]. The
bottom-up characteristic comes from the fact that,
given a Knapsack with capacity c and using i items,
i < n, the decision to include the next item j, j = i+1,
leads to two situations: (i) if j is not included, the
Knapsack profit is unchanged; (ii) if j is included,
the profit is the result of the maximum profit of
the Knapsack with the same i items but with ca-
pacity c − w j (the capacity needed to include the

6

weight w j of item j) increased by p j (the profit of
the item j being included). The algorithm then de-
cides whether or not to include an item based on
which choice leads to maximum profit. Figure 5
shows the KS[n,C] matrix. The rows define the
items and the columns define the Knapsack capac-
ities. The first column and row are filled with zeros,
which are the initial profit for the Knapsacks with
no items or no capacity.

0

n

0 c-wj c ...

.
.
.

0 0 0 0

0

0

.
.
.

i

0j

KS
[n,C]

C

0

...

0

...

0

0

0

Figure 5: Knapsack bottom-up matrix

The sequential version of the algorithm can be
constructed row by row or column by column. The
computation of each sub-problem KS[j, c] consid-
ers the maximum profitability obtained between
KS[j−1, c] and KS[j−1, c−w j−1]+p j. When all sub-
problems are computed, KS[n,C] holds the best
profitability for the full problem. Figure 6 shows
Yap’s implementation. For simplicity of presen-
tation, we are omitting the predicate that imple-
ments the main loop used to recursively traverse
the matrix and launch the computation for each
sub-problem.

The table directive declares that predicate ks/3 is
to be tabled using standard tabling. Since here a
sub-problem can be computed from the results of
its sub-problems, standard tabling is enough and
there is no need for mode-directed tabling. The
first two clauses of ks/3 are the base cases and de-
fine that the Knapsacks with no items or no capac-
ity have profit 0. The third clause deals with the
cases where an item’s weight exceeds the Knap-
sack capacity and the fourth clause is the one that
implements the main case discussed above.

Filling cells in subsequent rows requires access-
ing two cells from the previous row: one from the
same column and one from the column offset by
the weight of the current item. Thus, computing
a row i depends only on the sub-problems at row
i − 1. A possible parallelization is, for each row,

% table declaration

:- table ks/3.
% base cases

ks(0, C, 0).

ks(I, 0, 0).

% item I exceeds capacity C

ks(I, C, P) :-

I > 0, item(I, Ci, Pi), Ci > C,

J is I - 1, ks(J, C, P).
% item I fits in capacity C

ks(I, C, P) :-

I > 0, item(I, Ci, Pi), Ci =< C,

Cj is C - Ci, Cj >= 0, J is I - 1,
ks(J, Cj, Pj), P1 is Pj + Pi,
ks(J, C, P2), max(P1, P2, P).

Figure 6: A bottom-up approach for the Knapsack problem with
standard tabling

to divide the computation of the C columns be-
tween the available threads and then wait for all
threads to complete in order to synchronize before
computing the next row.

Here, since we want to take advantage of the
built-in tabling mechanism, which is implicit and
cannot be controlled by the user, we want to avoid
this kind of synchronization between iterations.
Hence, when a sub-problem in the previous row
was not computed yet (i.e., marked as completed
in one of the subgoal frames for the given call),
instead of waiting for the corresponding result to
be computed by another thread, the current thread
starts also its computation and for that it can re-
cursively call many other sub-problems not com-
puted yet. Despite this can lead to redundant sub-
computations, it avoids synchronization. In fact,
as we will see, this strategy showed to be very ef-
fective.

We next introduce our generic multithreaded
scheduler used to load balancing the access to a
set of concurrent tasks. We assume that the num-
ber of tasks is known before execution starts and
that tasks are numbered incrementally starting at 1.
For the Knapsack problem, we will consider that
the number of tasks is the number of capacities
c ∈ {1, ...,C} (alternatively, we could have consid-
ered the number of items i ∈ {1, ...,n}). In a nut-
shell, the scheduler uses a user-level mutex to pro-
tect a concurrent queue that stores the indices of the
available tasks. In fact, since tasks are numbered
incrementally, the queue simply needs to store the

7

index of the next available task. When a thread
gets access to the queue of tasks, it picks a chunk of
consecutive tasks and updates the queue’s stored
index accordingly. Figure 7 shows the Prolog code
that implements the main execution loop of each
thread.

% initialize mutex

:- mutex_create(queueLock).

% initialize queue

:- set_value(queueIndex , 0).

% main execution loop

do_work(NumberOfTasks , ChunkSize) :-

mutex_lock(queueLock),

get_value(queueIndex , Current),

(Current = NumberOfTasks ->

% terminate execution

mutex_unlock(queueLock)

;

First is Current + 1,
Last is Current + ChunkSize ,
set_value(queueIndex , Last),

mutex_unlock(queueLock),

compute_tasks(First, Last),

% get more work

do_work(NumberOfTasks , ChunkSize)

).

Figure 7: The generic execution loop of each thread for the
bottom-up approach

The top declarations initialize the queueLock mu-
tex and the queueIndex queue. The predicate
do work/2 implements the main execution loop of
each thread and is recursively executed until no
more tasks exist in the queue. It receives two ar-
guments: the total number of tasks in the prob-
lem (NumberO f Tasks); and the chunk size to be
considered when retrieving tasks from the queue
(ChunkSize). In each loop, a thread starts by gain-
ing access to the mutex and then it checks the
queue. If the queue is empty, case in which the test
Current = NumberO f Tasks succeeds2, the mutex is
released and the thread terminates execution. Oth-
erwise, the thread picks a new chunk of consecutive
tasks and updates the queue’s stored index accord-
ingly. Variables First and Last define the lower and
upper bounds of the chunk of tasks obtained. The

2In order to avoid low-level details which are not relevant
to this work, the reader can assume that NumberO f Tasks is a
multiple of ChunkSize.

tasks are then evaluated using the compute tasks/2
predicate, which calls the ks/3 predicate for the set
of Knapsack sub-problems associated with the task.
After the compute tasks/2 finishes, the do work/2
predicate is called again to get more tasks from
the queue. The process repeats until no more tasks
exist.

5. Longest Common Subsequence Problem

The problem of computing the length of the
Longest Common Subsequence (LCS) is represen-
tative of a class of dynamic programming algo-
rithms for string comparison that are based on
getting a similarity degree. A good example is
the sequence alignment, which is a fundamental
technique for biologists to investigate the simi-
larity between species. The LCS problem can be
defined as follows. Given a finite set of sym-
bols S and two sequences U = 〈u1,u2, ...,un〉 and
V = 〈v1, v2, ..., vm〉 such that ∀i∈1,...,n,ui ∈ S and
∀i∈1,...,m, vi ∈ S, we say that U has a common sub-
sequence with V of length k if there are indices
i1, i2, ..., ik, j1, j2, ..., jk : 1 ≤ i1 < i2 < ... < ik ≤ n and
1 ≤ j1 < j2 < ... < jk ≤ m such that ∀l∈1,...,k,uil = v jl .
The length k is considered to be the longest com-
mon subsequence if it is maximal.

5.1. Top-Down Approach

We next introduce a standard top-down ap-
proach that solves the LCS problem using mode-
directed tabling. Figure 8 shows Yap’s implemen-
tation adapted from [17].

The first two clauses of lcs/3 are the base cases
defining that for empty sequences the LCS (third
argument) is 0. The third clause deals with the
cases where the current symbols in both sequences
match (arguments Iu and Iv represent, respectively,
the current indices in sequences U and V to be con-
sidered). The fourth and fifth clauses represent the
opposite case, where the symbols do not match,
and each clause moves one of the sequences to
the next symbol (note that recursion is done in de-
scending order until reaching index 0). Again, for
simplicity of integration with the parallel approach
presented next, we are already using two auxiliary
predicates, lcs u/4 and lcs v/4, as a way to imple-
ment the unmatched cases. As for the Knapsack
problem, these two auxiliary predicates take an ex-
tra argument N (fourth argument) that represents
the number of symbols to jump in the recursion

8

% table declaration

:- table lcs(index, index, max).
% base cases

lcs(I, 0, 0).

lcs(0, I, 0).

% matched case

lcs(Iu, Iv, L) :-

Iu > 0, Iv > 0,

symbol_u(Iu, S), symbol_v(Iv, S),

Ju is Iu - 1, Jv is Iv - 1,
lcs(Ju, Jv, Lj), L is Lj + 1.

% sequence U case

lcs(Iu, Iv, L) :-

Iu > 0, Iv > 0,

lcs_u(Iu, Iv, L, 1).

% sequence V case

lcs(Iu, Iv, L) :-

Iu > 0, Iv > 0,

lcs_v(Iu, Iv, L, 1).

% jump N symbols in sequence U

lcs_u(Iu, Iv, L, N) :-

symbol_u(Iu, Su), symbol_v(Iv, Sv),

Su =\= Sv, Ju is Iu - N,
lcs(Ju, Iv, L).

% jump N symbols in sequence V

lcs_v(Iu, Iv, L, N) :-

symbol_u(Iu, Su), symbol_v(Iv, Sv),

Su =\= Sv, Jv is Iv - N,
lcs(Iu, Jv, L).

Figure 8: A top-down approach for the LCS problem with mode-
directed tabling

procedure. For the sequential version of the prob-
lem, N is always 1, meaning that we always move
to the next symbol.

Similarly to Knapsack’s problem, to parallelize
the LCS sequential top-down approach, we have
implemented two alternative versions. The first
version follows Stivala et al.’s original random ap-
proach. The second version extends the first one
with an extra step where the computation is first
moved forward using a random displacement of
the number of symbols to jump and only then the
computation is performed for the next symbol, as
usual. Figure 9 shows the implementation. The
difference between the two versions is that the first
version does not consider the first extra clause in
the aux u/4 and aux v/4 auxiliary predicates.

% table declaration

:- table lcs(index, index, max).
% base cases

lcs(I, 0, 0).

lcs(0, I, 0).

% matched case

lcs(Iu, Iv, L) :-

Iu > 0, Iv > 0,

symbol_u(Iu, S), symbol_v(Iv, S),

Ju is Iu - 1, Jv is Iv - 1,
lcs(Ju, Jv, Lj), L is Lj + 1.

% random choice

lcs(Iu, Iv, L) :-

Iu > 0, Iv > 0,

random(2, maxRandom , N),

R is N mod 2,
(R = = 0 ->

aux_u(Iu, Iv, L, N)

;

aux_v(Iu, Iv, L, N)).

% try sequence U first and V next

aux_u(Iu, Iv, L, N) :-

lcs_u(Iu, Iv, L, N).

aux_u(Iu, Iv, L, _) :-

lcs_u(Iu, Iv, L, 1).

aux_u(Iu, Iv, L, _) :-

lcs_v(Iu, Iv, L, 1).

% try sequence V first and U next

aux_v(Iu, Iv, L, N) :-

lcs_v(Iu, Iv, L, N).

aux_v(Iu, Iv, L, _) :-

lcs_v(Iu, Iv, L, 1).

aux_v(Iu, Iv, L, _) :-

lcs_u(Iu, Iv, L, 1).

Figure 9: A top-down parallel version of the LCS problem with
mode-directed tabling

5.2. Bottom-Up Approach
We now introduce our bottom-up approach to

the LCS problem, which is based on [18]. In a nut-
shell, the bottom-up characteristic comes from the
fact that, the maximum length of a common subse-
quence between two sequences U and V is: (i) if the
initial symbols of both sequences match, then they
are part of the longest common subsequence and
the length of the longest common subsequence can
be incremented by one; (ii) if the initial symbols do
not match then two situations arise: the longest
common subsequence may be obtained from U
and V without the initial symbol or from V and

9

U without the initial symbol. Since we want the
longest subsequence, the maximum of these two
must be selected. The following formula formal-
izes the LCS problem as described above:

LCS[j, l] =

LCS[j − 1, l − 1] + 1,

if u j = vl.

max {LCS[j, l − 1],LCS[j − 1, l]},
otherwise.

Figure 10 shows the LCS matrix that represents
the bottom-up approach. The rows define the
indices to be considered in sequence U and the
columns define the indices in sequence V. The
first column and the first row are filled with zeros,
meaning that for empty sequences the LCS is 0.
The sequential version of the algorithm can be con-
structed row by row or column by column, since
the computation of each sub-problem LCS[j, l] only
depends on the sub-computations done for the pre-
ceding row and column. At the end, LCS[n,m]
holds the LCS for the problem.

0

n

0 k l ...

.
.
.

0 0 0

0

0
.
.
.

i

0j

LCS
[n,m]

m

0

...

0 0

0

0

Figure 10: LCS bottom-up matrix

Figure 11 shows Yap’s implementation. Again,
for simplicity of presentation, we are omitting the
predicate that implements the main loop used to
recursively traverse the matrix and launch the com-
putation for each sub-problem.

The table directive declares that predicate lcs/3
is to be tabled using standard tabling. The first
two clauses of lcs/3 are the base cases and the third
and fourth clauses deal with the cases where the
initial symbols of both sequences match and do
not match, respectively.

Concerning the parallelization of the matrix, a
possible approach is, for each row, divide the
computation of the m columns between the avail-
able threads or, for each column, divide the com-

% table declaration

:- table lcs/3.
% base cases

lcs(I, 0, 0).

lcs(0, I, 0).

% matched case

lcs(Iu, Iv, L) :-

Iu > 0, Iv > 0,

symbol_u(Iu, S), symbol_v(Iv, S),

Ju is Iu - 1, Jv is Iv - 1,
lcs(Ju, Jv, Lj), L is Lj + 1.

% unmatched case

lcs(Iu, Iv, L) :-

Iu > 0, Iv > 0,

symbol_u(Iu, Su), symbol_v(Iv, Sv),

Su =\= Sv,

Ju is Iu - 1, lcs(Ju, Iv, L1),
Jv is Iv - 1, lcs(Iu, Jv, L2),
max(L1, L2, L).

Figure 11: A bottom-up approach for the LCS problem with
standard tabling

putation of the n rows between the available
threads. Here, we will follow the same approach
as for the Knapsack problem and we will use the
generic multithreaded scheduler that implements
the thread execution loop presented in Fig. 7. The
number of concurrent tasks to be considered is the
size of sequence U (alternatively, we could have
considered the size of sequence V) and the evalua-
tion of the compute tasks/2 predicate calls the lcs/3
predicate for the set of LCS sub-problems associ-
ated with a given task.

6. Performance Analysis

The environment for our experiments was a
machine with 32-core AMD Opteron (tm) Pro-
cessor 6274 @ 2.2 GHz with 32 GBytes of main
memory and running the Linux kernel 3.16.7-
200.fc20.x86 64 with TcMalloc 4.2 [19]. We used
Yap Prolog, version 6.3.2, with the SS design and
the memory allocator from [20]. To put our results
in perspective, we also experimented with XSB Pro-
log version 3.4.0, using the shared tables model [5].
To verify the correctness of the experiments, we
have confirmed that the final results of all bench-
marks and approaches were correct on both Prolog
systems.

10

Table 1: Execution time, in milliseconds, for one thread (sequential and multithreaded version) and corresponding speedup (against
one thread running the multithreaded version) for the execution with 8, 16, 24 and 32 threads, for the top-down and bottom-up
approaches of the Knapsack problem using the YAP and XSB Prolog systems

System/Dataset
Seq. # Threads (p) Best
Time Time (T1) Speedup (T1/Tp) Time
(Tseq) 1 8 16 24 32 (Tbest)

Top-Down Approaches

YAPTD0

D10 9,508 12,415 n.c. n.c. n.c. n.c. 9,508
D30 9,246 12,177 n.c. n.c. n.c. n.c. 9,246
D50 9,480 12,589 n.c. n.c. n.c. n.c. 9,480

YAPTD1

D10 14,330 19,316 1.96 2.12 2.04 1.95 9,115
D30 14,725 19,332 3.57 4.17 4.06 3.93 4,639
D50 14,729 18,857 4.74 6.28 6.44 6.41 2,930

YAPTD2

D10 19,667 24,444 6.78 12.35 15.44 18.19 1,344
D30 19,847 25,609 7.15 13.83 17.37 20.47 1,251
D50 19,985 25,429 7.27 13.70 17.35 20.62 1,233

Bottom-Up Approaches

YAPBU

D10 12,614 17,940 7.17 13.97 18.31 22.15 810
D30 12,364 17,856 7.23 13.78 18.26 21.94 814
D50 12,653 17,499 7.25 14.01 18.34 21.76 804

XSBBU

D10 32,297 38,965 0.87 0.66 0.62 0.55 32,297
D30 32,063 38,007 0.86 0.61 0.56 0.53 32,063
D50 31,893 38,534 0.84 0.58 0.57 0.57 31,893

For the Knapsack problem, we fixed the num-
ber of items and capacity, respectively, 1, 600 and
3, 200. For the LCS problem, we used both se-
quences with a fixed size of 3, 200 symbols each.
Then, for each problem, we created three different
datasets, D10, D30 and D50, meaning that the values
for the weights/profits for the Knapsack problem
and the symbols for LCS problem were randomly
generated in an interval between 1 and 10%, 30%
and 50% of the total number of items/symbols, re-
spectively. For the top-down approaches, we only
experimented with Yap since XSB does not support
mode-directed tabling. For Yap, we tested both
problems without randomization (YAPTD0), with
randomization using Stivala et al.’s original ver-
sion (YAPTD1) and with the extended version using
the extra random displacement clause (YAPTD2).
For both Knapsack and LCS problems, we used a
maxRandom value corresponding to 10% of the total
number of items/symbols in the problem. For the
bottom-up approaches, we experimented with Yap
(YAPBU) and XSB (XSBBU) and we used a ChunkSize
value of 5.

Table 1 and Table 2 show the average of 10 runs
results obtained, respectively, for the Knapsack and
LCS problems for both top-down and bottom-up

approaches using the YAP and XSB Prolog systems.
The columns in both tables show the following in-
formation. The first column describes the configu-
rations of approaches and datasets used. The sec-
ond column (Tseq) shows the sequential execution
time in milliseconds. For Tseq, the Prolog systems
where compiled without multithreaded support
and ran without multithreaded code. The next five
columns show the execution time for one thread
(T1) and the corresponding speedup for the execu-
tion with 8, 16, 24 and 32 threads (columns T1/Tp).
For each system/dataset configuration, the results
in bold highlight the column where the best execu-
tion time was obtained and the last column (Tbest)
presents such result in milliseconds.

Analyzing the general picture of both tables, one
can observe that the YAPTD2 top-down and YAPBU
bottom-up approaches have the best results with
excellent speedups for 8, 16, 24 and 32 threads. In
particular, with 32 threads, they obtain speedups
around 21 and 20, respectively, for the Knapsack
and LCS problems. Column Tbest shows that the
YAPBU approach running with 32 threads obtains
also the best execution times of all systems in all
datasets. The results for the YAPTD1 top-down ap-
proach are not so interesting, regardless of the fact

11

Table 2: Execution time, in milliseconds, for one thread (sequential and multithreaded version) and corresponding speedup (against
one thread running the multithreaded version) for the execution with 8, 16, 24 and 32 threads, for the top-down and bottom-up
approaches of the LCS problem using the YAP and XSB Prolog systems

System/Dataset
Seq. # Threads (p) Best
Time Time (T1) Speedup (T1/Tp) Time
(Tseq) 1 8 16 24 32 (Tbest)

Top-Down Approaches

YAPTD0

D10 21,191 26,225 n.c. n.c. n.c. n.c. 21,191
D30 20,809 26,146 n.c. n.c. n.c. n.c. 20,809
D50 20,775 26,028 n.c. n.c. n.c. n.c. 20,775

YAPTD1

D10 26,030 33,969 1.58 1.53 1.50 1.42 21,509
D30 26,523 34,213 1.60 1.54 1.50 1.42 21,424
D50 26,545 34,234 1.60 1.54 1.51 1.40 21,408

YAPTD2

D10 34,565 44,371 7.23 13.23 16.45 19.74 2,248
D30 34,284 44,191 7.12 13.09 16.52 19.77 2,235
D50 33,989 44,158 7.06 13.30 16.49 19.58 2,255

Bottom-Up Approaches

YAPBU

D10 20,799 28,909 6.47 12.21 16.48 20.32 1,423
D30 21,174 28,904 6.94 12.61 16.63 20.40 1,417
D50 21,166 28,857 6.44 12.31 16.44 20.52 1,406

XSBBU

D10 60,983 74,108 n.a. n.a. n.a. n.a. 60,983
D30 59,496 74,410 n.a. n.a. n.a. n.a. 59,496
D50 59,700 74,628 n.a. n.a. n.a. n.a. 59,700

that it can slightly scale the Knapsack problem up
to 16 threads. The speedup results for the YAPTD0

approach were not considered (n.c.) since without
randomization this approach is unable to take ad-
vantage of our framework. All threads would
replicate the same evaluation sequence and, thus,
they would not be able to use answers from sub-
problems computed by the other threads.

An important aspect of these results is that they
show the potential of our framework to scale the
execution of multithreaded dynamic programming
problems. This is the scenario that our YAPTD2

and YAPBU approaches show, which kept reducing
the execution time as we increased the number of
threads. Nevertheless, to take advantage of our
framework, the user still needs to explicitly imple-
ment the thread management and scheduler policy
for task distribution. Without such a good policy,
the framework can get stuck in not so good results.
This is the scenario that our YAPTD0 and YAPTD1

approaches show.

Despite the similar average speedups for YAPTD2

and YAPBU, their execution times are quite dif-
ferent. In this regard, when comparing the Tseq
and T1 results of YAPTD0 with YAPTD1 and YAPTD2

approaches, we can observe that the randomized

evaluation of YAPTD1 and YAPTD2 introduces an ex-
tra cost. This can be explained by the usage of a ran-
dom function and by the fact that the Prolog code
is sightly more complex. Consider, for example,
the D50 dataset of the Knapsack problem with 32
threads. While the speedup 20.62 of YAPTD2 corre-
sponds to an execution time of 1.233 milliseconds,
the speedup 21.76 of YAPBU only corresponds to
804 milliseconds. Similarly for the LCS problem, if
considering the D50 dataset with 32 threads, while
the speedup 19.58 of YAPTD2 corresponds to 2, 255
milliseconds, the speedup 20.52 of YAPBU only cor-
responds to 1, 406 milliseconds.

Our results also seem to show that the execution
times are not affected by the values for the weight-
s/profits generated. In general, the speedups ob-
tained for the different datasets (D10, D30 and D50)
are always very close for the same number of
threads. Note that for the bottom-up approaches
this was expected since the complete matrix of re-
sults has to be computed. For the top-down ap-
proaches, it can be affected by the values for the
weights/profits due to the depth in the evaluation
tree where solutions can be found. However, since
we are using randomized values in the datasets,
we are aiming for the average case.

12

Regarding the comparison with XSB’s shared ta-
bles model, Yap’s results clearly outperform those
of XSB. For the execution time with one thread,
XSB shows higher times than all Yap’s approaches
(more than two times the execution times of YAPTD1

and YAPBU). For the parallel execution of the Knap-
sack problem, XSB shows no speedups and for the
parallel execution of the LCS problem we have no
results available (n.a.) since we got segmentation
fault execution errors.

As we mentioned in Section 2.3, from our
point of view, XSB’s results are a consequence of
the usurpation operation that restricts the potential
of concurrency to non-mutually dependent sub-
computations. As the parallel versions of the Knap-
sack and LCS problems create mutually dependent
sub-computations, which can be executed in differ-
ent threads, the XSB is actually unable to execute
them in a parallel fashion. In other words, even if
we launch an arbitrarily large number of threads
on those programs, the system would tend to use
only one thread at the end to evaluate most of the
computations.

7. Related Work

Our framework provides a ground technology
for multithreaded dynamic programming in Pro-
log. From the user’s point of view, it can be enabled
through the use of single instructions of the form ‘:-
table p/n’, meaning that common sub-computations
for p/n will be synchronized and shared between
threads at the engine level, i.e., at the level of the
tables where the results for such sub-computations
are stored. Nevertheless, the user still needs to
explicitly implement the thread management and
scheduler policy for task distribution, which is or-
thogonal to the focus of this work. In any case,
high-level predicates or libraries, like the generic
multithreaded scheduler presented in Fig. 7, can
be easily developed on top of our framework to
accomplish such tasks. To put our framework in
perspective, we next briefly discuss and compare
it with others available outside Prolog’s world.

For functional programming languages, the
Eden [21] and HDC [22] Haskell based frameworks
allow the users to express their programs using
polymorphic higher-order functions. Eden is a
general-purpose parallel functional language suit-
able for developing sophisticated skeletons as well
as for exploiting more irregular parallelism that
cannot easily be captured by a predefined skeleton.

HDC stands for higher-order divide-and-conquer and
was originally developed for the parallelization
of divide-and-conquer recursions, but is also ap-
propriate for programming skeletons of any kind.
Both frameworks showed the efficiency of these
type of languages by presenting relevant speedups
in benchmarks such as the Karatsuba algorithm,
the N-Queens problem and the parallel computa-
tion of the Gröbner bases.

For object-oriented programming languages, the
MALLBA [23] and DPSKEL [24] frameworks also
showed relevant speedups in the parallel evalu-
ation of combinatorial optimization benchmarks.
MALLBA tackles the resolution of combinatorial
optimization problems using algorithmic skele-
tons implemented in C++. Several skeletons are
available, such as, divide-and-conquer, branch-
and-bound, dynamic programming, hill climbing,
among many others. DPSKEL is a skeleton tool
for dynamic programming problems. In particular,
DPSKEL used dynamic programming to solve the
Knapsack and LCS problems in a IBM RS-6000 SP
- Nighthawk Power3 shared memory machine. The
execution time obtained on the Knapsack bench-
mark with 1, 600 items and one thread was 2, 379
milliseconds and the best execution time was 359
milliseconds obtained with eight threads, giving
a speedup of 6.63. The execution time obtained
on the LCS benchmark with sequences of 3, 000
items and one thread was 10, 049 milliseconds and
the best execution time was 1, 233 milliseconds ob-
tained with eight threads, giving a speedup of 8.15.
These speedups are in line with the speedups ob-
tained with our approach.

Comparing our top-down results with Stivala
et al.’s work [3], we can observe comparable re-
sults for the Knapsack problem and slight worst
results for the LCS problem with YAPTD1 , but sig-
nificant better results with YAPTD2 . For the Knap-
sack problem, Stivala et al.’s present speedups
over the sequential time (time without the mul-
tithreaded support, i.e., same as column Tseq in Ta-
ble 1) for 100 instances of uncorrelated, weakly cor-
related, strongly correlated, inverse strongly cor-
related and almost strongly correlated Knapsack
problems, each with 500 items and weights in the
interval [1, 500]. The best speedups obtained were
8.31 with 31 threads on a UltraSPARC T1 architec-
ture, 3.11 with 8 threads on a IBM PowerPC archi-
tecture and 3.21 with 8 threads on a AMD Quad
Core Opteron architecture.

Regarding our bottom-up results, they are also

13

quite relevant when compared with similar ap-
proaches in the literature. For example, for the
Knapsack problem, our YAPBU bottom-up ap-
proach has similar speedups for 8 threads and
better speedups for 16 threads if compared with
a multithreaded implementation using the clas-
sic parallelization and the Morales parallelization
of the Knapsack problem [25] in a Intel Core 2
Duo - 2 cores and Intel Core 2 Quad - 4 cores ar-
chitectures. The classic parallelization was im-
plemented using OpenMP and the Morales par-
allelization using Pthreads for a Knapsack prob-
lem with capacity 10, 000 and 10, 000 items gener-
ated using the procedure described in [26]. The
best speedup obtained over the sequential execu-
tion was 7.80 for the classic parallelization and
5.10 for the Morales parallelization, both obtained
for 8 threads. For the LCS problem, our bottom-
up YAPBU approach shows similar base execution
times (with one thread) for sequences of identical
sizes, but far better speedups than parallel CUDA,
OpenCL and OpenMP versions of the problem [27]
running in a Intel Core(TM) 2 Quad - 4 cores with
Nvidia GT 430 - 96 cores architecture, with paral-
lelization based on [18] (same as our bottom-up
approach). For two sequences with fixed sizes of
4, 000 symbols, the best results were obtained us-
ing CUDA with a speedup of about 13.80, while
OpenCL and OpenMP had speedups of about 10.20
and 3.20, respectively.

8. Conclusions and Further Work

Our framework provides a ground technology
for multithreaded dynamic programming in Pro-
log. From the user’s point of view, it can be en-
abled through the use of single instructions of the
form ‘:- table p/n’. A key contribution of this work
is our new asynchronous version of the table space
data structures, where threads view their tables as
private but are able to use the answers of a sub-
problem, if another thread has already computed
them.

To show the potentiality of our multithreaded
tabling Prolog engine, we have used two well-
known dynamic programming problems, the
Knapsack and the Longest Common Subsequence
(LCS) problems, and we discussed how we were
able to scale their execution. To do so, we have
presented multithreaded tabled top-down and
bottom-up approaches using, respectively, Yap’s
mode-directed tabling support and Yap’s standard

tabling support. Our experiments, on a 32-core
AMD machine, showed that using either top-down
or bottom-up techniques, we were able to scale the
execution of both problems by taking advantage of
the state-of-the-art multithreaded tabling engine of
the Yap Prolog system.

To the best of our knowledge, this is the first
work showing a Prolog system to be able to scale
the execution of multithreaded dynamic program-
ming problems. Regarding the particular compar-
ison with XSB Prolog, Yap’s results clearly outper-
form those of XSB for the execution time and for
the speedups. For frameworks outside Prolog’s
world, our framework showed comparable or bet-
ter speedup results than other parallel implemen-
tations of the same problems (based in results from
the literature and not taking into account the dif-
ferent execution environments and specificities of
each implementation).

Further work will include studying other dy-
namic programming problems and explore the im-
pact of applying multithreaded tabling to other ap-
plication domains.

Acknowledgments

This work is partially funded by the North Por-
tugal Regional Operational Programme (NORTE
2020), under the PORTUGAL 2020 Partner-
ship Agreement, and through the European
Regional Development Fund (ERDF) as part
of project NanoSTIMA (NORTE-01-0145-FEDER-
000016). Miguel Areias is funded by the FCT grant
SFRH/BPD/108018/2015.

References

[1] R. Bellman, Dynamic Programming, Princeton University
Press, 1957.

[2] H. Zhang, D. Liu, Y. Luo, D. Wang, Adaptive Dynamic
Programming for Control - Algorithms and Stability, no. 1
in Communications and Control Engineering, Springer-
Verlag London, 2013.

[3] A. Stivala, P. Stuckey, M. G. de la Banda, M. Hermenegildo,
A. Wirth, Lock-Free Parallel Dynamic Programming, Jour-
nal of Parallel and Distributed Computing 70 (8) (2010)
839–848.

[4] W. Chen, D. S. Warren, Tabled Evaluation with Delaying
for General Logic Programs, Journal of the ACM 43 (1)
(1996) 20–74.

[5] R. Marques, T. Swift, Concurrent and Local Evaluation of
Normal Programs, in: International Conference on Logic
Programming, no. 5366 in LNCS, Springer, 2008, pp. 206–
222.

14

[6] M. Areias, R. Rocha, Towards Multi-Threaded Local
Tabling Using a Common Table Space, Journal of Theory
and Practice of Logic Programming, International Confer-
ence on Logic Programming, Special Issue 12 (4 & 5) (2012)
427–443.

[7] J. Santos, R. Rocha, On the Efficient Implementation of
Mode-Directed Tabling, in: International Symposium on
Practical Aspects of Declarative Languages, no. 7752 in
LNCS, Springer, 2013, pp. 141–156.

[8] V. Santos Costa, R. Rocha, L. Damas, The YAP Prolog Sys-
tem, Journal of Theory and Practice of Logic Programming
12 (1 & 2) (2012) 5–34.

[9] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, D. S. War-
ren, Efficient Access Mechanisms for Tabled Logic Pro-
grams, Journal of Logic Programming 38 (1) (1999) 31–54.

[10] T. Swift, D. S. Warren, XSB: Extending Prolog with Tabled
Logic Programming, Theory and Practice of Logic Pro-
gramming 12 (1 & 2) (2012) 157–187.

[11] J. Freire, R. Hu, T. Swift, D. S. Warren, Exploiting Par-
allelism in Tabled Evaluations, in: International Sympo-
sium on Programming Languages: Implementations, Log-
ics and Programs, no. 982 in LNCS, Springer, 1995, pp.
115–132.

[12] R. Marques, T. Swift, J. C. Cunha, A Simple and Efficient
Implementation of Concurrent Local Tabling, in: Inter-
national Symposium on Practical Aspects of Declarative
Languages, no. 5937 in LNCS, Springer, 2010, pp. 264–278.

[13] T. Swift, D. S. Warren, Tabling with Answer Subsumption:
Implementation, Applications and Performance, in: Eu-
ropean Conference on Logics in Artificial Intelligence, no.
6341 in LNAI, Springer, 2010, pp. 300–312.

[14] J. Wielemaker, Native Preemptive Threads in SWI-Prolog,
in: International Conference on Logic Programming, no.
2916 in LNCS, Springer, 2003, pp. 331–345.

[15] M. Areias, R. Rocha, A Lock-Free Hash Trie Design for
Concurrent Tabled Logic Programs, in: International Sym-
posium on High-level Parallel Programming and Applica-
tions, 2014, pp. 259–278.

[16] S. Martello, P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, John Wiley and Sons, 1990.

[17] H.-F. Guo, G. Gupta, Simplifying Dynamic Programming
via Mode-directed Tabling, Software Practice and Experi-
ence 38 (1) (2008) 75–94.

[18] V. Kumar, Introduction to Parallel Computing, 2nd Edi-
tion, Addison-Wesley, 2002.

[19] S. Ghemawat, P. Menage, TCMalloc: Thread-Caching
Malloc.
URL http://goog-perftools.sourceforge.net/doc/

tcmalloc.html

[20] M. Areias, R. Rocha, An Efficient and Scalable Memory
Allocator for Multithreaded Tabled Evaluation of Logic
Programs, in: International Conference on Parallel and
Distributed Systems, IEEE Computer Society, 2012, pp.
636–643.

[21] R. Loogen, Y. Ortega-Mallén, R. Peña-Marı́, Parallel func-
tional programming in Eden, Journal of Functional Pro-
gramming 15 (3) (2005) 431–475.

[22] C. A. Herrmann, C. Lengauer, HDC: A Higher-Order Lan-
guage for Divide-and-Conquer, Parallel Processing Letters
10 (2/3) (2000) 239–250.

[23] E. Alba, F. Almeida, M. J. Blesa, J. Cabeza, C. Cotta,
M. Dı́az, I. Dorta, J. Gabarró, C. León, J. Luna, L. M.
Moreno, C. Pablos, J. Petit, A. Rojas, F. Xhafa, MALLBA: A
Library of Skeletons for Combinatorial Optimisation (Re-
search Note), in: International Euro-Par Conference, no.

2400 in LNCS, Springer, 2002, pp. 927–932.
[24] I. Peláez, F. Almeida, F. Suárez, DPSKEL: A Skeleton Based

Tool for Parallel Dynamic Programming, in: International
Conference on Parallel Processing and Applied Mathemat-
ics, no. 4967 in LNCS, Springer, 2007, pp. 1104–1113.

[25] H. Rashid, C. Novoa, A. Qasem, An Evaluation of Parallel
Knapsack Algorithms on Multicore Architectures, in: In-
ternational Conference on Scientific Computing, CSREA
Press, 2010, pp. 230–235.

[26] D. Pisinger, Core problems in knapsack algorithms., Op-
erations Research 47 (1994) 570–575.

[27] A. Dhraief, R. Issaoui, A. Belghith, Parallel Computing the
Longest Common Subsequence (LCS) on GPUs: Efficiency
and Language Suitability, in: International Conference on
Advanced Communications and Computation, 2011, pp.
143—-148.

15

