
On the Implementation of Memory Reclamation Methods in a
Lock-Free Hash Trie Design

Pedro Moreno and Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

{pmoreno, miguel-areias, ricroc}@dcc.fc.up.pt

Abstract

Hash tries are a trie-based data structure with nearly ideal characteristics for the implementation of hash
maps. Starting from a particular lock-free hash map data structure, named Lock-Free Hash Tries, we focus
on solving the problem of memory reclamation without losing the lock-freedom property. To the best of
our knowledge, outside garbage collected environments, there is no current implementation of hash maps
that is able to reclaim memory in a lock-free manner. To achieve this goal, we propose an approach for
memory reclamation specific to Lock-Free Hash Tries that explores the characteristics of its structure in
order to achieve efficient memory reclamation with low and well-defined memory bounds. We present and
discuss in detail the key algorithms required to easily reproduce our implementation by others. Experimental
results show that our approach obtains better results when compared with other state-of-the-art memory
reclamation methods and provides a competitive and scalable hash map implementation, if compared to
lock-based implementations.

Keywords: Memory Reclamation, Lock-Freedom, Hash Maps, Hazard Pointers

1. Introduction

Data structures are a basic programming tool
that finds its way on almost every computer pro-
gram or algorithm. As such, data structures are
a key building block to take advantage of multi-
ple cores efficiently and to guarantee good progress,
throughput and latency properties. The traditional
approach to synchronize access to critical sections
in concurrent environments is to use blocking prim-
itives, such as, spinlocks, mutexes or semaphores.
An algorithm is non-blocking if failure or suspen-
sion of any thread cannot cause failure or suspen-
sion of another thread. In general, non-blocking al-
gorithms use atomic read-modify-write primitives,
the most notable of which is the CAS (Compare
And Swap) instruction. A non-blocking algorithm
is also lock-free if there is guaranteed system-wide
progress, i.e., there is no per-thread progress guar-
antee (individual threads can starve) but it is
guaranteed that at least one thread progresses in
some well-defined number of steps, regardless of the
scheduling policy [1].

There are multiple implementations of lock-free
data structures, but most of them are not entirely
usable in a lock-free manner, as they delegate the
task of memory reclamation to a garbage collector.
This is a problem as it avoids portability to en-
vironments where a garbage collector is not avail-
able or, if available, it is not lock-free. This leads
to the loss of the overall lock-freedom property, as
one of the pieces does not have the property. On
the other hand, many memory reclamation schemes
were developed for general lock-free data structures.
However, some are not compatible with all lock-free
data structures [2, 3, 4, 5, 6, 7], or not lock-free
themselves [8, 9, 10], or depend on specific operat-
ing system or hardware implementations [11, 12].

The memory reclamation of removed elements on
a lock-free data structure is not as simple as in a
lock-based data structure. To ensure lock-freedom,
we need to allow concurrent access to the elements
on the data structure and, as such, we cannot guar-
antee that an element is not being accessed by other
threads at the moment it is being removed. Over-

Preprint submitted to Elsevier April 20, 2021



coming this limitation requires sophisticated meth-
ods to postpone, delegate and determine when the
reclamation may occur. These methods should also
offer some guarantees on performance and mem-
ory usage bounds while keeping the lock-freedom
property. For example, if the memory reclamation
method is not able to reclaim the removed elements
(i.e., progress) at the same rate as they are removed
from the data structure, we may end up with un-
bounded memory consumption. To the best of our
knowledge, outside garbage collected environments,
there is no current implementation of hash maps
that is able to reclaim memory in a lock-free man-
ner.

In this work, we focus on extending a so-
phisticated implementation of a lock-free hash
map data structure, named Lock-Free Hash Tries
(LFHT ) [13, 14], to support efficient memory recla-
mation in a lock-free manner. The LFHT imple-
ments a hash map that settles for a hierarchy of
hash tables instead of a monolithic expanding one,
granting it good latency and throughput character-
istics.

As a first approach, we started by exploring
the state-of-the-art lock-free memory reclamation
methods but, due to LFHT’s intrinsic procedure
of delegating removals under certain circumstances,
all of them proved to be incompatible with the
LFHT data structure as a result of an ABA prob-
lem [15]. However, in practice, we were not able to
reproduce such ABA problem in our experiments,
which somehow shows that the situations leading to
it are extremely rare. As such, we decided to still
implement some of the existing memory reclama-
tion methods on top of this (incorrect) approach,
for the sake of benchmarking and comparison of
results. In any case, the design was proved to be
wrong and could at any time, during execution, lead
to an inconsistent state of the data structure.

As a result of this first unsuccessful attempt, we
started exploring alternative designs for a mem-
ory reclamation method. This path allowed us to
exploit specific characteristics of the LFHT data
structure in order to be able to design a viable mem-
ory reclamation method, and also guarantee mem-
ory bounds and enhance the overall performance of
the data structure. Our novel design is based on
the idea of using a hazard hash and a hazard level
to represent, respectively, a path and a level in the
hierarchy of the LFHT data structure. This re-
sults in a small and well-defined portion of memory
being protected from reclamation by each thread,

and in fewer updates done on such hazard pairs
during an operation. The resulting lock-free mem-
ory reclamation method, which we named Hazard
Hash and Level (HHL), achieves lower synchroniza-
tion overhead than any of the state-of-the-art lock-
free memory reclamation methods, while providing
very well-defined and flexible memory bounds. As
a side-effect, it presents some minor limitations. It
restricts the usage of some of possible configura-
tions of the LFHT data structure and requires the
underlying memory allocator to efficiently align the
memory allocation requests.

Experimental results show that LFHT with the
HHL method is able to achieve performance and
scalability results surpassing current lock-based im-
plementations, such as the concurrent hash map de-
sign in Intel’s TBB library [16]. We also show that
the current state-of-the-art based methods cause
extreme performance degradation on high through-
put data structures, such as LFHT. This is caused
by their inherent need for updating global informa-
tion accessed frequently by all threads, which is not
the case in the HHL method.

The remainder of the paper is organized as fol-
lows. First, we introduce relevant background re-
garding the state-of-the-art lock-free memory recla-
mation methods and regarding the LFHT data
structure. Next, we present and discuss the motiva-
tion, challenges and solutions for the HHL method,
with particular emphasis on the key algorithms
needed to easily reproduce it by others. Then, we
discuss the correctness and lock-free progress of the
HHL method. At the end, we present and discuss
experimental results. Finally, we present conclu-
sions and further work directions.

2. Background

This section discusses the concepts of lock-
freedom and the ABA problem threat, and the cur-
rent state-of-the-art methods for memory reclama-
tion on lock-free data structures.

2.1. Lock-Freedom & the ABA Problem

Lock-free algorithms ensure system-wide
progress independently of the thread scheduling
policy, i.e., whenever a thread executes some
well-defined number of steps, it is guaranteed
that at least one thread must have made progress
during the execution of these steps. To achieve
lock-freedom, we must avoid any kind of locking in

2



our algorithm, as a thread waiting on a lock does
not make progress in any amount of time. This
would not be a problem if we could control the
scheduling of threads and make sure that at least
one thread that is not waiting on a lock is running,
but unfortunately this is not the case outside
kernel space. The solution is to take advantage of
atomic primitives that result in hardware specific
instructions that operate atomically on memory
locations.

Arguably, the most relevant atomic instruction
is Compare And Swap, or CAS for short, which
is widely supported in most modern architectures.
The CAS instruction is normally used as a mean
to commit a change if no concurrent task has in-
terfered with it in the meantime. Algorithm 1
shows the pseudo-code for the CAS instruction that
would be executed atomically. It receives three ar-
guments: a memory address M ; a value E, which
is expected to be found in M ; and a value N , to
replace E in M . In a nutshell, the CAS operation
atomically checks if the content in M corresponds
to the expected value E (line 1) and, if so, it up-
dates M to hold N (line 2). Otherwise, M remains
unchanged. At the end, the operation returns the
boolean result corresponding to whether the oper-
ation succeed or not (lines 3 and 5).

Algorithm 1 CAS(address M, value E, value N)

1: if Value(M ) = E

2: Value(M )← N

3: return True
4: else

5: return False

Besides reducing the granularity of the synchro-
nization, the CAS operation is at the heart of many
lock-free data structures [17]. Usually, in a lock-free
environment, we start by reading some value in a
memory address, then by doing some task based
on that value, and finally we try to commit the
work done with a CAS instruction using the initial
value read as the expected argument for the CAS.
If the memory address does not contain the given
expected value, the CAS simply fails, meaning that
we need to redo the process as another thread has
interfered with it.

However, the usage of the CAS instruction is not
straightforward, as the semantic is not exactly this,
because a valid expected value does not mean that
it remained unchanged between the first read and
the final commit. A scenario can happen where

a value A is first read, then concurrent operations
update the memory address from A to B and then
from B to A, allowing the CAS operation to suc-
ceed with an expected value of A even though the
memory’s value was changed in the meantime. This
is what is called an ABA problem [15, 18].

The prevention of the ABA problem can be done
through the context of the algorithm or the use
of other synchronization primitives. Preventing
it through the context of the algorithm is ideal
as it does not require additional hardware sup-
port. Otherwise, specific synchronization primi-
tives, such as, double-width CAS or load-link and
store-conditional primitives are required, but those
are not widely available across all common archi-
tectures and practical implementations are severely
limited.

2.2. Lock-Free Memory Reclamation Methods

To motivate for the problem of lock-free mem-
ory reclamation, we start by introducing Harris’
lock-free linked list [19] for storing key/value pairs,
which is implemented as follows. Each node in the
list consists of a key, a value associated with the
key, a reference to the next node in the chain and a
flag with the state of the node, which can be valid
(V ) or invalid (I). The flag is considered to be em-
bedded in the next node reference (often the least
significant bit of the reference, as it does not store
any information due to memory alignment). The
list begins with a special header node H, which ref-
erences the first node on the list. To mark the end
of the list, the last node references back the header
node H. During its lifetime, a node can be in one of
the following states: valid, invalid, unreachable or
reclaimable. Figure 1 shows a possible configuration
illustrating these states.

K3V IK1 K2 IH

Figure 1: Node states

Node K1 is considered valid because it is reach-
able from the header node H and its flag is set to
valid (V ). Node K3 is considered invalid since it is
reachable but its flag is set to invalid (I). Finally,
node K2 is considered unreachable (i.e., logically re-
moved from the list) since it is not reachable from
H. An unreachable node is always an invalid node.
Despite node K2 being unreachable, some threads

3



may still have local references to it, as a result of
reaching K2 before it was made unreachable. When
it is determined that there are no longer references
to an unreachable node by any thread, then it is
safe to physically reclaim the node’s memory. A
node in this state is considered reclaimable. Fig-
ure 2 shows how the remove operation changes a
node state.

remove node

T2

T3

T4

invalid reclaimableunreachable

T1

Figure 2: Node states after removal

First, the node is made invalid by changing its
flag from V to I, which informs the other threads
that the node is being removed from the list. Next,
the node is logically removed from the list by up-
dating the corresponding next on chain reference of
the previous valid node, which makes the node un-
reachable for the upcoming threads accessing the
list. After these two steps, the node is considered
removed and the remove operation ends by adding
it to a local/global reclamation queue.

In general, the reclamation procedure begins
when the amount of nodes in a reclamation queue
reaches a threshold. That threshold can be tuned in
order to exchange memory usage by execution time.
The problem arises in deciding when a node in a
reclamation queue becomes reclaimable, i.e., when
no thread has a reference to it. This can happen
until the end of all operations that started before
the node was made unreachable. This is the case
of threads T2 and T3 in Fig. 2, which started their
operations before T1 has made the node unreach-
able. From this point forward, it is impossible for
any other thread to have a reference to the node,
making it certain to be reclaimable after this point.
This is the case of thread T4 in Fig. 2, which started
its operation only after T1 has made the node un-
reachable.

There are two main methodologies to determine
if a node can be reclaimed, one is to use the order of
events in time, another is to track the spacial loca-
tion of threads. We next present the current state-
of-the-art methods for memory reclamation using
these two methodologies.

Grace Periods. For time based methods, a quies-
cent state is a moment in time where a thread has
no access to shared resources and a grace period is a
period of time in which all threads have been in at
least one quiescent state. When a node is made un-
reachable, we can be certain that, after a grace pe-
riod has elapsed, no thread still references it. Based
on this idea, various methods for determining the
relative temporal orders between events can be used
to reclaim memory with very little synchronization.
Some well-know methods to establish such tempo-
ral order are the usage of eras, global epochs [8] or
the Lamport clocks method [20]. All methods allow
to freely control the frequency at which quiescent
states are declared and at which we try to reclaim
memory, but there is an associated cost regarding
the amount of memory on the reclamation queue.

Although these methods do not necessarily hurt
the lock-freedom property of a concurrent data
structure, they do so by delegating the reclamation
procedure and, as such, cannot ensure the lock-
freedom of the system as a whole. The event of
waiting for the declaration of a quiescent state by
a single thread, renders all other threads to be un-
able to reclaim memory from all future nodes be-
ing removed. By itself, this does not block normal
operation on the data structure, but does not al-
low any progress in memory reclamation, leading
to unbounded memory consumption and to a pos-
sible logic lock in memory allocation.

Hazard Pointers. For space based methods, hazard
pointers [3] are shared variables that hold pointers
to shared resources currently in use by a thread.
They are used to inform the other threads of what
data structures are being accessed by a thread and
that thus cannot be reclaimed by others. Hazard
pointers usually imply a significant overhead caused
by threads having to share their location every time
they move on the data structure. For the lock-free
linked list example, we need two hazard pointers
per thread, as we need to protect the current and
the previous node that the thread is traversing. To
reclaim nodes, we start by reading all hazard point-
ers of all threads and by comparing them against
the nodes on the reclamation queue. A node not
referenced by any hazard pointer can be safely re-
claimed as no thread references it.

Drop the Anchor. This method can be described as
a grace period based method extended with a re-
covery mechanism based on hazard pointers that,

4



despite being very expensive, is expected to run
very rarely [4]. Its key idea is that when a thread
T1 identifies that another thread T2 is not mak-
ing progress in a certain amount of time, then T2 is
marked as stuck. A recovery procedure then tries to
recover the nodes protected by T2, i.e., the nodes
between the last anchor registered by T2 and the
instant where it would update the anchor again.
The recovery procedure replaces the existing nodes
with new ones and marks the replaced nodes as
frozen. This allows the remaining threads to be
able to ignore the stuck threads and thus continue
to reclaim memory normally. The replaced nodes
remain frozen until T2 recovers and takes care of
them.

Regarding the reclamation method, apart from
needing to guarantee that the removal time of a
node is inferior to the clock of all running threads,
similarly to grace periods, it also needs to ensure
that it is greater than the clock of all recovered
threads. This protects the nodes that are visi-
ble, to a thread which is either stuck or recovered,
but were not frozen because they became unreach-
able before the recovery procedure had a chance to
freeze them. The reclamation of this kind of frozen
nodes can be left to the thread that caused their
freeze. Performance-wise, this method approaches
the grace period method but introduces a bound
on the memory usage which is proportional to the
number of nodes between anchors. On the other
hand, it may need double-width CAS support and
the cost of the recovery procedure can lead to high
latency [4].

Hazard Eras. This method works similarly to grace
periods, however it uses clocks not only for the re-
moval time of every node but also for the insert
time, which allows to continue reclaiming memory
on the event of a thread delay or failure [5]. It uses
a global clock that is increased atomically at every
removal and, similarly to the way hazard pointers
are updated in the hazard pointers method, when a
thread reads a new reference, its local clock is up-
dated to the global clock. The insert time of the
nodes allows them to not be protected from recla-
mation by threads that stalled or failed before such
nodes were inserted. A delayed thread can pro-
tect from reclamation the number of nodes the data
structure has at the moment of the last update to
its local clock. The amount of memory is bounded,
but can still be high, leading to performance over-
heads.

Interval-Based Reclamation. This method works
similarly to the Hazard Eras method, however in
this method a node within a chain stores also the
insertion time of the follower node, in its next refer-
ence. This information allows a traversing thread to
update its local clock without consulting the global
clock [6].

Comparison. All these methods have advantages
and disadvantages, but it boils down to three main
aspects: performance, memory usage and complex-
ity. The grace periods method has optimal perfor-
mance, as it is very simple, but the memory usage
can explode rendering it to be unusable. The haz-
ard pointers method has optimal bounds in mem-
ory, but has an extra cost of performance and it is
slightly more complex to implement. Drop the an-
chor balances performance and memory very well,
but pays the price in complexity. Hazard Eras and
Interval-Based Reclamation end up balancing ev-
erything, but not excelling in any particular one.
Table 1 shows in more detail the memory bounds
and synchronization costs of each method.

Table 1: Comparison of the memory reclamation methods in
terms of memory bounds and synchronization operations per
node (T represents the number of threads, H the number of
hazard pointers per thread, A the anchor interval and N the
maximum number of valid nodes at any given moment)

Method Mem Bound Node Synch Ops
Grace Periods unbounded none
Hazard Pointers T 2 ×H 2 loads + 1 store
Drop the Anchor T 2 ×A amortized
Hazard Eras T 2 ×N 2 loads
Interval-Based T 2 ×N 2 loads

3. Lock-Free Hash Tries

The LFHT data structure has two kinds of nodes:
hash nodes and leaf nodes. The leaf nodes store
key/value pairs and the hash nodes implement a
hierarchy of hash levels of fixed size 2w. To map a
key/value pair (k,v) into this hierarchy, we compute
the hash value h for k and then use chunks of w bits
from h to index the appropriate hash node, i.e., for
each hash level Hi, we use the ith group of w bits of
h to index the entry in the appropriate bucket array
of Hi. To deal with collisions, the leaf nodes form
a linked list in the respective bucket entry until a
threshold is met and, in such case, an expansion
operation updates the nodes in the linked list to
a new hash level Hi+1, i.e., instead of growing a

5



single monolithic hash table, the hash trie settles
for a hierarchy of small hash tables of fixed size 2w.
Figure 3 shows how the insertion of nodes is done
in a hash level.

K3

(c)

...

Hi

...

V V

(b)

...

(a)

Prev

K1...

Prev

...

Bkentries

Hi

V K1 K2
w

Hi

2

Prev

V

.
.
.

Bk Bk

Figure 3: Insertion of nodes in a hash level

Figure 3a shows the initial configuration for a
hash level. Each hash level is formed by a hash
node Hi, which includes a bucket array of 2w en-
tries and a backward reference Prev to the previous
hash level, and by the corresponding chain of nodes
per bucket entry. Initially, all bucket entries are
empty. In Fig. 3, Bk represents a particular bucket
entry of Hi. A bucket entry stores either a reference
to a hash node (initially the current hash node) or
a reference to a separate chain of leaf nodes, corre-
sponding to the hash collisions for that entry. Fig-
ure 3b shows the configuration after the insertion of
node K1 on Bk and Fig. 3c shows the configuration
after the insertion of nodes K2 and K3. A leaf node
holds both a reference to a next-on-chain node and
a flag with the condition of the node, which can be
valid (V ) or invalid (I).

When the number of valid nodes in a chain
reaches a given threshold, the next insertion causes
the corresponding bucket entry to be expanded to
a new hash level. Figure 4 shows how nodes are
remapped in the new level.

(c) (d)

(a) (b)

K3

...

Hi + 1

Bk...

Hi

...

V VK1 K2

Prev Prev

V

...

Hi + 1

K3

...

Hi

...

K2

Prev

V

VV

Prev

K1

K4 V

...

Hi + 1

K3

...

Hi

...

K1 K2

Prev

VV

V

Prev

...

Hi + 1

K3

...

Hi

...

Prev

V

V V

Prev

K2

VK1

K4

Bm

Bk Bk

Bk

Bm

BmBm

Bn Bn

BnBn

Figure 4: Expansion of nodes in a hash level

The expansion operation starts by inserting a
new hash node Hi+1 at the end of the chain with
all its bucket entries referencing Hi+1 and the Prev
field referencing Hi (as shown in Fig. 4a). From
this point on, new insertions will be done on the

new level Hi+1 and the chain of leaf nodes on Hi

will be moved, one at a time, to Hi+1. Figure 4b
and Fig. 4c show how node K3 is first mapped in
Hi+1 (bucket Bn) and then moved from Hi (bucket
Bk). It also shows a new node K4 being inserted
simultaneously by another thread. When the last
node is expanded, the bucket entry in Hi references
Hi+1 and becomes immutable (Fig. 4d). Immutable
fields are represented with a white background.

Next, Fig. 5 shows an example illustrating how a
node is removed from a chain. The remove opera-
tion can be divided in two steps: (i) the invalidation
of the node (shown in Fig. 5a) and (ii) making the
node unreachable (shown in Fig. 5b).

K3...

Hi

...

V IK1 K2

Prev

VK3Bk...

Hi

...

V IK1 K2

Prev

V

(a) (b)

Bk

Figure 5: Removal of nodes in a hash level

The invalidation step starts by finding the node
N we want to remove and by changing its flag from
valid (V ) to invalid (I). If the flag is already invalid,
it means that another thread is also removing the
node and, in such case, nothing else needs to be
done. Next, to make the node unreachable, first
we need to find the next valid node A on the chain
(note that it can be the hash node corresponding
to the level N is at). Then, we continue travers-
ing the chain until we find a hash node H (if we
have not yet). If H is the same hash node we have
started from, we traverse again the chain until we
find the last valid node B before N (or we consider
the bucket entry if no valid node exists). If, while
searching for B we do not find node N , it means
that N has already been made unreachable and our
job is done. Otherwise, we just need to change the
reference of B to A. This is shown in Fig. 5b, where
K1 refers to K3.

If H is not the same hash node we have started
from, this means that a concurrent expansion is
happening simultaneously and we restart the pro-
cess in the next level (note that node N could either
have been expanded before we have invalidated it
or is currently in the process of being expanded).
In the case N has been expanded before we made
it invalid, we will be able to make it unreachable
in the next level. Otherwise, if N is in the pro-
cess of being expanded, we do not need to make it
unreachable, as the expanding thread will not ex-

6



pand it or will make it unreachable, if it only sees
N as invalid after completing its expansion. In this
situation, the thread doing the expansion becomes
responsible for making the node unreachable. The
process of transferring this responsibility to the ex-
panding thread is called delegation.

4. Problem Definition & Challenges

By default, all the state-of-the-art memory recla-
mation methods rely on the fact that an element
being removed from a data structure is left in an un-
reachable state when the remove operation termi-
nates. However, in the original design of the LFHT
data structure, a node is not guaranteed to be un-
reachable at the end of the remove operation, if a
concurrent expansion is happening simultaneously
and the task of making the node unreachable was
delegated to the expanding thread.

Figure 6 illustrates how an expansion operation
can change the moment where a node is considered
unreachable and reclaimable. In particular, the as-
sumption that a thread starting after the end of the
remove operation cannot have a reference to the re-
moved node is not valid anymore. This is the case
of thread T4 in Fig. 6, which started its operation
after thread T1 finished the remove operation, but
before the node was made unreachable by the ex-
panding thread T2. In this scenario, a node can
become reclaimable later than what would be ex-
pected if no delegation happened.

remove node

T2

T3

T4

invalid reclaimableunreachable

T1

expansion

Figure 6: Node states during expansion

Avoiding this delegation mechanism is not pos-
sible since T2 can always reinsert the node in the
new hash level before realizing that it was marked
as invalid and made unreachable. Figure 7 illus-
trates this situation in more detail. The problem
resides exclusively in the case where a thread T2,
doing an expansion, reads a valid node K3 and, be-
fore changing the corresponding bucket reference in
the new level Hi+1 in order to expand K3 (Fig. 7a),
another thread T1 is able to invalidate K3 (Fig. 7b)
and make it unreachable (Fig. 7c). As the removing

thread T1 does not interfere with the reference in
Hi+1, the expanding thread T2 can succeed in up-
dating the bucket reference Bn in Hi+1 to K3 and
effectively reinsert K3 making it reachable again
(Fig. 7d).

(a)

(d)

...

Hi + 1

K3

...

Hi

...

K2

Prev

I

VV

Prev

K1

K3

...

Hi + 1

Bk...

Hi

...

V VK1 K2

Prev Prev

V

(c)

K3

...

Hi + 1

...

Hi

...

V VK1 K2

Prev Prev

I

(b)

K3

...

Hi + 1

...

Hi

...

V VK1 K2

Prev Prev

I

Bm

Bn

Bk

Bk

Bk

Bm

Bn

Bm

Bn

Bm

Bn

Figure 7: Reinsertion of an invalid node during expansion

To apply the state-of-the-art reclamation meth-
ods to LFHT we need to avoid the problem and
guarantee that a node becomes (permanently) un-
reachable within the execution of the corresponding
remove operation. To guarantee this, we changed
the way the remove operation works when a node
N is being marked as invalid in a chain that is be-
ing expanded (i.e., before making N unreachable).
The idea is to search for the spot where N would
be expanded to and mark that spot with a special
tag. That tag would cause the CAS done by the ex-
panding thread to fail and thus avoid N from being
reinserted. The expanding thread would then ver-
ify that N was made invalid in the meantime and
skip its expansion. This method was implemented
and tested extensively without showing any wrong
results. However, there is a critical flaw that, un-
der very specific circumstances, can lead to nodes
being reinserted after being made unreachable. If
multiple expansions occur simultaneously in differ-
ent hash levels of the same path, they can be trying
to expand different nodes into the same point and
thus overflow the tag and make the reinsertion of
an invalid node possible again. This tag overflow
causes the ABA problem described earlier in Sec-
tion 2. Figure 8 illustrates how the ABA problem
can occur.

We consider a 1-bit tag and two expansions oc-
curring simultaneously as shown in Fig. 8a. Thread
T1 is expanding the level H1 (node K1) and thread
T2 is expanding the level H2 (node K2) and both
nodes (K1 and K2) are to be expanded to bucket
Bn in H3, i.e., after node K3. Now consider that
before performing the CAS to move K2 into H3

after K3 (the state of K3 becomes the first A in

7



K3 K2

K2 K3 K3

K2 K3

(a)

(d)(c)

(b)

...

H1

...

K1

Prev

...
...

V ...

H2

...

Prev

...

H3

...

Prev

V
0

V
0 0Bk Bm Bn ...

H1

...

Prev

V ...

H2

...

VK1

Prev

VK1 VK1 I
K2 ...

H3

...

Prev

V
0 0 1Bm Bn

...

H1

...

Prev

I ...

H2

...

Prev

...

H3

...

Prev

V
0

I
0 0Bm Bn ...

H1

...

Prev

I ...

H2

...

Prev

I...

H3

...

Prev

V
0 00Bm BnBk BkK1 K1

K1Bk

Figure 8: Reinsertion of an invalid node due to a tag overflow

ABA), another thread T3 invalidates K2 and, as
it detects an ongoing expansion, it increments the
tag of K3 (becomes the B in ABA) and only then
makes K2 unreachable (Fig. 8b). Then, T3 invali-
dates K1 and, as it detects an ongoing expansion, it
increments the tag on the expansion point, which
is again K3 (Fig. 8c). As the tag in this exam-
ple only has 1 bit, it now overflows and becomes 0
again (becomes the second A in ABA). Finally, in
Fig. 8d, T2 resumes and performs the CAS on K3

that wrongfully succeeds due to the tag overflow,
thus reinserting the unreachable node K2.

Since, in practice, this ABA situation is very un-
likely to happen (we were unable to reproduced it
in our experiments), we still used this approach to
the delegation problem for benchmarking purposes.

5. Hazard Hash and Level Approach

Hazard pointers have good memory bounds in
memory reclamation, however they rely on thread
synchronization based in performing sequentially
consistent atomic writes on every node being tra-
versed. Reducing this synchronization overhead,
while keeping good memory bounds, is a difficult
task and, to the best of our knowledge, there is not
a good way to merge nodes in well-defined groups
and protect them with a single hazard pointer. An
interesting characteristic of LFHT is that leaf nodes
are already grouped in chains that have a well-
defined maximum size. Thus, instead of having
a single hazard reference to protect a single node,
we have designed a novel approach, named Hazard
Hash and Level (HHL), that is able to protect a
well-defined group of leaf nodes. In this novel ap-
proach, each thread maintains a special hazard pair
<HH ,HL>, formed by a Hazard Hash (HH) and
a Hazard Level (HL), to indicate in which part of

the data structure it is positioned. HH represents a
path in LFHT and HL represents a portion of this
path. In what follows, we describe in detail the
HHL approach, its guarantees and limitations.

5.1. Properties & Key Ideas

To implement the HHL approach, we had to
extend the original LFHT’s algorithms and data
structures to ensure that a thread cannot have ac-
cess to nodes outside the portion of the path de-
fined by its current hazard pair. We now ensure
the following properties: (i) threads recovering from
preemption must progress to a valid data structure
(hash node or leaf node) within the same path; and
(ii) no new nodes are inserted in a path with an
expansion in course. In the original design, threads
can be moved to a different path and recover by
moving in that path. In the new design, if a thread
is moved to a different path, it now returns immedi-
ately to the last known hash node and recovers from
that point. Also, in the original LFHT design, the
insert and expand operations have the same pri-
ority, which means that they could be performed
concurrently in the same path. In the new design,
it is given a higher priority to the expand operation,
such that threads must collaborate to finish the un-
dergoing expansions in a path, before inserting new
nodes.

To implement these properties, the following
changes were made to the LFHT data structure:
(i) a bucket entry now includes a hash flag to in-
dicate if it stores a reference to a next hash level
(the hash flag is part of the atomic field that in-
cludes the reference); and (ii) a leaf node now in-
cludes a generation field, indicating the hash level
where it was first inserted, and a level tag, indicat-
ing the hash level where it is at the moment (the
level tag is part of the atomic field that also includes

8



...

H1

...

V V
K1 K2

Prev

1 1
G1 G1

Bk

(a)

K2

...

H1

...

V

...

H2
Prev

K1

Prev

2

2

V

G1
G1

Bm

Bn

Bk

(b)

K1

...

H1

...

V...

H2
Prev

K2

Prev

2

2

V

G1

G1

V
K3 2
G2

Bk

Bm

Bn

(c)

Figure 9: Safe traversal of nodes in the HHL approach

the validity flag and the reference to the next-on-
chain node). This means that the state informa-
tion of a leaf node is now given by a generation
field Gi and by an atomic tuple with three argu-
ments <NextNode,LevelTag ,ValFlag>. For exam-
ple, in Fig. 9c, the value of the generation field for
node K1 is G1, meaning that it was inserted in the
hash level H1, and the value of the atomic tuple is
<K3 , 2 ,V>, meaning that it is referring to node
K3 (1st argument), it is in the hash level H2 (2nd
argument) and it holds a valid key (3rd argument).

Next, we describe the key ideas behind the HHL
approach. In a nutshell, it is based on the fact that
each thread executing on the LFHT data structure
protects from reclamation a single and well-defined
chain of leaf nodes. Therefore, a leaf node N can
only be reclaimed if: (i) N is not in a protected
chain; and (ii) N has never been there in the past,
as a thread could have seen it there and still have
a reference to it, despite the fact that, in the mean-
time, N could have been expanded to a deeper level.
To guarantee that each thread protects the correct
chain of leaf nodes from reclamation, we take ad-
vantage of the hash flag in the bucket entries, the
level tag in the leaf nodes and the knowledge that
no node is inserted in a path being expanded. We
use the example in Fig. 9 to better illustrate the
key ideas of a safe traversal in the HHL approach.

Figure 9a shows the initial state. Assume that a
thread T reached the hash level H1 and has updated
its hazard level HL to refer to H1. Assume also that
T was preempted in node K1 before reading the
next-on-chain reference to K2. While preempted,
the configuration of the chain may change due to
a concurrent expansion. Later, to guarantee that
when T resumes, it can safely follow the reference in
K1, one must ensure that the reference is protected
by HL. Next, we discuss three situations that can
occur once T resumes from preemption.

The first situation is the case where the reference
in K1 still refers to K2 as shown in Fig. 9a. Since
the level tag in K1 is the same as HL (1=1), T can
safely follow the next-on-chain reference to K2.

The second situation is the case where the refer-
ence in K1 changed due to a concurrent expansion
and it refers now to the hash node H2 as shown in
Fig. 9b. Since the level tag in K1 is now higher than
HL (2>1), T is able to detect the concurrent expan-
sion. T then rereads the reference in the bucket en-
try Bk in order to understand if the expansion has
already finished. As Bk is still referring to the same
level, T knows that the expansion is still undergo-
ing and, as no new nodes can be inserted during an
expansion, T can safely follow the reference in K1

to H2.
The third and last situation is the case where the

reference in K1 also changed due to a concurrent
expansion and it refers now a different node K3 as
shown in Fig. 9c. Since the level tag in K1 is again
higher than HL (2>1), T rereads the reference in
Bk. However, in this scenario, Bk refers to the next
level H2, thus it is not safe to follow its reference,
since T can reach a node not being protected by HL.
T then restarts the traversal from the reference in
Bk instead of following the reference in K1.

In summary, when traversing a chain, T relies on
the level tag to know if an expansion is happening
concurrently. If T finds a level tag that is higher
than the current hazard level under protection and
it knows that the level in which it started the traver-
sal has already been completely expanded, then T
should not follow any reference because it can reach
a node N not being protected by its hazard level.

5.2. Delegation Problem

As discussed before, a node N being removed is
added to the thread’s local reclamation queue at
the end of the corresponding remove operation. We
know that N was invalidated during the remove op-
eration, but we do not know if it was made unreach-
able, since this process could have been delegated
to a thread doing a concurrent expansion. A de-
layed delegation can further postpone the moment
where N can be considered reclaimable. To guaran-
tee that the reclamation of N is safe, the following
information is required: (i) the hash value corre-

9



sponding to the key stored in N , which defines the
path where N could have been; (ii) the generation
field, which defines the entry point in that path; and
(iii) the level tag, that becomes immutable when N
is invalidated and thus defines the last hash level
where N was in.

The reclamation process is then triggered when
a local queue reaches a pre-defined threshold num-
ber of nodes. The reclamation procedure begins by
reading the list of hazard pairs of all threads and by
copying them in a local data structure, much like
as in the hazard pointers method. However, for the
HHL method, this reading needs to be done twice
and use the two copies of the hazard pairs before
performing any reclamation of memory for a node.
With only one read we cannot avoid the situation
where a thread T1 is not protecting N , when its
hazard pair is read, and then T1 accesses N before
a second thread T2, performing the delegation pro-
cess, turns N unreachable. If the hazard pair for
T2 is read next, then it can happen that T2 is not
protecting N either.

The second read of the list of hazard pairs solves
the problem because N is now unreachable and thus
the previous situation cannot happen again. After
reading twice the list of hazard pairs, a node N in
the reclamation queue cannot be reclaimed if it is
protected by any hazard pair <HH ,HL>, i.e., if
HH equals the hash value of N up to the hazard
level HL and if HL is between the generation and
the level tag of N . If such hazard pair exists, then
the node is kept in the reclamation queue. Oth-
erwise, the thread removes the node from its local
queue and reclaims its memory.

5.3. Memory Bounds

Everything discussed so far is enough to make
the memory reclamation method to work. How-
ever, it does not ensure a finite memory bound if
an infinite number of nodes is inserted and removed
from a specific chain without ever triggering an ex-
pansion. The reason is that if a thread suspends
or fails in such a chain or if there is a group of
threads continuously working on that chain in such
a way that at any given time at least one is travers-
ing it, this would prevent the removed nodes from
ever being reclaimed. This is a rather unrealistic
but nonetheless possible situation. To solve this
problem, we count how many nodes each thread
is protecting from reclamation, and if a thread T
reaches a predefined threshold, an expansion op-
eration is forced on the specific chain. This does

not guarantee the reclamation of the previously re-
moved nodes, but prevents T from protecting more
nodes. Later, when T progresses, the previously
removed nodes would be made reclaimable as no
thread can acquire a hazard pair for a chain that
has already been expanded.

This solution not only provides a well-defined and
flexible memory bound but can also improve per-
formance, as an expansion would likely divide the
multiple threads concurrently working on a specific
chain between multiple chains, thus reducing con-
tention in that section.

The fact that we cannot force an expansion on the
last hash level is not a problem. In the last level,
the solution is to traverse the chain exactly as in the
hazard pointers method [3], using the hazard level
to inform the reclamation procedure that the haz-
ard pointers method should be used to reclaim such
nodes. Since the last level cannot be expanded, del-
egations cannot happen either and thus the hazard
pointers method works here as intended. Note that
this situation is extremely rare. For it to happen,
the data structure needs to be almost full or the
hash function must not be doing its job well.

5.4. Guarantees & Limitations

Guarantees. In addition to guarantee lock-freedom,
the HHL method has well-defined memory bounds
and low synchronization overhead. The hazard
pairs and the forced expansions define a very fine
control over the maximum amount of unreclaimed
memory we want to allow. This amount depends
on: (i) the number T of threads; (ii) the number R
of remove operations per thread required to trigger
the reclamation procedure; (iii) the number P of
nodes protected by a single thread required to trig-
ger an expansion; and (iv) the maximum number
C of nodes in a chain. Given these parameters, the
memory bound is given by Eq. 1.

T 2 × (P + R + C) (1)

The P + R + C factor comes from the fact that
in one reclamation procedure a thread can see P−1
nodes protected by a thread and in the next it-
eration this number could have been increased by
R, as R new removals could have occurred in the
same chain. Then a maximum of C nodes can still
be present and then removed from the protected
chain. The multiplying factor T 2 is due to the fact
that for a specific thread this can happen once for
every other existing thread (T − 1 occurrences per

10



thread), and every thread can be in such a situation
(T × (T − 1) ≈ T 2).

Regarding the synchronization overhead of the
HHL method, in the most common case (i.e., no
expansions being done), it is expected to be two
atomic writes per operation, one for the hazard
hash and another for the hazard level. The cases
where we are traversing a chain while an expan-
sion is occurring, we need an extra atomic read per
node traversed and one atomic write to the hazard
level if the expansion finishes during the traversal.
Note that this is an uncommon situation, which in
a lock-based approach would require a lock.

Limitations. The usage of the alignment bits to
store the validity flag and the level tag limits the
amount of information that we can store on the level
tag, which in turn limits the maximum amount of
levels that the data structure can have and conse-
quently the minimum size of the bucket arrays. For
example, assuming A as the address size in bits of
the architecture in question (e.g., 32 or 64 bit size
addresses), then A

8 is the number of possible ad-
dressable positions in a address sized value (e.g.,
in a 32 bit value we have 4 possible addressable
positions). Since in our implementation a leaf node
occupies 4 addresses, the number of addressable po-
sitions in a leaf node is thus A

2 . Therefore, the
amount of bits available for the level tag (excluding
the validity flag) is:

log2

(
A

2

)
− 1 = log2

(
A

4

)
This means that the maximum amount of hash

levels is:

2log2(
A
4 ) =

A

4

And consequently, if assuming all levels of the
same size, the minimum size of a bucket array is
24 = 16 entries, which seems a reasonable limit for
this kind of data structure.

6. Implementation Details

This section discusses in more detail the key algo-
rithms that implement our proposal. We begin with
Alg. 2 showing the pseudo-code for the SearchKey()
procedure that given a key, returns the correspond-
ing value associated with it.

The algorithm starts by updating the correspond-
ing hazard pair, with the level of the root hash node

Algorithm 2 SearchKey(key K)

1: UpdateHazardLevel(Level(ROOT HN ))

2: UpdateHazardHash(K )
3: 〈N ,H 〉 ← SearchKeyOnHash(K ,ROOT HN )

4: if N = Null // leaf node not found

5: return Null
6: else

7: return Value(N )

and the given key K, in order to inform the other
threads that a new thread is starting a traversal
procedure (lines 1–2). Next, it calls the SearchKey-
OnHash() procedure to search for K within the
hash map, starting from the root hash node (line 3).
At the end, it returns the value associated with K
or Null if no leaf node N holding K was found
(lines 4–7).

Algorithm 3 then shows the pseudo-code for the
SearchKeyOnHash() procedure given a key K and
a hash node H. The SearchKeyOnHash() returns
a tuple with two arguments – the first argument N
refers to the leaf node holding K and the second
argument H refers to the hash node that starts the
chain where N was found (in Alg. 2, this argument
is not relevant and could have been omitted). If
K does not exist in the hash map, SearchKeyOn-
Hash() returns Null in the first argument.

Algorithm 3 SearchKeyOnHash(key K, hash H)

1: 〈NewH ,N 〉 ← TraverseHashLevels(K ,H )

2: if H 6= NewH // NewH references a deeeper level
3: UpdateHazardLevel(Level(NewH ))

4: return SearchKeyOnHash(K ,NewH )

5: else // H and NewH are the same
6: HL← GetHazardLevel()

7: if Level(H ) = HL // no expansion going on

8: B ← GetHashBucket(H ,K )
9: else // if expansion ended then ...

10: B ← GetHashBucket(PrevHash(H ),K )
11: if EntryRef (B) = 〈H ,NextLevel〉 // ... restart

12: UpdateHazardLevel(Level(H ))

13: return SearchKeyOnHash(K ,H )
14: while N 6= H

15: 〈NextN ,LevelTag,ValFlag〉 ← NextRef (N )

16: if ValFlag = Valid ∧Key(N ) = K // node found
17: return 〈N ,H 〉
18: if LevelTag > HL // if expansion ended then ...

19: 〈NewH ,Flag〉 ← EntryRef (B)
20: if Flag = NextLevel // ... restart

21: UpdateHazardLevel(Level(NewH ))

22: return SearchKeyOnHash(K ,NewH )
23: if IsHashNode(NextN ) ∧NextN 6= H // restart

24: return SearchKeyOnHash(K ,NextN )
25: N ← NextN

26: return 〈Null , 〉

11



The SearchKeyOnHash() algorithm begins by
calling the TraverseHashLevels() procedure to tra-
verse the path of hash levels associated with K
(starting from the hash node H), until reaching
the first hash node NewH within that path that
does not refer to another hash node (line 1). This
traversal also returns the reference N stored in the
bucket entry within NewH corresponding to K, i.e.,
N refers to the head of the chain of nodes where the
leaf node holding K could be found.

Next, if the given hash node H is different from
NewH , that means that at least one level was tra-
versed by the former procedure, thus the execut-
ing thread updates its hazard level and restarts the
search in NewH (lines 2–4). This is necessary to
synchronize the update of the hazard level with the
reference N obtained from TraverseHashLevels().
Otherwise, H and NewH are the same, thus the
algorithm has the conditions to proceed with the
search for K (lines 6–26).

Before proceeding with the search, the executing
thread T reads its current hazard level HL (line 6)
and checks if there is a concurrent expansion going
on (recall that a concurrent expansion can inter-
fere with the position of a thread by placing it in
a deeper hash level). If the level of H and HL are
the same then, for the moment, there is no expan-
sion going on, thus T proceeds by computing the
bucket entry B for H (line 8). Otherwise, a con-
current expansion was detected, which means that
T is executing in a hash node deeper than the cur-
rent hazard level HL, thus T gets the bucket entry
B from the previous level and checks if the expan-
sion has ended in the meantime, in which case it
updates the hazard level to protect the hash level
H and restarts the search from it (lines 11–13).

Finally, T traverses the chain of leaf nodes search-
ing for K (lines 14–25). To keep a safe traversal, the
main idea is that a next-on-chain reference is only
followed if it is protected by the hazard level HL.
There are three possible scenarios in this traversal:
(i) K is found in a valid leaf node N and the algo-
rithm ends returning the tuple 〈N ,H 〉 (lines 16–17);
(ii) the full chain of leaf nodes is traversed and K is
not found, and the algorithm ends returning Null
(line 26); or (iii) an expansion has interfered some-
how with the search (lines 18–24). Two types of
interference can happen: (i) T reaches a node with
a LevelTag higher than the hazard level HL it is pro-
tecting, case in which it rereads the bucket entry B
to check if the ongoing expansion has been com-
pleted in the meantime, in order to update the haz-

ard level and restart the search as before (lines 18–
22); or (ii) T reaches a new hash node, meaning
that a new expansion has started, case in which T
restarts the search from that node (lines 23–24).

Next, we present the procedure that supports the
remove operation. Algorithm 4 shows the pseudo-
code for the SearchRemoveKey() procedure that re-
moves a given key K from the data structure, if it
exists. The algorithm also starts by updating the
corresponding hazard pair and by searching for K
starting from the root hash node (lines 1–3). If K
is found in a leaf node N , then a three-step removal
process is done (lines 5–7). First, the MakeInvalid()
procedure marks the node as invalid (it fails if an-
other thread has already marked the node as in-
valid). The MakeUnreachable() procedure (shown
next in Alg. 5) then proceeds trying to make N un-
reachable. Finally, the AddToReclamationQueue()
procedure adds N to the local reclamation queue of
the executing thread.

Algorithm 4 SearchRemoveKey(key K)

1: UpdateHazardLevel(Level(ROOT HN ))
2: UpdateHazardHash(K )

3: 〈N ,H 〉 ← SearchKeyOnHash(K ,ROOT HN )

4: if N 6= Null // leaf node found
5: if MakeInvalid(N )

6: MakeUnreachable(N ,H )

7: AddToReclamationQueue(N )
8: return

To make a leaf node unreachable, Alg. 5 receives
as arguments the leaf node N and the hash node
H where N was last found. In a nutshell, the algo-
rithm searches for the valid nodes before and after
N in the chain of nodes, respectively BeforeN and
AfterN in Alg. 5, in order to bypass node N by
chaining BeforeN to AfterN , thus making N un-
reachable.

In more detail, the algorithm begins by calling
the SearchLeafNodeOnHash() procedure to traverse
the chain of nodes (starting from H), looking if N
is still reachable (line 1). If N is already unreach-
able, it returns Null . Otherwise, it returns the hash
node that starts the chain where N is found (which
can be different from the initial H). While travers-
ing the hash levels, the SearchLeafNodeOnHash()
procedure updates the hazard level similarly to the
way presented before for the SearchKeyOnHash()
procedure.

In the continuation, if N is already unreachable,
the MakeUnreachable() procedure simply returns
(lines 2–3). Otherwise, it is ready to search for

12



Algorithm 5 MakeUnreachable(leaf N, hash H)

1: H ← SearchLeafNodeOnHash(N ,H )

2: if H = Null // N is already unreachable
3: return

4: HL← GetHazardLevel()

5: AfterN ← GetValidNodeAfter(N ,H )
6: if AfterN = Null

7: if HL = GetHazardLevel() // delegation case

8: return
9: else // expansion ended in the meantime

10: return MakeUnreachable(N ,H )
11: NewH ← GetNextHashNode(AfterN ,H )

12: if NewH = Null

13: ... // same as lines 7–10
14: H ← NewH

15: 〈BeforeN ,OldRef 〉 ← GetValidNodeBefore(N ,H )

16: if BeforeN = Null // N is already unreachable
17: return

18: if IsLeafNode(BeforeN )

19: Address ← NextRef (BeforeN )
20: NewRef ← 〈AfterN ,Level(H ),Valid〉
21: else // bucket entry

22: Address ← EntryRef (BeforeN )
23: NewRef ← 〈AfterN ,SameLevel〉
24: if CAS(Address,OldRef ,NewRef ) // try bypass N
25: return

26: else // CAS failed

27: return MakeUnreachable(N ,H )

the valid nodes BeforeN and AfterN . That process
is done in three steps. First, find AfterN start-
ing from N (line 5). Second, find H starting from
AfterN (line 11). Third, find BeforeN starting from
H (line 15). If one of these three steps returns
Null , then it means that an expansion has inter-
fered with the process, cases in which the Make-
Unreachable() procedure restarts, if the interfering
expansion ended in the meantime (line 10), or re-
turns, either because the process of making N un-
reachable will be delegated to the interfering ex-
pansion (line 8) or because N is already unreach-
able (line 17). If all three steps are successful, the
algorithm begins the process of trying to bypass
N . A successful bypass means that a CAS oper-
ation (line 24) is successfully executed in the cor-
responding address of BeforeN . If the CAS fails,
the bypass was unsuccessful and the unreachability
process restarts (line 27).

Searching for BeforeN and AfterN is an impor-
tant part of Alg. 5. It is then important to under-
stand how the actual search is done. In what fol-
lows, Alg. 6 shows the pseudo-code for finding the
AfterN reference, given an already invalid leaf node
I and a hash node H (the GetNextHashNode() and
GetValidNodeBefore() procedures follow a similar

Algorithm 6 GetValidNodeAfter(leaf I, hash H)

1: HL← GetHazardLevel()

2: if Level(H ) = HL // no expansion going on
3: B ← GetHashBucket(H , key(I ))

4: else

5: B ← GetHashBucket(PrevHash(H ),Key(I ))
6: 〈N ,NodeLevel ,ValFlag〉 ← NextRef (I )

7: while IsLeafNode(N ) ∧ValFlag = Invalid

8: 〈NextN ,LevelTag,ValFlag〉 ← NextRef (N )
9: if LevelTag > NodeLevel // delegation case

10: return Null
11: if LevelTag > HL // if expansion ended then ...

12: 〈NewH ,Flag〉 ← EntryRef (B)

13: if Flag = NextLevel // ... return
14: UpdateHazardLevel(Level(NewH ))

15: return Null

16: N ← NextN
17: return N

pattern).
The algorithm begins by reading the current haz-

ard level HL (line 1) and by getting the bucket en-
try B as in Alg. 3 (lines 2–5). Next, it traverses the
chain of leaf nodes searching for a valid data struc-
ture (lines 7–16). There are two possible scenarios
in this traversal: (i) a valid (hash or leaf) node N is
found and thus returned (line 17); or (ii) an expan-
sion has interfered somehow with the search and a
Null value is returned to indicate that (lines 9–15).
Two types of interference can happen: (i) a leaf
node with a level tag higher than the level tag of
I is found, case in which the process of making I
unreachable is delegated; or (ii) the interfering ex-
pansion completed in the meantime, case in which
we need to restart the MakeUnreachable() proce-
dure from the beginning.

7. Correctness & Lock-Free Progress

In this section, we discuss the correctness of our
proposal. The full proof consists of two parts: (i)
prove that the proposal is linearizable; and (ii)
prove that the lock-freedom property holds in all
operations. We focus on the linearization proof for
the algorithms described before. For that, we enu-
merate the linearization points, describe the set of
invariants and show parts of the proof that the lin-
earization points preserve the set of invariants.

The linearization points in the algorithms shown
are:

LP1 SearchKey() (Alg. 2) is linearizable at Update-
HazardLevel() in line 1.

13



LP2 SearchKey() (Alg. 2) is linearizable at Update-
HazardHash() in line 2.

LP3 SearchKeyOnHash() (Alg. 3) is linearizable at
UpdateHazardLevel() in line 3.

LP4 SearchKeyOnHash() (Alg. 3) is linearizable at
UpdateHazardLevel() in line 12.

LP5 SearchKeyOnHash() (Alg. 3) is linearizable at
UpdateHazardLevel() in line 21.

LP6 SearchRemoveKey() (Alg. 4) is linearizable at
UpdateHazardLevel() in line 1.

LP7 SearchRemoveKey() (Alg. 4) is linearizable at
UpdateHazardHash() in line 2.

LP8 SearchRemoveKey() (Alg. 4) is linearizable at
MakeInvalid() in line 5.

LP9 MakeUnreachable() (Alg. 5) is linearizable at
successful CAS in line 24.

LP10 GetValidNodeAfter() (Alg. 6) is linearizable
at UpdateHazardLevel() in line 14.

The set of invariants that must be preserved on
every state of the data structure are:

Inv1 For every hash level H, PrevHash(H ) always
refers to the previous hash level.

Inv2 A bucket entry B belonging to a hash level
H must comply with the following semantics:
(i) its initial reference is H; (ii) after the first
update, it must refer to a node N1; (iii) after a
follower update, it must refer either to another
node N2, to the hash level H or to a second
hash level Hd such that PrevHash(Hd) = H .
If B is referring to Hd, then no more updates
occur in B.

Inv3 A node N must comply with the following
semantics: (i) its initial condition is valid ; (ii)
after an update to invalid, it never changes to
valid again.

Inv4 The accessibility condition of a node N must
comply with the following semantics. If N is
valid then it is reachable. Otherwise, if N is
made invalid then it must follow the sequence
of stages: (i) on the 1st stage, it is reachable;
(ii) on the 2nd stage, it moves to unreachable;
and (iii) on the 3rd stage, it turns reclaimable.

Inv5 A valid node N in a chain of nodes starting
from a bucket entry B belonging to a hash level
H must comply with the following semantics:
(i) its initial (next-on-chain) reference is H; (ii)
after an update, it must refer to another node
in the chain or to a hash level; (iii) once it refers
to a hash level Hd (at least one level) deeper
than H, then it never refers to H again.

Inv6 The next-on-chain reference of an invalid
node N is never updated.

Inv7 The number of valid nodes in a chain of
nodes starting from a bucket entry B be-
longing to a hash level H is always lower
or equal than a predefined threshold value
MAX NODES ≥ 1 .

Inv8 Given a key K present in the hash map, it
exists only one path P from the root hash level
to the unreachability point UP (a hash bucket
or a valid chain node), from where the node N
with K should be made unreachable. After N
is marked as invalid, the UP is unique.

Finally, we show the proof on how two of the lin-
earization points, namely LP8 and LP9, preserve
the set of invariants. We are not showing the proof
for the remaining linearization points, but they fol-
low a similar proof strategy.

Theorem 1. The linearization point LP8 preserves
the set of invariants.

Proof. Assume that a thread T is executing Alg. 4
and K exists in the hash map. Since the search
operation in line 3 will necessarily find the node
N that is holding K (i.e., N is not Null), two sit-
uations can occur: (i) T marks N as invalid; or
(ii) N was already marked as invalid. For (i), Inv3
holds – since we are updating the state from valid
to invalid, Inv4 holds – as N remains reachable,
Inv7 holds – because the number of valid nodes in
the chain is decreased by one, and the remaining
invariants are not affected. For (ii), all invariants
hold, as no change in the data structure occurs.

Theorem 2. The linearization point LP9 preserves
the set of invariants.

Proof. Assume that a thread T is executing Alg. 5
for a given invalid node N and that all invariants
hold until the execution of the CAS operation at
line 24. Previous to the execution of the CAS, Inv4

14



ensures that N is reachable and Inv7 ensures that
exists only one path from the root node until the un-
reachability point UP of N and that UP is unique.
The execution of the CAS can lead to a failure, if
the value in the memory address Address is different
from OldRef , or to a success otherwise. If it fails
then all invariants hold, as no change in the data
structure occurs. A successful CAS means that the
value in Address changes to NewRef , which is a
memory reference to a valid hash or leaf node. If
Address is a bucket entry then Inv2 holds because
NewRef is a reference to a leaf node or to a deeper
hash node that was obtained in line 5. Otherwise,
if Address is a leaf node then Inv3 holds – because
in line 20 the third argument of the tuple maintains
the leaf node as valid, Inv5 holds – because NewRef
is a reference to a hash or leaf node, Inv4 holds –
because the successful CAS turns N unreachable,
and the remaining invariants are not affected.

8. Experimental Results

This section presents experimental results com-
paring HHL with other lock-free memory reclama-
tion methods.

8.1. Methodology

To run our experiments, we have developed a
benchmarking tool that compiles the data structure
and memory reclamation method together with a
small module that controls the execution. Next, we
describe in more detail the benchmarking tool and
the environment of our experiments1.

Figure 10 shows a visual representation of the
benchmarking tool, in which the controller receives
as input five parameters and communicates with
the data structure through a specific interface de-
signed to run the insert, remove and search opera-
tions. The input parameters are: (i) the number T
of threads to be considered; (ii) the number N of
total operations to be executed; (iii) the percent-
age Pi of insert operations; (iv) the percentage Ps

of search operations; and (v) the percentage Pr of
remove operations.

The benchmarking tool includes two stages. In
the initial stage, the tool starts by launching the
given number of threads T and by setting up the
data structure with each thread pre-inserting the

1Available at https://gitlab.com/pedromoreno/lfht-hhl

Controller

API

T N Pi Ps Pr

Data Structure

Figure 10: Benchmarking tool

keys that will be searched and removed. The to-
tal number of operations is divided equally among
the T threads and each thread receives a prede-
fined seed to be used by a Pseudo-Random Number
Generator (PRNG)2. Then, the PRNG generates
keys within a key space range, and the generated
keys are distributed according to the given percent-
ages to determine which ones correspond to insert,
search or remove operations.

Figure 11 illustrates the distribution procedure
for one and two threads, with seeds S1 and S2, re-
spectively. However, it is important to note that
the nature of the random generated values implies
that the percentage of inserts, searches and removes
may not be exactly the same as specified in the in-
put parameters, but as the PRNG used has good
properties and the number of operations is large
enough, the actual deviation was found to be con-
sidered negligible.

S1

Key Space

N

Pi PrPs

One Thread

Generated
Keys

Inserts RemovesSearches

1
S1

N/2

Pi PrPs

Two Threads

Inserts RemovesSearches

1
S2
1N/2

Figure 11: Distribution of keys among threads/operations

In the second stage, the tool executes the bench-
mark. It starts by resetting the seed of each thread
to its initial value and by marking the beginning of
the execution time. Then, each thread performs its
set of operations according to the keys generated
by the PRNG. When all threads finish their execu-
tion, the benchmark is considered complete and the
execution time is presented.

In an optional third stage, we can check for the
correctness of the data structure at the end, and
verify if the keys in the insertion and search ranges
are present in the data structure and if the keys

2We used the nrand48 r() function from the GNU C Li-
brary.

15



in the remove range are missing. This stage was
executed for all the experiments and no errors were
detected.

The environment for our experiments was a ma-
chine with 2x16-Core AMD Opteron - 6274 with
32GB of main memory, running the Linux ker-
nel 3.18.fc20 with the memory allocator jemalloc-
5.0 [21]. By default, we used the LFHT data struc-
ture with a configuration of 24 bucket entries per
hash node, a threshold of 3 for the chain node size
and a threshold of 28 for the reclamation queue.
Finally, we used a fixed size of 107 operations and
the execution time is the average of 5 runs. To put
the results in perspective, we compared the HHL
method with three other approaches that we also
implemented:

OF (Optimistic Free) implements an optimistic
approach where each thread has a private and
big enough reclamation ring buffer that fills
with the nodes being removed. Each time it
goes around, it reclaims the memory for the
nodes in the buffer entries, before refilling them
with newly removed nodes. Despite incorrect,
this approach represents a best-case scenario
for memory reclamation.

GPE (Grace Periods with Eras) implements
a grace period method based on eras on top of
our approach with the ABA problem. It uses
a global clock that is atomically incremented
at every removal and a local clock that every
thread updates to the global clock at each
quiescent state (which is declared at every
operation).

GPL (Grace Periods with Lamport clocks)
implements a grace period method on top of
our approach with the ABA problem, but
using Lamport clocks. At a quiescent state
(declared at every operation), each thread
reads all of the other threads’ clocks and
updates its own with the maximum value read
plus one.

8.2. Performance Analysis

Figure 12 shows the execution time for the OF,
GPE, GPL and HHL approaches when running six
benchmarks with different percentages of insert,
search and remove operations3 and a number of

3We have also tested other scenarios with higher sets of
keys and different mixes of the search, remove and insert

threads from 1 to 32. To better show the overhead
implied by each method, all results are normalized
to the OF approach.

For the benchmarks with inserts only (Fig. 12a)
and searches only (Fig. 12c), the GPE approach
behaves very closely to ideal, as the global clock is
never updated, resulting in almost no synchroniza-
tion for the memory reclamation done in practice.
The same happens for the HHL approach, since
the hazard pairs are never synchronized between
threads. For the remaining benchmarks (Fig. 12b,
Fig. 12d, Fig. 12e and Fig. 12f), one can observe a
heavy degradation on both grace period methods,
while HHL remains almost stable. This is explained
by the synchronization required per quiescent state
declared, which happens once per insert, search or
remove operation.

The reason to compare with the GPE and GPL
methods was the fact that they map to the state-
of-the-art Hazard Eras and Drop the Anchor meth-
ods. The Hazard Eras method follows our GPE
method for clock management but, instead of do-
ing the equivalent of a quiescent state at every op-
eration, it does so at every node traversed in order
to guarantee a memory bound. Similarly, the Drop
the Anchor method follows our GPL method for
clock management, but adds procedures for anchor
maintenance and recovery, in order to guarantee
a memory bound. As such, if any of these meth-
ods were fully implemented, they would achieve,
at best, a similar performance to the one obtained
with the GPE and GPL approaches. We argue that
any method based on grace periods that requires at
least one quiescent state per operation, would not
be competitive with our HHL method in workloads
that require a non trivial amount of remove oper-
ations. For example, in Fig. 12d, we can observe
that just 5% of insertions and removals is enough
to more than double the execution time with 32
threads, if comparing HHL with the best grace pe-
riod method.

Next, Fig. 13 compares throughput (in opera-
tions per second) between the LFHT with the HHL
memory reclamation method and the lock-based
concurrent hash maps design from the TBB li-
brary [16]. We used the LFHT data structure with
a configuration of 24 and 28 bucket entries per hash
level node, which we named HHL 4 and HHL 8,

operations, but have not obtained relevant results. This can
be explained by the fact that all of the other scenarios can
be seen as subsets of the ones that we are presenting here.

16



(a) inserts only (100 – 0 – 0) (b) removes only (0 – 0 – 100) (c) searches only (0 – 100 – 0)

(d) mostly searches (5 – 90 – 5) (e) half searches (25 – 50 – 25) (f) no searches (50 – 0 – 50)

Figure 12: Execution time normalized to the OF approach (lower is better) for the OF, GPE, GPL and HHL approaches when
running six benchmarks with different percentages (Pi − Ps − Pr) of insert, search and remove operations

(a) inserts only (100 – 0 – 0) (b) removes only (0 – 0 – 100) (c) searches only (0 – 100 – 0)

(d) mostly searches (5 – 90 – 5) (e) half searches (25 – 50 – 25) (f) no searches (50 – 0 – 50)

Figure 13: Throughput in operations per second (higher is better) for the HHL and TBB approaches when running six
benchmarks with different percentages (Pi − Ps − Pr) of insert, search and remove operations

17



respectively.
In a nutshell, both HHL 4 and HHL 8 approaches

scale well in all benchmarks, while TBB shows some
limitations in the benchmarks performing inserts
and/or removes. For the benchmarks with searches
only (Fig. 13c) and mostly searches (Fig. 13d), the
results are very competitive but, even so, HHL 8 is
still better than TBB. For the benchmarks mainly
with inserts and/or removes, TBB suffers from a
heavy performance degradation.

In particular, for the benchmarks with 0% of
searches (Fig. 13a, Fig. 13b and Fig. 13f), TBB
does not scale when exposed to around 5 × 106

modification operations per second independently
of the number of threads used, while HHL is able
to scale almost linearly with any kind of operation,
being able to produce about 5 times the through-
put for a workload of only modification operations
with 32 threads. For a 50% search ratio (Fig. 13e),
the behavior is similar, but TBB stops scaling at
a higher value, around 107 operations per second,
which still corresponds to the same 5 × 106 mod-
ification operations per second. In general, these
results clearly show the impact of our HHL lock-
free approach compared to TBB.

9. Conclusions & Further Work

We have presented an efficient memory reclama-
tion method for a lock-free hash map data struc-
ture. To the best of our knowledge, outside garbage
collected environments, there is no other implemen-
tation of hash maps that is able to reclaim memory
in a lock-free manner.

Our new design, which we named HHL (Hazard
Hash and Level), uses hazard pairs to define small
and well-defined regions of memory to be protected
from reclamation. Since this requires very few up-
dates to such hazard pairs during an operation, the
HHL method achieves lower synchronization over-
head than any of the state-of-the-art lock-free mem-
ory reclamation methods, while providing very well-
defined and flexible memory bounds.

Experimental results also showed that the HHL
method provides a competitive and scalable thread
safe hash map implementation, if compared to lock-
based implementations.

As further work, we plan to study how the HHL
memory reclamation method can be adapted to
similar lock-free data structures and how the LFHT
design can be extended to also support the removal

and reclamation of hash nodes. We also intend
to evaluate novel automatic memory reclamation
methods, such as Automatic Optimistic Access [22]
and Free Access [23], and compare their perfor-
mance against our method.

Acknowledgments

This work is financed by National Funds
through the Portuguese funding agency,
FCT – Fundação para a Ciência e a Tecnolo-
gia, within project UIDB/50014/2020. Pedro
Moreno and Miguel Areias are funded by
the FCT grants SFRH/BD/143261/2019 and
SFRH/BPD/108018/2015, respectively.

References

[1] M. Herlihy, N. Shavit, On the Nature of Progress, in:
Principles of Distributed Systems, Springer, 2011, pp.
313–328.

[2] M. Herlihy, V. Luchangco, M. Moir, The Repeat
Offender Problem: A Mechanism for Supporting
Dynamic-sized Lock-free Data Structures, Tech. rep.
(2002).

[3] M. M. Michael, Hazard Pointers: Safe Memory Recla-
mation for Lock-Free Objects, Transactions on Parallel
and Distributed Systems 15 (6) (2004) 491–504.

[4] A. Braginsky, A. Kogan, E. Petrank, Drop the Anchor:
Lightweight Memory Management for Non-blocking
Data Structures, in: Symposium on Parallelism in Al-
gorithms and Architectures, ACM, 2013, pp. 33–42.

[5] P. Ramalhete, A. Correia, Brief Announcement: Haz-
ard Eras - Non-Blocking Memory Reclamation, in:
Symposium on Parallelism in Algorithms and Architec-
tures, ACM, 2017, pp. 367–369.

[6] H. Wen, J. Izraelevitz, W. Cai, H. A. Beadle, M. L.
Scott, Interval-based memory reclamation, in: Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, ACM, 2018,
pp. 1–13.

[7] J. Kang, J. Jung, A marriage of pointer- and epoch-
based reclamation, in: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2020, Association for
Computing Machinery, New York, NY, USA, 2020, p.
314–328.

[8] K. Fraser, Practical lock-freedom, Tech. Rep. UCAM-
CL-TR-579, University of Cambridge, Computer Labo-
ratory (2004).

[9] T. E. Hart, P. E. McKenney, A. D. Brown, J. Walpole,
Performance of memory reclamation for lockless syn-
chronization, Journal of Parallel and Distributed Com-
puting 67 (12) (2007) 1270–1285.

[10] D. Alistarh, W. M. Leiserson, A. Matveev, N. Shavit,
Threadscan: Automatic and scalable memory recla-
mation, in: Proceedings of the 27th ACM symposium
on Parallelism in Algorithms and Architectures, ACM,
2015, pp. 123–132.

18



[11] T. A. Brown, Reclaiming memory for lock-free data
structures: There has to be a better way, in: Pro-
ceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, PODC ’15, Association for
Computing Machinery, New York, NY, USA, 2015, p.
261–270.

[12] D. Dice, M. Herlihy, A. Kogan, Fast non-intrusive mem-
ory reclamation for highly-concurrent data structures,
in: Proceedings of the 2016 ACM SIGPLAN Inter-
national Symposium on Memory Management, ISMM
2016, Association for Computing Machinery, New York,
NY, USA, 2016, p. 36–45.

[13] M. Areias, R. Rocha, A Lock-Free Hash Trie Design
for Concurrent Tabled Logic Programs, International
Journal of Parallel Programming 44 (3) (2016) 386–406.

[14] M. Areias, R. Rocha, Towards a Lock-Free, Fixed Size
and Persistent Hash Map Design, in: International
Symposium on Computer Architecture and High Per-
formance Computing, IEEE, 2017, pp. 145–152.

[15] D. Dechev, P. Pirkelbauer, B. Stroustrup, Under-
standing and effectively preventing the ABA prob-
lem in descriptor-based lock-free designs, in: Inter-
national Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, IEEE,
2010, pp. 185–192.

[16] J. Reinders, Intel threading building blocks: outfit-
ting C++ for multi-core processor parallelism, O’Reilly,
2007.

[17] M. Herlihy, J. M. Wing, Axioms for Concurrent Ob-
jects, in: ACM Symposium on Principles of Program-
ming Languages, ACM, 1987, pp. 13–26.

[18] D. Dechev, The ABA problem in multicore data struc-
tures with collaborating operations, in: International
Conference on Collaborative Computing: Networking,
Applications and Worksharing, ICST / IEEE, 2011, pp.
158–167.

[19] T. L. Harris, A pragmatic implementation of non-
blocking linked-lists, in: 15th International Conference
on Distributed Computing, Springer-Verlag, 2001, pp.
300–314.

[20] L. Lamport, Time, Clocks, and the Ordering of Events
in a Distributed System, Communications of the ACM
21 (7) (1978) 558–565.

[21] J. Evans, A scalable concurrent malloc (3) implemen-
tation for FreeBSD, in: BSDCan Conference, 2006.

[22] N. Cohen, E. Petrank, Automatic memory reclamation
for lock-free data structures, in: Proceedings of the 2015
ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2015, Association for Computing
Machinery, New York, NY, USA, 2015, p. 260–279.

[23] N. Cohen, Every data structure deserves lock-free mem-
ory reclamation, Proceedings of the ACM on Program-
ming Languages 2 (OOPSLA) (2018) 143.

19


