
 information

Article

On the Implementation of a Cloud-Based Computing
Test Bench Environment for Prolog Systems †

Ricardo Gonçalves, Miguel Areias ∗ and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021/1055, 4169-007
Porto, Portugal; rgoncalves@fc.up.pt (R.G.); miguel-areias@dcc.fc.up.pt (M.A.); ricroc@dcc.fc.up.pt (R.R.)
* Correspondence: miguel-areias@dcc.fc.up.pt
† This paper is an extended version of our paper published in the Symposium on Languages, Applications

and Technologies 2017.

Received: 13 September 2017; Accepted: 13 October 2017; Published: date

Abstract: Software testing and benchmarking are key components of the software development
process. Nowadays, a good practice in large software projects is the continuous integration (CI)
software development technique. The key idea of CI is to let developers integrate their work as
they produce it, instead of performing the integration at the end of each software module. In this
paper, we extend a previous work on a benchmark suite for the YAP Prolog system, and we propose
a fully automated test bench environment for Prolog systems, named Yet Another Prolog Test Bench
Environment (YAPTBE), aimed to assist developers in the development and CI of Prolog systems.
YAPTBE is based on a cloud computing architecture and relies on the Jenkins framework as well
as a new Jenkins plugin to manage the underlying infrastructure. We present the key design and
implementation aspects of YAPTBE and show its most important features, such as its graphical user
interface (GUI) and the automated process that builds and runs Prolog systems and benchmarks.

Keywords: software engineering; program correctness; benchmarking; Prolog

1. Introduction

In the early years of software development, it was a well-known rule of thumb that in a typical
software project, approximately 50% of the elapsed time and more than 50% of the total cost were spent
in benchmarking the components of the software under development. Nowadays, despite the new
developments in systems and languages with built-in tools, benchmarking still plays an important
role in any software development project. Software benchmarking is a process, or a series of processes,
designed to make sure that computer code does what it was designed to do and, likewise, that it does
not do anything unintended [1]. Software benchmarking techniques can be broadly classified into
white-box benchmarking and black-box benchmarking. The former refers to the structural benchmarking
technique that designs test cases based on the information derived from source code. The latter, also
called data-driven or input/output driven benchmarking, views the program as a black box, and its
goal is to be completely unconcerned about the internal behavior and structure of the program and,
instead, concentrate on finding circumstances in which the program does not behave according to the
specifications [1]. Nowadays, a good practice in large software projects is the continuous integration
(CI) software development technique [2]. The key idea of CI is to let developers integrate their work
as they produce it, instead of performing the integration at the end of each software module. Each
integration is then verified by an automated benchmark environment, which ensures the correctness
of the integration or detects the integration errors. One of the greatest advantages of CI is an earlier
detection of errors, leading to smaller and less-complex error corrections.

Prolog is a language with a long history whose community has seen many implementations,
which have evolved independently. Some representative examples of Prolog implementations include

Information 2017, xx, x; doi:10.3390/—— www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/------
http://www.mdpi.com/journal/information

Information 2017, xx, x 2 of 17

systems such as B-Prolog [3], Ciao Prolog [4], Mercury [5], Picat [6], Sicstus [7], SWI-Prolog [8], XSB
Prolog [9] and YAP Prolog [10]. This situation is entirely different from more recent languages, such
as Java, Python or Perl, that either have a single implementation (Python and Perl) or are controlled
centrally (Java implementations are only Java if they satisfy certain standards). The international
standard for Prolog ISO/IEC 13211 [11] was created to standardize Prolog implementations. However,
because of the different sources of development, the standard is not completely implemented in most
Prolog systems. The Prolog community knows that different Prolog systems have different dialects
with different syntax and different semantics for common features. A good example is Wielemaker’s
recent work on dictionaries and new string extensions to Prolog [12], which are not part of the ISO/IEC
13211. A different direction is that followed by Wielemaker and Santos Costa [13,14], who studied the
status of the standardization of Prolog systems and gave a first step towards a new era of Prolog, for
which all systems are fully compliant with each other. While this new era has not been reached yet,
every publicly available significant piece of Prolog code must be carefully examined for portability
issues before it can be used in any Prolog system. This creates a significant obstacle, if one wants to
compare Prolog systems in performance and/or correctness measurements.

Benchmark suite frameworks for Prolog have been around for some time [15,16], and several still
exist that are specifically aimed to evaluate Prolog systems. Two good examples are China [17] and
OpenRuleBench [18]. China is a data-flow analyzer for constraint logic programming languages written
in C++ that performs bottom-up analysis, deriving information on both call patterns and success
patterns by means of program transformations and optimized fixed-point computation techniques.
OpenRuleBench is an open community resource designed to analyze the performance and scalability
of different rule engines in a set of semantic Web information benchmarks.

In a previous work, we also developed a first benchmark suite framework based on the CI and
black-box approaches to support the development of the YAP Prolog system [10]. This framework
was very important, mainly to ensure YAP’s correctness in the context of several improvements and
new features added to its tabling engine [19,20]. The framework handles the comparison of outputs
obtained through the run of benchmarks for specific Prolog queries and for the answers stored in
the table space if using tabled evaluation. It also supports the different dialects of the B-Prolog and
XSB Prolog systems. However, the framework still lacks important user productive features, such as
automation and a powerful graphical user interface (GUI).

In this paper, we extend the previous work and propose a fully automated test bench environment
for Prolog systems, named Yet Another Prolog Test Bench Environment (YAPTBE), which aims to assist
developers in the development and integration of Prolog systems [21]. YAPTBE is based on a cloud
computing architecture [22] and relies on the Jenkins framework [23] and on a new Jenkins plugin to
manage the underlying infrastructure. Arguably, Jenkins is one of the most successful open-source
automation tools to manage a CI infrastructure. Jenkins, originally called Hudson, is written in Java
and provides hundreds of plugins to support the building, deploying and automating of any project; it
is used by software teams of all sizes, for projects in a wide variety of languages and technologies.

YAPTBE includes the following features: (i) a GUI that coordinates all the interactions with the
test bench environment; (ii) the definition of a cloud computing environment, including different
computing nodes running different operating systems; (iii) an automated process to synchronize,
compile and run Prolog systems against sets of benchmarks; (iv) an automated process to handle
the comparison of output results and store them for future reference; (v) a smooth integration with
state-of-the-art version control systems such as GIT [24]; and (vi) a publicly available online version
that allows anonymous users to interact with the environment to follow the state of the several Prolog
systems. To be best of our knowledge, YAPTBE is the first environment specifically aimed at Prolog
systems that supports all such features. For simplicity of presentation, we focus our description on the
YAP Prolog system, but YAPTBE can be used with any other system.

The remainder of the paper is organized as follows. First, we briefly introduce some background
on Prolog, tabled evaluations and the Jenkins plugin development. Next, we discuss the key ideas of

Information 2017, xx, x 3 of 17

YAPTBE and how it can be used to support the development and evaluation of Prolog systems. Then,
we present the key design and implementation details, and we show a small test-drive over YAPTBE.
Finally, we outline some conclusions and indicate further working directions.

2. Background

This section introduces the basic concepts needed to better understand the rest of the paper.

2.1. Logic Programming, Prolog and Tabling

Arguably, one of the most popular logic programming languages is the Prolog language. Prolog
has its origins in a software tool proposed by Colmerauer in 1972 at Université de Aix-Marseille, which
was named PROgramation en LOGic [25]. In 1977, David H. D. Warren made Prolog a viable language
by developing the first compiler for Prolog. This helped to attract a wider following to Prolog and
made the syntax used in this implementation the de facto Prolog standard. In 1983, Warren proposed a
new abstract machine for executing compiled Prolog code that has come to be known as the Warren
Abstract Machine, or simply WAM [26]. Although other abstract machines, such as the tree-oriented
abstract machine [27], exist, the WAM became the most popular way of implementing Prolog and
almost all current Prolog systems are based on WAM’s technology or its variants [28,29].

A logic program consists of a collection of Horn clauses. Using Prolog’s notation, each clause may
be a rule of the following form:

a(~X0) :− b1(~X1), b2(~X2), ..., bn(~Xn)

where a(~X) is the head of the rule, bi(~Xi) are the body subgoals and ~Xi are the subgoals’ arguments; or
it may be a fact (without body subgoals) and simply be written as

a(~X0).

The symbol :− represents the logic implication and the comma (,) between subgoals represents
logic conjunction; that is, rules define the expression:

b1(~X1) ∧ b2(~X2) ∧ ...∧ bn(~Xn)⇒ a(~X0)

while facts assert a(~X0) as true.
Information from a logic program is retrieved through query execution. Execution of a query Q

with respect to a program P proceeds by reducing the initial conjunction of subgoals in Q to subsequent
conjunctions of subgoals according to a refutation procedure called SLD resolution (Selective Linear
Definite clause resolution) [30]. Figure 1 shows a pure and sequential SLD evaluation in Prolog, which
consists of traversing a search space in a depth-first left-to-right form. Non-leaf nodes of the search
space represent stages of computation (choice points) where alternative branches (clauses) can be
explored to satisfy the program’s query, while leaf nodes represent solution or failed paths. When
the computation reaches a failed path, Prolog starts the backtracking mechanism, which consists of
restoring the computation up to the previous non-leaf node and scheduling an alternative unexplored
branch.

SLD resolution allows for efficient implementations but suffers from some fundamental limitations
in dealing with infinite loops and redundant sub-computations. Tabling [31] is a refinement of Prolog’s
SLD resolution that overcomes some of these limitations. Tabling is a kind of dynamic programming
implementation technique that stems from one simple idea: save intermediate answers for current
computations in an appropriate data area, called the table space, so that they can be reused when
a similar computation appears during the resolution process. With tabling, similar calls to tabled
subgoals are not re-evaluated against the program clauses; instead, they are resolved by consuming
the answers already stored in the corresponding table entries. During this process, as further new
answers are found, they are stored in their tables and later returned to all similar calls. Figure 2 shows

Information 2017, xx, x 4 of 17

a small example of how infinite loops and redundant sub-computations can be avoided with the use of
tabling.

entry point

Figure 1. Depth-first left-to-right search with backtracking in Prolog.

:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z)

1. path(a,Y), edge(Y,Z) 2. edge(a,Z)

3. Z=b

subgoals answers

0. path(a,Z)
3. Z=b
5. Z=a

Table Space

4. edge(b,Z) 6. edge(a,Z)

5. Z=a 7. Z=b
(fail)

Figure 2. An example of a tabled evaluation.

The top left corner of the figure shows the program code and the top right corner shows the final
state of the table space. The program defines a small directed graph, represented by two edge/2 facts,
with a relation of reachability, defined by a path/2 tabled predicate. The bottom of the figure shows the
evaluation sequence for the query goal path(a,Z). We note that traditional Prolog would immediately
enter an infinite loop because the first clause of path/2 leads to a similar call (path(a,Y) at step 1). With
tabling, as we will see next, the infinite loop is avoided.

First calls to tabled subgoals correspond to generator nodes (depicted by white oval boxes), and, for
first calls, a new entry representing the subgoal is added to the table space (step 0). Next, path(a,Z) is
resolved against the first path/2 clause, calling, in the continuation, path(a,Y) (step 1). Because path(a,Y)
is a similar call to path(a,Z), the tabling engine does not evaluate the subgoal against the program
clauses, instead it consumes answers from the table space. Such nodes are called consumer nodes
(depicted by black oval boxes). However, at this point, the table does not have answers for this call,
so the computation is suspended (step 1). The only possible move after suspending is to backtrack

Information 2017, xx, x 5 of 17

and try the second clause for path/2 (step 2). This originates the answer {Z = b}, which is then stored
in the table space (step 3). At this point, the computation at node 1 can be resumed with the newly
found answer (step 4), giving rise to one more answer, {Z = a} (step 5). This second answer is then
also inserted into the table space and propagated to the consumer node (step 6), which produces the
answer {Z = b} (step 7). This answer had already been found at step 3. Tabling does not store duplicate
answers in the table space and, instead, repeated answers fail. This is how tabling avoids unnecessary
computations, and even looping in some cases. As there are no more answers to consume nor more
clauses left to try, the evaluation ends and the table entry for path(a,Z) can be marked as completed.

As tabled resolution methods can considerably reduce the search space, avoid looping and
have better termination properties than SLD resolution-based methods [31], the interest of the
Prolog community in tabling has grown rapidly since the ground-breaking and pioneering work
in the XSB Prolog system [32]. Several Prolog systems that initially did not support tabling are,
nowadays, converging to support some kind of tabling mechanism. Implementations of tabling are
currently available in systems such as B-Prolog [33], Ciao Prolog [34], Mercury [5], SWI-Prolog [8], XSB
Prolog [32] and YAP Prolog [35]. For our test bench environment, it is then particularly important to
support the evaluation of tabled programs. Tabling plays also an important role because, with tabling,
one may want to handle not only the comparison of outputs obtained through the run of specific
Prolog queries, but also the comparison of the structure/configuration of the tables stored during such
executions. Moreover, if one tables all predicates involved in a computation, one can use tabling as a
way to keep track of all intermediate sub-computations that are made for a particular top query goal.
Tabling can thus be used as a built-in powerful tool to check and ensure the correctness of the Prolog
engine internals. To take advantage of tabling when designing a test bench environment, one thus
needs to take into account the kind of output given by tabling.

2.2. Plugin Development and Security in Jenkins

Our work relies on the Jenkins framework [23] to manage the cloud-based architecture. Jenkins
has some important advantages: (i) the user interface is simple, intuitive, visually appealing, and with
a very low learning curve; (ii) it is extremely flexible and easy to adapt to multiple purposes; and (iii)
it has several open-source plugins available, which cover a wide range of features, such as version
control systems, build tools, code quality metrics, build notifiers, integration with external systems,
and user-interface customization.

The development of plugins for Jenkins follows a strict guideline of policy rules (available at
https://wiki.jenkins.io/display/JENKINS/Plugin+tutorial). To begin the plugin development, one
should start by running the following command in a terminal:

$ {mvn hpi:create -Pjenkins}

This command triggers a set of instructions that will initialize the plugin working space. During
the initialization, the command will ask for the group and the artifact identifiers. For the group identifier,
one can use the default value provided by Jenkins, and for the artifact identifier, one can choose the
name for the plugin.

After the completion of the command, the working space of the plugin has a hierarchy tree similar
to that shown in Figure 3, which represents the working space of a Jenkins plugin named HelloWorld.
The pom.xml file is used to define the specifications of the Jenkins version that one wants to build
and run the plugin with and to define the plugin dependencies. Under the src/main folder, there are
two sub-folders, the java folder and the resources folder. The java folder stores the algorithms, written
in Java, that define the plugin execution, while the resources folder stores the resources used by the
plugin and all the information related with its appearance.

https://wiki.jenkins.io/display/JENKINS/Plugin+tutorial

Information 2017, xx, x 6 of 17

Figure 3. Working space of a Jenkins plugin named HelloWorld.

To deploy the plugin in a running Jenkins instance, one should execute a command similar to the
following:

$ mvn hpi:run -Djetty.port=9090 -Pjenkins

In this example, we have chosen a command that runs the Jenkins system in port 9090 of a
localhost machine. By default, if we have not defined any port, Jenkins runs in the predefined port 8080.
Afterwards, when the Jenkins system is ready, one can start using Jenkins with the plugin by visiting
in a Web browser the link http://localhost:9090/jenkins.

When the plugin is ready to be used, one can distribute it on the installation of any Jenkins
instance. To do so, one must create an image of the plugin and run the following command:

$ mvn package

The command creates a target/*.hpi file with the complete details about the plugin. The file can
then be uploaded in any Jenkins instance via the GUI.

Finally, before beginning to use the plugin, the guideline of the policy rules recommends that one
should enable Jenkins Security controllers. In order to set up the correct configurations, one should
use the administrator dashboard and configure Global Security with the following options:

• Security: enable.
• Jenkins’ own user database: allow users to sign up.
• Project-based Matrix Authorization Strategy: add the users with the desired permissions.

3. Yet Another Prolog Test Bench Environment

This section introduces the key concepts of YAPTBE’s design.

3.1. Cloud-Based Architecture

In the early years of software development, a piece of software was designed with a specific
operating system and hardware architecture in mind. As time passed, operating systems and hardware
architectures became more sophisticated and branched out into a multiplicity of platforms and versions,
which were often variations of the same software or hardware components. In order to progress with
this new reality, whenever a new piece of software was designed, developers had to ensure that it
would work correctly in different operating systems and hardware architectures.

Cloud computing [22] is a powerful and respected alternative for software development that has
emerged and is being used in multiple different contexts. Cloud computing is very powerful because it

http://localhost:9090/jenkins

Information 2017, xx, x 7 of 17

provides ubiquitous access to multiple operating systems and heterogeneous and non-heterogeneous
hardware architectures, which can be seen and manipulated as being similar resources. In what follows,
we explain how we aimed to bring the advantages of cloud computing into YAPTBE’s design.

Figure 4 shows a general perspective of YAPTBE’s cloud-based architecture. At the entry point,
a master node with a GUI allows users to interact with YAPTBE’s cloud-based infrastructure. The
master node is then connected, through an intranet connection, to a storage device (shown at the right in
Figure 4), which stores and backups all relevant information, and to several computing nodes (or slave
nodes), which can be connected through an intranet or Internet connection, depending on whether they
are close enough or not to the master node. Each computing node has its own version of an operating
system. In Figure 4, one can observe four computing nodes running the CentOS 7, MacOS Sierra,
Solaris and Windows 7 operating systems.

. . .

Cloud Architecture

Computing Node

(MacOS Sierra)

Computing Node

(Solaris)

Computing Node

(Windows 7)

Computing Node

(CentOS 7)

Master Node

(GUI)

Figure 4. The cloud-based architecture of Yet Another Prolog Test Bench Environment (YAPTBE).

Each computing node is then organized in a working space specifically aimed at storing the
resources available in the node and at storing the files generated by the users during the usage of the
node. Figure 5 shows an example of a tree hierarchy for the working space of a computing node.

Figure 5. Working space of a computing node.

Information 2017, xx, x 8 of 17

At the top of the hierarchy, we have the root folder named Computing Node. The root folder is
divided into two sub-folders, the Developers and the Resources folders.

The Resources folder is then used to store the sources of the Prolog systems and the sources of the
test bench suites available in the computing node. Figure 5 shows two Prolog systems (represented by
the Swi Prolog and the Yap Prolog folders) and two test bench suits (represented by the LogTalk Tests
and the Old Bench Suite folders) available in the computing node. The folder structure under each
particular resource is then independent from YAPTBE. Figure 5 shows the specific structure for the
Old Bench Suite resource. The Old Bench Suite resource corresponds to the benchmark suite we have
developed in a previous work to ensure YAP’s correctness in the context of several improvements and
new features added to its tabling engine [19,20]. It contains two sub-folders, one named Auxiliary Files
and another named Benchmarks. The Benchmarks folder stores the Prolog files for the benchmarks (such
as table_path_left_recursion.pl, representing the example in Figure 2). The Auxiliary Files folder holds the
files related with the dialects specific to each Prolog system and with the running of the benchmarks
(used to launch/terminate a run; obtain the running time; print outputs; print internal statistics about
the run; or print the results stored in the tables, if using tabling).

The Developers folder stores the information for the builds and the jobs of each developer (Figure 5
shows the folder structure for Developer2). First-level sub-folders represent the developer’s builds
and the second-level sub-folders represent the developer’s jobs for a particular build. Prolog sources
can be configured and/or compiled in different fashions. Each build folder corresponds to a build
configuration and holds all the files required to launch the Prolog system with such a configuration. In
Figure 5, one can observe that Developer2 has two builds, one named Yap Standard, holding the binaries
required to run YAP compiled with the default compilation flags, and another named Yap Tabling with
Debug Support, holding the binaries required to run YAP compiled with tabling and debugging support.
Additionally, each job folder stores the outputs obtained in a particular run of a build. In Figure 5, one
can observe that the Yap Tabling with Debug Support build has two jobs (by default, jobs are named with
the time when they were created). The folder structure under each particular job is then independent
from YAPTBE. For the job named 02-03-2017 12:00:00, one can observe a report.txt file with a summary
of the run and two folders used to stored auxiliary error and output information about the run, in this
case, the query output, the structure of the table space and the execution time.

3.2. Services

YAPTBE is designed to provide different services to different types of users. We consider three
different types of users: (i) the administrators, (ii) the developers, and (iii) the guest users. Figure 6
shows the key services provided to each user.

The administrators will manage the infrastructure and configure several aspects of the test bench
environment. They can manage the infrastructure by adding/removing computing nodes, manage the
accounts and access permissions for developers and guests, and manage the available resources by
setting up source repositories for the Prolog systems and for the test bench suites.

The developers will use the environment for performance measurements and for ensuring the
correctness of the integration of the code being developed. They can manage all features related with
the source repositories, such as merging; branching; pulling; configuring and compiling; running
benchmarks and comparing the running times obtained at different dates with different Prolog
systems; testing the correctness of the Prolog systems; and checking specific features, such as tabling
or multithreading.

The guest users can use the environment to check and follow the state of the several Prolog
systems. They can view the resources, navigate in the existent reports from previous runs, and
download the available benchmarks.

Because YAPTBE’s main target users are the developers, they will have special permission to
access the infrastructure. They will be allowed to include their machines into the cloud in such a
way that they can develop and deploy their work in a computing node, where they can control the

Information 2017, xx, x 9 of 17

environment of the run. This special feature is important because, often, developers want to quickly
access what went wrong with their integration. As expected, the machine of the developer will be
protected against abusive workloads by other users. We allow developers to define whether their
computing nodes are private or public, and, in the latter case, we also allow them to define the
resources that they want to share publicly in the cloud. Additionally, the developers can define the
maximum amount of local resources that can be publicly shared in the cloud, such as the disk space,
the number of cores and the number of jobs that can be accepted per day.

Developer

Master Node

(GUI)

Administrator

Infrastructure

Developers and Guests

Prolog Systems

Test Bench Suites

Guest

Administrator

Developer

Source Repositories

Running Times

Correctness

Developer and Guest

View Public Resources

View Public Reports

Download Benchmarks

Figure 6. Users and services provided.

4. Implementation Details

This section introduces some extra details about YAPTBE’s implementation. In short, we use
Jenkins to manage the GUI, the computing nodes and the scheduling of jobs. The master node has a
Jenkins main agent that runs the GUI and manages the connections between the master node and the
computing nodes. Jobs are deployed by the master node to the computing nodes, and, to run a job,
each computing node has a Jenkins slave agent that manages the run. At the end of a run, the slave
agent sends back a minor report with the results obtained to the main agent. The full details of the run
are stored locally in the computing node. If a storage device is available, it can be used to back up the
results. Next, we give more details about the scheduling of a job.

4.1. Job Scheduling

Job scheduling is one of the most important features of YAPTBE. We consider a job to be any
automated service that can be provided by the environment. Jobs can vary from downloading and
installing a Prolog system in a computing node to executing a run order from a developer. Figure 7
shows the pipeline for running a job request made by a developer. For the sake of simplicity, we
assume that the developer has all the permissions necessary to run the job and wants to run the latest
committed version in the repository of the Prolog system.

Information 2017, xx, x 10 of 17

Job Order

Computing Node

Prolog Build

Benchmark(s)

Run Benchmark(s)

Launch Prolog Build

Activate Prolog Dialect

Assemble Running Predicates

Store Results (Temporarily)

Validate and Report

Check for Termination

Check Correctness of the Results

Store Results (Permanently)

Show Running Report

Setup Execution Environment

Deploy Order Configurations to Computing Node

Synchronise Prolog with Repository

Configure and Compile Prolog Build

Figure 7. Pipeline of a job request to test the correctness of a Prolog system build.

On the initial stage of the pipeline, the Job Order stage, the developer creates an order for a job
through the GUI of the master node. The order defines the computing node, the Prolog system build,
and the (set of) benchmark(s) to be run. The scheduling of the order is managed by Jenkins, which
inserts the order into the computing node pool.

When the computing node is ready to execute the order, the pipeline moves to the next stage to
set up the execution environment, the Setup Execution Environment stage. In this stage, Jenkins creates a
folder in the computing node and activates a set of internal scripts that will deploy the configurations
of the order to the folder of the computing node. These scripts will synchronize the Prolog system
with its repository, and configure and compile the corresponding build in the computing node.

On the next stage of the pipeline, the Run Benchmark(s) stage, the build of the Prolog is launched
and the (set of) benchmark(s) is run. This can include selecting the Prolog dialect, which will activate
a set of compatibility predicates, which will be used to run the benchmark, and selecting specific
running predicates to obtain specific outputs, such as the structure of the table space, if using tabling.
After launching the run, YAPTBE simply waits for the run to be complete. The execution time of
the run is conditioned by multiple factors, such as the computing node workload or the operating
system scheduler and memory manager. When the execution is complete, YAPTBE stores the results
temporarily within a folder structure similar to that described in Figure 5, which can be used to store
auxiliary error and/or output information, such as output answers, tabled answers, the execution time,
the structure of the table space, or the internal Prolog statistics.

At the last stage, the Validate and Report stage, the results are validated. YAPTBE searches for
execution failures, such as segmentation fault errors, and if no failures exist, it checks the correctness
of the results. We assume that results are correct if at least two Prolog systems give the same solutions.
For our previous bench suite, we used the YAP Prolog and the SWI Prolog for standard benchmarks
and the YAP Prolog and the XSB Prolog for tabled benchmarks (in this case, we store the output results
and the answers stored in the tables). Thus, at this stage, we compare the results obtained in the run
with the results pre-stored and assumed to be correct. If the results match, then the run is considered to
be correct; otherwise, the run is considered to be an error. Finally, the results are stored in a permanent
and unique location, and a report with information is sent to the Jenkins master agent. The report
contains the status of the run, the execution times, and the folder locations of the full output and error
details.

4.2. Our Plugin Approach to Integrate Jenkins with YAPTBE

Jenkins already possesses a huge number of tools and also has several highly valued plugins
that can be easily installed on demand. Even so, to allow administrators, developers and guests to
use YAPTBE in an easier fashion, we have developed a new custom-made plugin to be integrated in
Jenkins. This subsection describes in more detail the internals of our new Jenkins plugin. The plugin

Information 2017, xx, x 11 of 17

includes some new dashboards that are specific to the needs of the YAPTBE users. We consider two
main dashboards, the administrator dashboard and the developer dashboard.

4.2.1. Administrator Dashboard

The administrator dashboard extends the ManagementLink class, which means that, if the Global
Security policy configuration is set to use the authorization scheme Project-based Matrix Authorization
Strategy as mentioned in Section 2.2, by using our plugin, one can define the user permissions
individually, instead of defining an overall security polity valid for all users. Additionally, users
are able to be set with administrative privileges, thus allowing them to access the boards under the
ManagementLink extensions, which are shown under the Manage Jenkins section and are only available
to the users with administrative privileges.

However, we noticed that if someone knows the URLs that trigger the administrative boards,
then the security policy of Jenkins can be bypassed and the administrative features freely accessed.
To address this issue, we implemented an extra security layer, for which administrator users have in
their user identifier the word admin. Upon accessing the administrator boards, our plugin checks not
only for the permissions in the Matrix Authorization Strategy, but also for the keyword admin in the user
identifier. As the administrator users can only be created by a single Jenkins administrator, this extra
security layer is enough to ensure that only fully granted users can access the administrative boards.
Thus, if somebody tries to access an administrative URL without permission, our plugin will deny the
access and automatically redirect to Jenkins’ default entry page.

The administrator dashboard includes four different boards; three of these, the Add Resource,
Install Resource and Manage Resources boards, were designed de novo for our plugin, and the fourth,
named Configure Nodes, simply redirects the plugin to the Jenkins’ original node configuration board,
where administrators are able to create, edit and remove the computing nodes to be used by the plugin.

The Add Resource board allows the defining of new resources. Resources are stored in the master
node under the folder admin in an XML (eXtensible Markup Language) file named resources.xml.
The definition of a resource includes the resource name, the GIT repository location, and the set of
commands to be used in the build process by the developer to install the resource. Figure 8 shows
an example for which two resources, named Yap Prolog and SWI Prolog, are stored in the resources.xml
file. Each resource has a corresponding GIT repository location (tag element source) and a set of build
commands (tag element commands).

Figure 8. An example of the resources.xml file.

Both build commands use a configure script to set up the general configurations of the Prolog
systems using specific compilation flags, and, at the end, they create and install the Prolog binary file
in the host operating system. The macro $Configure Options$ specifies where the specific compilation
flags of the developers choice (to be defined later when building and installing a resource) should be
mapped in the sequence of build commands. In this example, both resources end with the make install
instruction, which installs the Prolog system in the computing node.

Information 2017, xx, x 12 of 17

The Install Resource board allows the installation of an already added resource (from the previous
Add Resource board) in a computing node. The administrator selects a resource from the existing
resources list and then chooses the desired computing node where the resource is going to be installed.
At the GUI level, our plugin shows only the computing nodes where the desired resource is not yet
installed, thus avoiding potential errors, such as if an administrator tries to install a resource in a
machine where the resource already exists.

When the administrator activates the installation process, the Jenkins Web page will wait until the
process completes. The installation process starts by cloning all the resource files to the selected node
through a GIT command, and ends by updating the resources.xml file with the association between the
computing node and the resource in installation. For the first resource installed, the plugin will create
a new tag element called node within the computing_nodes element in the resources.xml file. The node
element will contain the information about the computing node, that is, the label used by Jenkins to
uniquely identify the computing node in the context of the YAPTBE framework. For the following
resources to be installed, the plugin will simply create new node elements for each resource within
the computing_nodes element where it is being installed. Figure 9 shows an example of the state of the
resources.xml file after the successful installation of the resource Yap Prolog in two different computing
nodes, the CentOS 7 and the MacOS Sierra computing nodes. In this example, the resource SWI Prolog
is not installed in any computing node.

Figure 9. Installing the Yap Prolog resource in the CentOS 7 and MacOS Sierra computing nodes.

Finally, the Manage Resources board allows the listing of the existing resources and the checking
of their properties, such as their name, the computing nodes where they are installed, the existent
sources, and the build commands. Additionally, it allows administrators to remove a resource from
a computing node and to remove a resource from YAPTBE (this latter case is only possible if the
resource is not installed in any computing node). To simplify the plugin and avoid inconsistencies in
the installed resources, our plugin does not allow the editing of resources; that is, once the resource is
installed, it must remain unchanged until it is removed. Consequently, to make a change in a resource,
one must first delete the resource and then make a fresh install of the resource with the desired changes.

4.2.2. Developer Dashboard

The developer dashboard is available for all users and includes three different boards designed
de novo for our plugin, the New Build, Manage Builds and New Job boards.

The New Build board allows developers to create new builds. In YAPTBE, a build is defined as the
set of parameters to be used in a Jenkins job creation. For example, the developer starts by selecting a
resource from the list of available resources in the computing node where a benchmark is to be tested.
After choosing the resource, the defined build commands (set by the administrator in the Add Resource
board) will be displayed to the developer, such that the desired missing commands can be set. When

Information 2017, xx, x 13 of 17

this process is completed, an XML file named builds_list.xml is stored in the master node under the
developer’s project folder.

Figure 10 shows an example in which a new build named Yap Tabling with Debug Support is stored
in the builds_list.xml file. The new build uses the Yap Prolog resource from the CentOS 7 computing
node with the macro $Configure Options$ (detailed in Figure 8) replaced with the specific compilation
flags - -enable-tabling - -enable-debug-yap. We only allow developers to define configuration options
because we want to prevent developers from injecting command line instructions directly into the
computing nodes, as an incorrect command line instruction might lead to irreparable inconsistencies
in YAPTBE. With this approach, we are able to narrow down the iterations of developers to command
lines that are already predefined in the framework. In the example shown in Figure 10, one can observe
that an incorrect command line made by the developer will lead only to an erroneous configuration of
the resource in the computing node.

Figure 10. An example of the builds_list.xml file.

The Manage Builds board allows for the listing of the existing builds, checking of how they were
originally defined, and the removing of undesirable builds. As in the case of the Manage Resources from
the administrator board, developers are not allowed to edit builds.

Finally, the New Job board allows developers to combine a build, from the existing builds list, with
the desired benchmark to be tested by the selected build. A benchmark is a set of one or more test
files, specifically designed to test whatever the developer is implementing. Benchmarks are defined
under the administrator dashboards as a resource and are placed in the admin folder alongside with the
resources.xml file. However, in the future, we may extend this feature to allow each developer to specify
their own benchmarks. To do so, we intend to have a new board where the developers can define the
benchmarks and save their details alongside with the builds_list.xml file specific to the developer’s
project folder.

5. Test-Driving YAPTBE

In this section, we show a small test-drive of YAPTBE. We have designed the dashboards of the
new plugin in such a way that users would not feel the difference between running Jenkins individually
or combined with YAPTBE. The following figures illustrate a scenario in which a developer wants to
use the YAP Prolog system and a computing node running the CentOS 7 operating system.

Figure 11 shows the resource management GUI for administrators for adding YAP Prolog as a
resource (Figure 11a) and to install it in the computing node running the CentOS 7 operating system
(Figure 11b).

In both cases, the GUI is quite simple. To add a new resource (Figure 11a), the administrator has
to define the name of the resource, the link to the repository with the source code, and a template
with the commands to build the binary for the resource. The template can include optional arguments
to be defined by the developers. For example, in Figure 11a, the build template starts with a
configuration command which includes optional arguments ($Configure Options$) to be later defined
by the developers when building a specific build of this resource. To install a resource in a specific
computing node (Figure 11b), the administrator defines the desired computing node and resource and

Information 2017, xx, x 14 of 17

then presses the Install button. If the resource installs correctly, it becomes immediately available in the
computing node.

(a) (b)

Figure 11. Resource management graphical user interface (GUI) for administrators. (a) Adding YAP
Prolog as a resource. (b) Installing YAP Prolog in a computing node.

Figure 12 then shows the job management GUI for developers for creating a new build for the
YAP Prolog system in the CentOS 7 computing node (Figure 12a) and to deploy a job using this build
(Figure 12b).

(a) (b)

Figure 12. Job management graphical user interface (GUI) for developers. (a) Creating a new build for
the YAP Prolog system. (b) Running a job with a previously defined build.

Information 2017, xx, x 15 of 17

Again, in both cases, the GUI is quite simple. To create a new build (Figure 12a), the developer has
to define the name of the build, the resource and computing node to be used, and, if the administrator
has defined optional arguments in the build template commands, then such optional commands can
be included here. This is the case of the $Configure Options$ entry, as previously defined in Figure 11a.
In this particular example, the developer is building YAP with tabling and debug support. After the
build is saved, it becomes available for the developer to use in future orders for a job. To deploy a
job (Figure 12b), the developer sets a name for the job and defines the build to be used (upon the
definition, the computing node and resource will automatically appear in a non-editable fashion; thus
the developer can see whether it is using the correct build settings). At the end, the developer defines
the (set of) benchmark(s) to be run and presses the Run button to launch the corresponding job. The
job will enter into the job scheduler and follow the pipeline described previously.

6. Further Work

Although we have already implemented all of the features shown in Figures 11 and 12, there are
some other important features that are still undergoing development, such as (i) the implementation
of user security and access policies for monitoring and controlling the user’s activity on the computing
nodes; (ii) the implementation of a storage node to back up the overall system configurations and
the results of the jobs’ executions; (iii) the design and implementation of the GUI for guest users; and
(iv) the design of a logging mechanism that collects information regarding YAPTBE’s performance,
accuracy and reliability.

As further work, we also intend to make a tighter integration between YAPTBE and the way
benchmarks are handled. Currently, YAPTBE sees the benchmarks’ results as a set of output files
without knowing much about their contents. Our plan is to extend YAPTBE to include a reflexive
engine with a well-defined protocol that will allow YAPTBE to have some extra knowledge about
the accuracy and reliability of the benchmarks’ results. In particular, we are interested in taking
advantage of tabling as a way to keep track of all intermediate sub-computations that are made during
the execution of a benchmark. To do so, YAPTBE must be extended with an internal communication
protocol, which will allow it to understand the outputs given by a tabling engine. The same idea can
be applied to support the execution and output analysis of multithreaded Prolog runs, as is discussed
next.

Recently, multiple features have been added to Prolog’s world. One such feature is the ISO
Prolog multithreading standardization proposal [36], which currently is implemented in several Prolog
systems, including Ciao, SWI Prolog, XSB Prolog and YAP Prolog, providing a highly portable solution
given the number of operating systems supported by these systems. Arguably, one of the features
that promises to have a significant impact is the combination of multithreading with tabling [37,38],
as Prolog users will be able to exploit the combination of a higher procedural control with higher
declarative semantics. Future work plans include the extension of YAPTBE to support the execution
and output analysis of standard and tabled multithreaded Prolog runs.

7. Conclusions

Software testing and benchmarking are key components of the software development process.
However, as Prolog systems have different dialects with different syntax and different semantics
for common features, the comparison between them is more difficult than in other programming
languages. In this paper, we extended a previous work on a benchmark suite for the YAP Prolog
system, and we proposed a fully automated test bench environment for Prolog systems, named Yet
Another Prolog Test Bench Environment (YAPTBE), aimed at assisting developers in the development
and integration of Prolog systems. YAPTBE is based on a cloud computing architecture and relies on
Jenkins as well as a new plugin that manages the underlying infrastructure and integrates YAPTBE
with Jenkins. We discussed the most relevant design and implementation points of YAPTBE and

Information 2017, xx, x 16 of 17

showed several of its most important features, such as its GUI and the automated process that builds
and runs Prolog systems and benchmarks.

Currently, YAPTBE is still under development; thus some important features are not yet
implemented. We expect to conclude these features and have the first version of YAPTBE available
online in the near future. As well as assisting in the development of Prolog systems, we hope that
YAPTBE may, in the future, contribute to reducing the gap between different Prolog dialects and to
create a salutary competition between Prolog systems in different benchmarks.

Acknowledgments: This work was funded by the ERDF (European Regional Development Fund) through
Project 9471—Reforçar a Investigação, o Desenvolvimento Tecnológico e a Inovação (Projeto 9471-RIDTI)—through the
COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the
FCT (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013. Miguel Areias
was funded by the FCT grant SFRH/BPD/108018/2015.

Author Contributions: All authors contributed fairly to the research described in this work. Miguel Areias and
Ricardo Rocha wrote most of the paper and contributed with the initial research and main design decisions of the
YAPTBE framework. Ricardo Gonçalves implemented the Jenkins plugin and made contributions to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Myers, G.J.; Sandler, C.; Badgett, T. The Art of Software Testing, 3rd ed.; Wiley Publishing: Hoboken, NJ,
USA, 2011.

2. Duvall, P.; Matyas, S.M.; Glover, A. Continuous Integration: Improving Software Quality and Reducing Risk; The
Addison-Wesley Signature Series; Addison-Wesley Professional: Boston, MA, USA, 2007.

3. Zhou, N.F. The Language Features and Architecture of B-Prolog. Theory Pract. Log. Program. 2012, 12,
189–218.

4. Hermenegildo, M.V.; Bueno, F.; Carro, M.; López-García, P.; Mera, E.; Morales, J.F.; Puebla, G. An Overview
of Ciao and its Design Philosophy. Theory Pract. Log. Program. 2012, 12, 219–252.

5. Somogyi, Z.; Sagonas, K. Tabling in Mercury: Design and Implementation. In Proceedings of the
International Symposium on Practical Aspects of Declarative Languages, Charleston, SC, USA, 9–10 January
2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 150–167.

6. Zhou, N.F.; Kjellerstrand, H.; Fruhman, J. Constraint Solving and Planning with Picat; Springer:
Berlin/Heidelberg, Germany, 2015.

7. Carlsson, M.; Mildner, P. SICStus Prolog—The first 25 years. Theory Pract. Log. Program. 2012, 12, 35–66.
8. Wielemaker, J.; Schrijvers, T.; Triska, M.; Lager, T. SWI-Prolog. Theory Pract. Log. Program. 2012, 12, 67–96.
9. Swift, T.; Warren, D.S. XSB: Extending Prolog with Tabled Logic Programming. Theory Pract Log. Program.

2012, 12, 157–187.
10. Santos Costa, V.; Rocha, R.; Damas, L. The YAP Prolog System. Theory Pract. Log. Program. 2012, 12, 5–34.
11. ISO. ISO/IEC 13211-1:1995: Information Technology—Programming Languages—Prolog—Part 1: General Core;

ISO: Geneva, Switzerland, 1995; pp. 1–199.
12. Wielemaker, J. SWI-Prolog version 7 extensions. In Proceedings of the International Joint Workshop on

Implementation of Constraint and Logic Programming Systems and Logic-Based Methods in Programming
Environments, Vienna, Austria, 17–18 July 2014; pp. 109–123.

13. Wielemaker, J.; Costa, V.S. Portability of Prolog programs: Theory and case-studies. CoRR 2010,
arXiv:1009.3796.

14. Wielemaker, J.; Costa, V.S. On the Portability of Prolog Applications. In Proceedings of the 13th International
Symposium on Practical Aspects of Declarative Languages , Austin, TX, USA, 24–25 January 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 69–83.

15. Bothe, K. A Prolog Space Benchmark Suite: A New Tool to Compare Prolog Implementations. SIGPLAN Not.
1990, 25, 54–60.

16. Haygood, R. A Prolog Benchmark Suite for Aquarius; Technical Report; University of California at Berkeley:
Berkeley, CA, USA, 1989.

17. Bagnara, R. China—A Data-Flow Analyzer for CLP Languages. Available online: http://www.cs.unipr.it/
China/ (accessed on 5 March 2017).

http://www.cs.unipr.it/China/
http://www.cs.unipr.it/China/

Information 2017, xx, x 17 of 17

18. Liang, S.; Fodor, P.; Wan, H.; Kifer, M. OpenRuleBench: An Analysis of the Performance of Rule Engines.
In Proceedings of the Internacional World Wide Web Conference, Madrid, Spain, 20–24 April 2009; ACM:
New York, NY, USA, 2009; pp. 601–610.

19. Areias, M.; Rocha, R. On Combining Linear-Based Strategies for Tabled Evaluation of Logic Programs.
Theory Pract. Log. Program. 2011, 11, 681–696.

20. Areias, M.; Rocha, R. On Extending a Linear Tabling Framework to Support Batched Scheduling.
In Proceedings of the Symposium on Languages, Applications and Technologies, Braga, Portugal,
21–22 June 2012; Simões, A., Queirós, R., Cruz, D., Eds.; 2012; pp. 9–24.

21. Gonçalves, R.; Areias, M.; Rocha, R. Towards an Automated Test Bench Environment for Prolog Systems.
In Proceedings of the Symposium on Languages, Applications and Technologies, Vila do Conde, Portugal,
26–27 June 2017.

22. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.;
Stoica, I.; Zaharia, M. A View of Cloud Computing. Commun. ACM 2010, 53, 50–58.

23. Smart, J.F. Jenkins: The Definitive Guide; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2011.
24. Torvalds, L. Git—Version Control System. Available online: https://git-scm.com/ (accessed on 5 March

2017).
25. Colmerauer, A.; Kanoui, H.; Pasero, R.; Roussel, P. Un système de Communication Homme-Machine en Français;

Technical Report cri 72-18; Groupe Intelligence Artificielle, Université Aix-Marseille II: Marseille, France,
1973.

26. Warren, D.H.D. An Abstract Prolog Instruction Set; Technical Note 309; SRI International: Menlo Park, CA,
USA, 1983.

27. Zhou, N.F. Parameter Passing and Control Stack Management in Prolog Implementation Revisited.
ACM Trans. Program. Lang. Syst. 1996, 18, 752–779.

28. Demoen, B.; Nguyen, P. So Many WAM Variations, So Little Time. In Computational Logic; Springer:
Berlin/Heidelberg, Germany, 2000; Volume 1861, pp. 1240–1254.

29. Roy, P.V. 1983–1993: The wonder years of sequential Prolog implementation. J. Log. Program. 1994, 19,
385–441.

30. Lloyd, J.W. Foundations of Logic Programming; Springer: Berlin/Heidelberg, Germany, 1987.
31. Chen, W.; Warren, D.S. Tabled Evaluation with Delaying for General Logic Programs. J. ACM 1996, 43, 20–74.
32. Sagonas, K.; Swift, T. An Abstract Machine for Tabled Execution of Fixed-Order Stratified Logic Programs.

ACM Trans. Program. Lang. Syst. 1998, 20, 586–634.
33. Zhou, N.F.; Shen, Y.D.; Yuan, L.Y.; You, J.H. Implementation of a Linear Tabling Mechanism. In Practical

Aspects of Declarative Languages; Springer: Berlin/Heidelberg, Germany, 2000; pp. 109–123.
34. De Guzmán, P.C.; Carro, M.; Hermenegildo, M.V. Towards a Complete Scheme for Tabled Execution

Based on Program Transformation. In Proceedings of the International Symposium on Practical Aspects of
Declarative Languages, Savannah, GA, USA, 19–20 January 2009; Springer: Berlin/Heidelberg, Germany,
2009; pp. 224–238.

35. Rocha, R.; Silva, F.; Santos Costa, V. YapTab: A Tabling Engine Designed to Support Parallelism.
In Proceedings of the Conference on Tabulation in Parsing and Deduction, Vigo, Spain, 19–21 September
2000; pp. 77–87.

36. Moura, P. ISO/IEC DTR 13211-5:2007 Prolog Multi-Threading Predicates; Universidade da Beira Interior:
Covilhã, Portugal, 2008.

37. Areias, M.; Rocha, R. Towards Multi-Threaded Local Tabling Using a Common Table Space. J. Theory Pract.
Log. Program. 2012, 12, 427–443.

38. Areias, M.; Rocha, R. On Scaling Dynamic Programming Problems with a Multithreaded Tabling System.
Journal of Systems and Software 2017, 125, 417–426.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland, This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

https://git-scm.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Logic Programming, Prolog and Tabling
	Plugin Development and Security in Jenkins

	Yet Another Prolog Test Bench Environment
	Cloud-Based Architecture
	Services

	Implementation Details
	Job Scheduling
	Our Plugin Approach to Integrate Jenkins with YAPTBE
	Administrator Dashboard
	Developer Dashboard

	Test-Driving YAPTBE
	Further Work
	Conclusions

