
On the Correctness and Efficiency of a
Novel Lock-Free Hash Trie Map Design

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

{miguel-areias, ricroc}@dcc.fc.up.pt

Abstract

Hash tries are a trie-based data structure with nearly ideal characteristics for the implementation of hash
maps. In this paper, we present a novel, simple and scalable hash trie map design that fully supports the
concurrent search, insert and remove operations on hash maps. To the best of our knowledge, our proposal
is the first that puts together the following characteristics: (i) be lock-free; (ii) use fixed size data structures;
and (iii) maintain the access to all internal data structures as persistent memory references. Our design is
modular enough to allow different types of configurations aimed for different performances in memory usage
and execution time and can be easily implemented in any type of language, library or within other complex
data structures. We discuss in detail the key algorithms required to easily reproduce our implementation
by others and we present a proof of correctness showing that our proposal is linearizable and lock-free for
the search, insert and remove operations. Experimental results show that our proposal is quite competitive
when compared against other state-of-the-art proposals implemented in Java.

Keywords: Concurrent Data Structures, Hash Tries, Lock-Freedom

1. Introduction

Hash maps are a very common and efficient data
structure used to store and access data that can
be organized as pairs (K,C), where K is a unique
key with an associated content C. The mapping
between K and C is given by a hash function, and
the most usual operations done in hash maps are
the search, insertion and removal of pairs. Hash
tries (or hash array mapped tries) are a trie-based
data structure with nearly ideal characteristics for
the implementation of hash maps [1]. An essential
property of the trie data structure is that common
prefixes are stored only once [2], which in the con-
text of hash maps leads to implementations using
fixed size data structures. This allows to efficiently
solve the problems of setting the size of the initial
hash map and of dynamically expanding/resizing it
in order to deal with hash collisions. This fixed size
characteristic is also determinant for taking advan-
tage of memory allocators where data structures of
the same size/class are (pre-)allocated within the
same (regions of) pages [3].

Multithreading with hash maps is the ability to
concurrently execute multiple search, insert and re-
move operations in such a way that each specific
operation runs independently but shares the under-
lying data structures that support the hash map.
The traditional approach to concurrent data struc-
tures is to use locking primitives such as spinlocks,
mutexs or semaphores to synchronize access to crit-
ical sections. A fundamental problem with lock-
based data structures is that when one thread at-
tempts to acquire a lock held by another thread,
the thread needs to block until the lock is avail-
able. Blocking a thread is undesirable for many rea-
sons. A non-blocking alternative is to use lock-free
data structures, as they are unaffected by thread
failures or delays. A major difference is that with
lock-free data structures, the failure or suspension
of any thread cannot cause the failure or suspen-
sion of another thread. Lock-freedom can still lead
to starvation of individual threads but it guarantees
system-wide throughput, i.e., when a set of the pro-
gram threads are run simultaneously at least one

Preprint submitted to Elsevier January 8, 2021

thread makes progress. In this context, lock-free
data structures offer several advantages over their
lock-based counterparts, such as, being immune to
deadlocks, lock convoying and priority inversion,
and being preemption tolerant, which ensures simi-
lar performance regardless of the thread scheduling
policy. Lock-free data structures have proved to
work well in many different settings [4] and they
are available in several different frameworks, such
as, Intel’s Threading Building Blocks [5], the NO-
BLE library [6] or the Java concurrency package [7].

Another important characteristic is the ability
to maintain the access to all internal data struc-
tures as persistent memory references, i.e., avoid
duplicating internal data structures by creating new
ones through copying/removing the older ones. The
persistent characteristic is very important in hash
maps that are used not standalone but as a compo-
nent of a bigger module/library which, for perfor-
mance reasons, requires accessing directly the inter-
nal data structures. In such scenario, it is manda-
tory to avoid changing the external memory refer-
ences to the internal hash map data structures.

In recent work [8], we have proposed a novel con-
current hash map design, aimed to be as compet-
itive as the existent alternative designs, that puts
together the following three characteristics: (i) be
lock-free; (ii) use fixed size data structures; and (iii)
maintain the access to all internal data structures
as persistent memory references. To the best of
our knowledge, none of the available alternatives
in the literature fulfills all these three character-
istics simultaneously. In this work, we discuss in
detail the key algorithms required to easily repro-
duce our implementation by others and we present
a proof of correctness showing that our proposal
is linearizable and lock-free for the search, insert
and remove operations. Our proposal is based on
single-word CAS (compare-and-swap) instructions
to implement lock-freedom and on hash tries to im-
plement fixed size data structures with persistent
memory references.

In previous work [9, 10], we have already pro-
posed different concurrent hash map designs but
only for the search and insert operations. In [9], we
presented a first lock-free hash map design which
had two important constrains: (i) it did not use
fixed size data structures for the hash tables; and
(ii) the expansion mechanism was done by a sin-
gle thread. In [10], we presented a second lock-free
hash map design that overcomes both constrains,
for (i) we used hash tries and for (ii) we allowed

multiple and simultaneous expansions of the hash
levels. However, both designs did not support the
concurrent remove operation. The present works
revives such previous work and extends it to also
include the remove operation. To do so, we had
to redesign the existent search, insert and expand
operations and add new and more powerful invari-
ants that could ensure the correctness of the new
design. An important contribution of the new hash
map design is the ability to support the concurrent
expansion of hash levels together with the removal
of keys without violating the lock-free property and
the consistency of the design. Our proposal is also
the basis of more recent works in the field [11, 12].

In a nutshell, the main contributions of this work
are the following:

• We present and discuss in detail the key algo-
rithms required to easily reproduce our imple-
mentation by others.

• We present a proof of correctness showing that
our proposal is linearizable and lock-free for
the search, insert and remove operations.

• We present a set of experiments comparing our
design against other state-of-the-art concur-
rent hash map proposals, namely, Non Block-
ing Hash Maps [13], Concurrent Tries [14], and
the Concurrent Hash Maps and Concurrent
Skip-Lists from the Java concurrency pack-
age [7].

The remainder of the paper is organized as fol-
lows. First, we introduce relevant background and
related work. Next, we present and discuss in detail
the key algorithms required to easily reproduce our
implementation by others. Then, we present the
formal proof that our proposal is linearizable and
lock-free. Finally, we present a set of experiments
comparing our design against other state-of-the-art
concurrent hash map proposals. At the end, we
present conclusions and further work directions.

2. Background & Related Work

Nowadays, the CAS instruction can be widely
found on many common shared memory architec-
tures. The CAS instruction atomically compares
the contents of a memory location to a given value
and, if they are the same, modifies the contents of
that memory location to a given new value. The

2

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Assumptions on the OS scheduler

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

MinimalLock-FreeSome thread
make progress

Dependency
vs

Progress

Figure 1: The periodic table of progress conditions

atomicity guarantees that the new value is calcu-
lated based on up-to-date information, i.e., if the
value had been updated by another thread in the
meantime, the write would fail. The CAS result
indicates whether it has successfully performed the
substitution or not.

Besides reducing the granularity of the synchro-
nization, the CAS instruction is at the heart of
many lock-free data structures [15]. A lock-free
data structure guarantees that, whenever a thread
executes some finite number of steps on the data
structure, at least one operation by some thread
must have made progress during the execution of
these steps. Progress can be seen as the steps that
threads take to complete methods within a concur-
rent data structure, i.e., the steps that threads take
to execute a method between its invocation and its
response. The execution of a concurrent method
is then modeled by a history H, a finite sequence
of method invocation and response events, a sub-
history of H is a sub-sequence of the events of H
and an interval is a sub-history consisting of con-
tiguous events. Progress conditions can be placed
in a two-dimensional periodical table, where one of
the axis defines the assumptions on the OS sched-
uler and the other axis defines the level of progress.
Figure 1 shows the periodic table of progress con-
ditions, as defined by Herlihy and Shavit [16].

Regarding the assumptions on the OS scheduler,
progress conditions can follow a scheduler block-
ing assumption, if a thread can block all remain-
ing threads during an access to critical region, or a
scheduler non-blocking assumption, otherwise. The
progress conditions can also follow a scheduler inde-
pendent assumption, which guarantees progress as
long as threads are scheduled and no matter how

they are scheduled, or a scheduler dependent as-
sumption, meaning that the progress of threads rely
on the OS scheduler to satisfy certain properties.
For example, the deadlock-free (threads cannot de-
lay each other perpetually) and starvation-free (a
critical region cannot be denied to a thread per-
petually) properties guarantee progress, but they
depend on the assumption that the OS scheduler
will let each thread within a critical region to be
able to run for a sufficient amount of time, so that
it can leave the critical section. Another exam-
ple is the obstruction-free property [17] (a thread
runs within a critical region in a bounded number
of steps), which requires the OS scheduler to al-
low each thread to run in isolation for a sufficient
amount of time.

Regarding the level of progress, a method pro-
vides minimal progress in a history H if, in every
suffix of H, some pending active invocation has a
matching response. In other words, there is no
point in the history where all threads that called the
method take an infinite number of concrete steps
without returning. A method provides maximal
progress in a history H if, in every suffix of H,
every pending active invocation has a matching re-
sponse. In other words, there is no point in the
history where a thread that called the method takes
an infinite number of concrete steps without return-
ing. Following these definitions, the wait-free and
lock-free data structures are mapped in the peri-
odical table as scheduler independently providing
maximal and minimal progress, respectively.

Historically, a number of so-called universal
methods for constructing non-blocking data struc-
tures of any type have been discussed in the lit-
erature [15, 18, 19, 20]. The first correct CAS-

3

based lock-free list-based set proposal was intro-
duced by Harris [21]. Later, Michael improved Har-
ris work by presenting a proposal that was compat-
ible with all lock-free memory management meth-
ods and Michael used this proposal as a building
block for lock-free hash maps [22]. The proposal
allowed the concurrent search, insert and remove
operations in a lock-free manner, but the size of
the arrays of buckets was fixed and expanding was
typically implemented with a global lock. Shalev
and Shavit extended Michael’s work when they pre-
sented their lock-free algorithm for expanding hash
maps [23]. The algorithm is based on split-ordered
lists and allows the number of hash buckets to vary
dynamically according to the number of nodes in-
serted or removed, preserving the read-parallelism.
More recently, Triplett et al. presented a set of al-
gorithms that allow concurrent wait-free linear scal-
able searches while shrinking and expanding hash
maps [24].

Skip-lists is an alternative and more efficient data
structure to plain linked lists that allows loga-
rithmic time searching, insertions and removals by
maintaining multiple hierarchical layers of linked
lists where each higher layer acts as an express
lane for the layers below. Skip-lists were orig-
inally invented by Pugh [25]. Concurrent non-
blocking skip-lists were later implemented by Her-
lihy et al. [26]. Regarding concurrent hash trie
data structures, recently Prokopec et al. presented
the CTries [14], a non-blocking concurrent hash
trie based on shared-memory single-word CAS in-
structions. The CTries introduce a non-blocking,
atomic constant-time snapshot operation, which can
be used to implement operations requiring a con-
sistent view of a data structure at a single point in
time.

3. Our Proposal By Example

In a nutshell, our design has hash arrays of buck-
ets and leaf nodes. The leaf nodes store key/content
pairs and the hash arrays of buckets implement a
hierarchy of hash levels of fixed size 2w. To map a
key/content pair (k, c) into this hierarchy, we first
compute the hash value h for k and then use chunks
of w bits from h to index the entry in the appro-
priate hash level, i.e., for each hash level Hi, we
use the ith group of w bits of h to index the entry
in the appropriate bucket array of Hi. Hash colli-
sions are solved by simply walking down the tree
as we consume successive chunks of w bits from the

hash value h, creating a unique path from the root
level of the hash to the level where (k, c) should be
stored. In what follows, we discuss the key aspects
of our proposal. We begin with Fig. 2 showing a
small example that illustrates how the concurrent
insertion of nodes is done in a hash level.

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk
.
.
.

2w

Hi Hi

V K1

(c)

K2 K3Bk

.
.
.

Prev

.
.
.

Hi

V V V

Figure 2: Insert operation in a hash level

Figure 2(a) shows the initial configuration for a
hash level. Each hash level Hi is formed by a bucket
array of 2w entries and by a backward reference to
the previous hash level (represented as Prev in the
figures). For the root level, the backward reference
is Null. In Fig. 2(a), Bk represents a particular
bucket entry of the hash level. Bk and the remain-
ing entries are all initialized with a reference to the
current level Hi. During execution, each bucket
entry stores either a reference to a hash level or a
reference to a separate chaining mechanism, using
a chain of internal nodes, that deals with the hash
collisions for that entry. Each internal node holds a
key/content pair (for the sake of simplicity of pre-
sentation, we only show the keys in the figures) and
a tuple that holds both a reference to a next-on-
chain internal node and the condition of the node,
which can be valid (V) or invalid (I). The initial
condition of a node is valid (V). Figure 2(b) shows
the hash configuration after the insertion of node
K1 on the bucket entry Bk and Fig. 2(c) shows the
hash configuration after the insertion of nodes K2

and K3 also in Bk. Note that the insertion of new
nodes is done at the end of the chain and any new
node being inserted closes the chain by referencing
back the current level.

During execution, the memory locations holding
references are considered to be in one of the fol-
lowing states: black, white or gray. A black state,
which we also name an Interest Point (IP), repre-
sents a memory location that will be used to update
the state of a chain or a hash level in a concurrent
fashion. To guarantee the property of lock-freedom,
all updates to black states are done using CAS op-
erations. A gray state represents a memory loca-
tion that is not an IP but which can become an
IP at any instant, once the execution leads to it.

4

(b)

K1 K2 K3

.
.
.

Hi+1

Bm

Bn

Bk

.
.
.

Hi

.
.
.

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1

(a)

(d)

.
.
.

Hi+1

K3

Bm

Bk

.
.
.

Hi

.
.
.

K1 K2

(e)

.
.
.

Hi+1

K3

Bm

Bk

.
.
.

Hi

.
.
.

K1

K4 K2

.
.
.

Hi+1

K3

Bk
.
.
.

Hi

.
.
. K5

K4 K2

K1

(f)

Prev Prev

Prev Prev Prev

Prev

Prev Prev Prev

Prev

V V V V V V

V

VV V

V V V

VV

V V V

Bk

Bn

Bm

Bn Bn Bn

Bm

(c)

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Figure 3: Expand operation from a bucket entry to a second level hash with concurrent insertion of nodes

A white state represents a memory location used
only for reading purposes. As the hash trie evolves
during time, a memory location can change between
black and gray states until reaching the white state,
where it is no longer updated.

When the number of valid nodes in a chain ex-
ceeds a threshold value MAX NODES, then the
corresponding bucket entry is expanded with a new
hash level and the nodes in the chain are remapped
in the new level. Thus, instead of growing a sin-
gle monolithic hash table, the hash trie settles for
a hierarchy of small hash tables of fixed size 2w.

Starting from the configuration in Fig. 2(c),
Fig. 3 illustrates the expansion mechanism with a
second level hash for the bucket entry Bk. The ex-
pansion operation is activated whenever a thread
T meets the following two conditions: (i) the key
at hand was not found in the chain and (ii) the
number of valid nodes in the chain observed by T
is equal to the threshold value (in what follows, we
consider a threshold value of three nodes). In such
case, T starts by pre-allocating a second level hash
Hi+1, with all entries referring the respective level
(Fig. 3(a)). The new hash level is then used to im-
plement a synchronization point with the current
IP (node K3 in Fig. 3(a)) that will correspond to
a successful CAS operation trying to update Hi to
Hi+1 (Fig. 3(b)). From this point on, the insertion
of new nodes on Bk will be done starting from the
new hash level Hi+1.

If the CAS operation fails, that means that an-
other thread has gained access to the IP and, in
such case, T aborts its expansion operation. Other-
wise, T starts the remapping process of placing the
internal valid nodes K1, K2 and K3 in the correct
bucket entries in the new level. Figures 3(c) to 3(f)
show the remapping sequence in detail. For simplic-
ity of illustration, we will consider only the entries

Bm and Bn on level Hi+1 and assume that K1,
K2 and K3 will be remapped to Bm, Bn and Bn,
respectively. In order to ensure lock-free synchro-
nization, we need to guarantee that, at any time, all
threads are able to read all the available nodes and
insert/remove new nodes without any delay from
the remapping process. To guarantee both proper-
ties, the remapping process is thus done in reverse
order, starting from the last node on the chain, ini-
tially K3.

Figure 3(c) shows the hash trie configuration af-
ter the successful CAS operation that adjusted node
K3 to entry Bn. After this step, Bn passes to the
gray state and K3 becomes the next IP for the in-
sertion of new nodes on Bn. Note that the initial
chain for Bk has not been affected yet, since K2

still refers to K3. Next, on Fig. 3(d), the chain is
adjusted and K2 is updated to refer to the second
level hash Hi+1. The process then repeats for K2

(the new last node on the chain for Bk). First, K2 is
remapped to entry Bn and then it is removed from
the original chain, meaning that the previous node
K1 is updated to refer to Hi+1 (Fig. 3(e)). Finally,
the same idea applies to K1. In the continuation,
K1 is also remapped to a bucket entry on Hi+1 (Bm

in the figure) and then removed from the original
chain, meaning in this case that the bucket entry
Bk becomes itself a reference to Hi+1 (Fig. 3(f)).
From now on, Bk is a white memory location since
it will be no further updated. Concurrently with
the remapping process, other threads can be insert-
ing nodes in the same bucket entries for the new
level. This is shown in Fig. 3(e), where a node K4

is inserted before K2 in Bn, and in Fig. 3(f), where
a node K5 is inserted before K1 in Bm.

We now move to the description of the remove op-
eration. In our proposal, a remove operation can be
seen as a sequence of two steps: (i) the invalidation

5

step; and (ii) the invisibility step. The invalidation
step searches for the node N holding the key to
be removed and updates the node condition from
valid to invalid. The invisibility step then searches
for the valid data structures B and A, respectively
before and after N in the chain of nodes, in order to
bypass node N by chaining B to A. Starting again
from the configuration in Fig. 2(c), where the ini-
tial condition of all keys is valid, Fig. 4 illustrates
how the concurrent removal of nodes is done.

K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I V K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I VK1 V

K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I VK1 V K3 I

(a)

(c) (d)

K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I VK1 V K3 I

(b)

Figure 4: Remove operation in a hash level

Assume now that a thread T wants to remove the
key K2. T begins the invalidation step by searching
for node K2 and by marking it as invalid, which in
turn makes node K1 into a second IP (Fig. 4(a)). In
the continuation, T searches for the previous/next
valid data structure before/after K2, nodes K1 and
K3 in this case. The next step is shown in Fig. 4(b),
where node K1 is chained to node K3, thus bypass-
ing node K2 (invisibility step).

Figure 4(c) shows the remove operation for key
K3. The node for K3 is first marked as invalid,
which in turn makes again node K1 an IP (K1 is
the previous valid data structure before K3). Since
K3 is the last node in the chain for bucket Bk, the
next valid structure after K3 is Hi. Thus, in the
invisibility step, K3 is bypassed by updating K1

to refer to Hi (Fig. 4(d)). The reader can observe
that, at this point, nodes K2 and K3 are not in the
chain. However, their chaining references are left in
a consistent state, allowing all late threads reading
those nodes to be able to recover to a valid data
structure, which in Fig. 4(d) is the hash level Hi.

Next, Fig. 5 starts from the hash trie configu-
ration shown in Fig. 4(c) and presents a situation
where two threads are inserting and removing keys
simultaneously in the same chain. Assume that
thread T is removing the keys K3 and K1 and
thread U is inserting the keys K4 and K5. As the

lock-freedom property must hold in any situation,
thread U must be able to insert K4 and K5 without
waiting for any other thread.

K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I VV K3 I

(a)

EkBk

.
.
.

.
.
.

Hi

(b)

K4 VV

K1EkBk
.
.
.

.
.
.

Hi

VK1 V

(c)

K1 I K1 VK4 V K5 VVK1 VK1 VK4 V

K1

Prev

Prev

V V

V

K1 VK1 V

K1 VK4 V EkBk

.
.
.

.
.
.

Hi

(d)

K5 VV

Prev

VK1 VK4 V

Figure 5: Remove operation with concurrent insertion of
nodes

Note that, with the remove operation, the last
node in the chain is not necessarily a valid node,
which in turn does not guarantee that an IP is al-
ways referring back the current hash level. This is
the case of nodes K1 and K3 in Fig. 5(a). Node K1

is the current IP but since it is referring the invalid
node K3, it is not the last node in the chain. On the
other hand, node K3 is an invalid node but since it
is the last node in the chain, it is referring back
the current hash level Hi. Figure 5(b) then shows
the insertion of node K4 and the change on the IP
from K1 to K4 (for the sake of simplicity, nodes K2

and K3 are no longer shown). Next, Fig. 5(c) shows
the simultaneous insertion and removal of nodes K5

and K1, respectively. Finally, Fig. 5(d) shows the
final chain of nodes at the end of both operations.

We conclude the presentation of our proposal
with Fig. 6 showing a last situation where a thread
T is executing the expand operation (like in the ex-
ample of Fig. 3) and another thread U is removing
a key from the nodes being adjusted. Figure 6(a)
shows the initial configuration where T already con-
nected the last node in the chain to the new hash
level Hi+1 and prepares itself to start the remap-
ping process of placing the internal nodes K3, K2

and K1 in the correct bucket entries of Hi+1. Con-
currently, thread U is removing key K3 and has
already marked as invalid the node K3 in the in-
validation step. In the invisibility step, thread U
is led to the hash level Hi+1 by following the chain
reference of K3 but, since K3 has not yet been ad-
justed, thread U is not able to find K3 in Hi+1.
Thread U knows that this situation is only possible
because another thread is simultaneously executing

6

(a)

K1 K2 K3

.
.
.

Bm

Bn

.
.
.

.
.
.

Prev Prev

V V I

(b)

.
.
.

Hi+1

K3

Bm

Bn

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

VBn K3 I

(c)

.
.
.

Hi+1

Bm

Bn

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

Bn K3 VK3 I

Hi+1Hi

Bk BkBk V VV

Figure 6: Expand operation from a bucket entry to a second level hash with concurrent removal of nodes

an expand operation. In such scenario, thread U
delegates the completion of the unfinished removal
operations to the thread doing the expansion and
finishes the execution of its remove operation.

Since initially T saw K3 as valid, in the con-
tinuation, T adjusts K3 to the bucket entry Bn

(Fig. 6(b)). To overcome the fact that K3 is marked
as invalid, now T also needs to check if a node re-
mains valid after being adjusted and, if not, T ex-
ecutes the invisibility step for the node (Fig. 6(c)).
Node K3 is thus bypassed in the hash level Hi+1,
but it is still chained to K2. This is not a problem
because, in the continuation of the adjustment pro-
cess, it will be also bypassed with node K2 being
chained to Hi+1.

4. Algorithms

This section discusses in more detail the key al-
gorithms that implement our proposal. We begin
with Alg. 1 which shows the pseudo-code for the
process of adjusting a given node N into a given
hash level H. The algorithm begins by updating
the chain reference (field NextRef()) of N to H us-
ing a ForceCAS() procedure, which repeats a CAS
operation until it succeeds. Next, since only valid
nodes need to be adjusted, it checks if N is a valid
node (invalid nodes are left unchanged) and applies
the hash function that allows obtaining the bucket
entry B in H that fits the key on N (line 4).

In the continuation, if B is empty (lines 5–9), the
algorithm tries to insert N on the head of B by us-
ing a CAS operation (line 6). If successful, then it
checks if, in the meantime, N turned invalid (this
situation corresponds to the scenario described in
Fig. 6 where the thread invalidating N delegates the
unfinished removal operations to the thread doing
the expansion), and if so, it calls the MakeNodeIn-
visible() procedure (see Alg. 4 next) to remove the
node from the chain (line 8).

If B is not empty, the algorithm then checks
whether the head reference R in B refers a sec-
ond hash level, case in which it calls itself (lines

10–12). Otherwise, it starts traversing the chain
of nodes searching for valid candidate nodes (lines
13–22). For that, it uses three auxiliary variables:
CR holds the candidate reference where new inser-
tions/adjustments should take place; CRN holds
the chain reference of CR; and C counts the num-
ber of valid nodes in the chain. Initially, CR is the
bucket entry from where the chain starts, R and
CRN are the head node in the chain and C is 0. At
the end, the algorithm checks if R ended in the same
hash level H, which means that no other expansion
operation is taking place at the same time, and it
proceeds trying to adjust N (lines 24–47). Other-
wise, R refers a deeper hash level, case in which the
algorithm is restarted in the hash level after H, us-
ing the Prev backward references to move up in the
hash levels (lines 48–49). If R ended in the same
hash level then two situations might occur: no valid
chain nodes were found (lines 25–30) or, at least, a
valid node was found (lines 32–45).

If no valid nodes were found then the algorithm
tries to insert N in the head of the chain (line 25)
and, if the CAS succeeds, it checks if, in the mean-
time, N turned invalid and must be removed (line
27). Otherwise, if the CAS fails, that means that
another thread has updated the head of the bucket
entry in the meantime. In such case, the algorithm
reads the new head reference R (line 30) and the
process is restarted in the same hash level H (lines
46–47) or in the hash level after H (line 48–49),
case R references a deeper hash level.

If a valid node was found (lines 32–45) then the
algorithm tries to insert N after the CR node (line
40). As before, we follow the same steps case the
CAS operation succeeds (lines 41–43) or fails (line
45). Please note that here, for the CAS operation,
we use the Next() field as a way to represent simul-
taneously the pair holding the chain reference and
the condition of the node. This is necessary since
we need to guarantee that the node is valid when
updating a chain reference.1

1At the implementation level, the chain reference and the
condition of the node are, in fact, treated as a single field.

7

Algorithm 1 AdjustNode(Node N, Hash H)

1: ForceCAS(NextRef(N), H)

2: if IsInvalidNode(N)

3: return

4: B ← GetHashBucket(H,Hash(Level(H),Key(N)))

5: if EntryRef(B) = H // B is an empty bucket

6: if CAS(EntryRef(B), H,N)

7: if IsInvalidNode(N)

8: MakeNodeInvisible(N,H)

9: return

10: R← EntryRef(B)

11: if IsHash(R) // R references a second hash level

12: return AdjustNode(N,R)

13: CR← B

14: CRN ← R

15: C ← 0

16: repeat // traverse the chain of nodes

17: if IsV alidNode(R)

18: CR← R

19: CRN ← NextRef(CR)

20: C ← C + 1

21: R← NextRef(R)

22: until IsHash(R)

23: if R = H // chain ended in the same hash level

24: if C = 0 // no valid chain nodes found

25: if CAS(EntryRef(B), CRN,N)

26: if IsInvalidNode(N)

27: MakeNodeInvisible(N,H)

28: return

29: else

30: R← EntryRef(B)

31: else // a valid node was found

32: if C = MAX NODES // chain is full

33: newH ← AllocInitHash(Level(H) + 1)

34: PrevHash(newH)← H

35: if CAS(Next(CR), (CRN, valid), (newH, valid))

36: ExpandToNewHash(newH,N,H)

37: return AdjustNode(N,newH)

38: else

39: FreeHash(newH)

40: if CAS(Next(CR), (CRN, valid), (N, valid))

41: if IsInvalidNode(N)

42: MakeNodeInvisible(N,H)

43: return

44: else

45: R← NextRef(CR)

46: if IsNode(R)

47: return AdjustNode(N,H)

48: R← GetPrevHash(R,Level(H) + 1)

49: return AdjustNode(N,R)

Before trying to insert N after the CR node, the
algorithm needs to check if the chain is full (line
32), in which case it starts a new expand operation

(lines 33–39). Here, a new hash level newH is first
allocated and initialized (lines 33–34) and then used
to implement a synchronization point that will cor-
respond to a CAS operation trying to update the
chain reference in CR from CRN to newH (line
35). If the CAS succeeds, the algorithm gains ac-
cess to the expand operation and starts the remap-
ping process of placing the valid nodes in the chain
to the new hash level newH (line 36) and, at the
end, AdjustNode() is called again, this time for the
new hash level (line 37). Otherwise, if the CAS
fails, that means that another thread gained access
to the expand operation and, in such case, the algo-
rithm aborts the new expand operation, frees newH
(line 39) and continues.

Next, we present the procedure that supports the
remove operation. Algorithm 2 shows the pseudo-
code for the search/remove operation of a given key
K in a given hash level H. The algorithm begins
by applying the hash function that allows obtaining
the bucket entry B of H that fits K (line 1). In the
continuation, if B is empty then K was not found
and the algorithm finishes (lines 2–3). If B is not
empty, it checks whether the head reference R in
B refers a second hash level, case in which it calls
itself (line 6).

Algorithm 2 SearchRemoveKey(Key K, Hash H)

1: B ← GetHashBucket(H,Hash(Level(H),K))

2: if EntryRef(B) = H // B is an empty bucket

3: return

4: R← EntryRef(B)

5: if IsHash(R) // R references a second hash level

6: return SearchRemoveKey(K,R)

7: CR← B

8: CRN ← R

9: repeat // traverse the chain of nodes

10: if IsV alidNode(R)

11: if Key(R) = K // found key in R

12: if MakeNodeInvalid(R)

13: return MakeNodeInvisible(R,H)

14: else

15: CR← R

16: CRN ← NextRef(CR)

17: R← NextRef(R)

18: until IsHash(R)

19: if R = H // chain ended in the same hash level

20: return

21: R← GetPrevHash(R,Level(H) + 1)

22: return SearchRemoveKey(K,R)

Otherwise, it starts traversing the chain of nodes
searching for a valid node R with K (lines 7–18).

8

If K is found (line 11) then it tries to mark R as
invalid and, if successful (i.e., R was valid and the
call to MakeNodeInvalid() turned R invalid), it pro-
ceeds to the invisibility step by calling MakeNodeIn-
visible() and returns (lines 12–13). Otherwise, if
MakeNodeInvalid() fails (i.e., R was already marked
as invalid by another thread), the algorithm con-
tinues in search mode. During search, the CR and
CRN references are updated as discussed in Alg. 1
until R reaches a hash level (line 18). If R ends in
the same hash level H, that means that no expan-
sion operation is taking place at the same time, and
the algorithm simply returns (lines 19–20). Other-
wise, R refers a deeper hash level, case in which
the algorithm is restarted in the hash level after H
(lines 21–22).

Algorithm 3 presents the process of invalidating
a given node N . This process is used in the re-
move operation to force a change in the state of a
node from valid to invalid. The algorithm applies
repeatedly a CAS operation with an invalid state
flag over the node until the CAS either succeeds
(thus changing the state of N from valid to invalid)
or until it detects that N was already marked as
invalid by another thread.

Algorithm 3 MakeNodeInvalid(Node N)
1: repeat

2: R← NextRef(N)

3: if IsInvalidNode(N) // node is already invalid

4: return False

5: until CAS(Next(N), (R, valid), (R, invalid))

6: return True

Finally, Alg. 4 presents the pseudo-code for turn-
ing invisible a given node N in a given hash level H.
Remember that, in the invisibility step, we need to
search for the valid data structures before and after
N in the chain of nodes, respectively BR (before
reference) and AR (after reference) in Alg. 4, in
order to bypass node N by chaining BR to AR.

The algorithm begins by setting R and AR with
the next valid data structure starting from N (lines
1–2). If R is a chain node, then it moves until the
hash at the end of the chain (line 4). Next, if the
algorithm ended in the same hash level H (line 5),
it proceeds to compute the valid data structure BR
before N . For that, it starts from the bucket entry
B in H that fits the key on N and traverses the
chain of nodes looking for the following valid data
structures until reaching N or a hash level (lines 6–
12). During the process, it saves in BRN the chain

Algorithm 4 MakeNodeInvisible(Node N, Hash H)

1: R← GetNextHashOrV alidNode(N)

2: AR← R

3: if IsNode(R)

4: R← GetNextHash(R)

5: if R = H // chain ended in the same hash level

6: B ← GetHashBucket(H,Hash(Level(H),Key(N)))

7: R← B

8: repeat

9: BR← R

10: BRN ← NextRef(BR)

11: R← GetNextHashOrV alidNodeOrN(R)

12: until R = N ∨ IsHash(R)

13: if R = H // N is already invisible

14: return

15: if R = N // we are in condition to bypass N

16: if BR = B // no valid chain nodes found

17: if CAS(EntryRef(BR), BRN,AR)

18: return

19: else

20: if CAS(Next(BR), (BRN, valid), (AR, valid))

21: return

22: return MakeNodeInvisible(N,H)

23: return MakeNodeInvisible(N,R)

reference of BR (line 10).
At the end of the traversal, if R is H that means

that N is already invisible, thus the algorithm sim-
ply returns (lines 13–14). If R is N that means
that we are in condition to bypass N by chaining
BR to AR (lines 15–22). For that, the algorithm
applies a CAS operation to BR trying to update it
from the reference saved in BRN to AR and keep-
ing the node condition as valid if BR is a node (line
20). Notice that if the CAS operation fails, then it
means that the BR node has been update some-
where between the instant where it was found valid
and the CAS execution. In such case, the process
is restarted (line 22), thus forcing the algorithm to
converge to a chain configuration where all invalid
nodes are made invisible.

Otherwise, if R ends in a hash level at the end
of the traversal, that means that N is not on H.
Therefore, R refers to a deeper hash level and the
process is restarted in that hash level (line 23).

5. Correctness & Complexity

In this section, we discuss the correctness and
complexity of our proposal. The full correctness
proof consists in two parts: first prove that the pro-
posal is linearizable and then prove that progress

9

occurs in a lock-free fashion for all operations.

5.1. Linearizability

Linearizability is an important correctness con-
dition for the implementation of concurrent data
structures [27]. An operation is linearizable if it
appears to the rest of the system to take effect in-
stantaneously at some moment of time between its
invocation and its response. Linearizability guar-
antees that if all operations individually preserve
an invariant, the system as a whole also will. In
what follows, we focus on the linearization proof
and we describe the linearization points of the pro-
posal, the set of invariants, and the proof that the
linearization points preserve the set of invariants.

The linearization points in the algorithms shown
are:

LP1 AdjustNode() (Alg. 1) is linearizable at the
ForceCAS() in line 1.

LP2 AdjustNode() (Alg. 1) is linearizable at the
CAS() in line 6.

LP3 AdjustNode() (Alg. 1) is linearizable at the
CAS() in line 25.

LP4 AdjustNode() (Alg. 1) is linearizable at the
CAS() in line 35.

LP5 AdjustNode() (Alg. 1) is linearizable at the
CAS() in line 40.

LP6 MakeNodeInvalid() (Alg. 3) is linearizable at
the CAS() in line 5.

LP7 MakeNodeInvisible() (Alg. 4) is linearizable at
the CAS() in line 17.

LP8 MakeNodeInvisible() (Alg. 4) is linearizable at
the CAS() in line 20.

The set of invariants that must be preserved are:

Inv1 For every hash level H, PrevHash(H) al-
ways refers to the previous hash level.

Inv2 A bucket entry B belonging to a hash level
H must comply with the following semantics:
(i) its initial reference is H; (ii) after the first
update, it must refer to a node N1; (iii) after a
follower update, it must refer either to another
node N2, to the hash level H or to a second
hash level Hd such that PrevHash(Hd) = H.
If B is referring to Hd, then no more updates
occur in B.

Inv3 A node N must comply with the following se-
mantics: (i) its initial condition is valid ; (ii) af-
ter an update to invalid, it never changes again
to valid.

Inv4 A node N must comply with the following se-
mantics: (i) valid nodes are always visible to all
threads; (ii) invalid nodes can be temporarily
visible to some threads before made invisible
to all threads.

Inv5 A valid node N in a chain of nodes starting
from a bucket entry B belonging to a hash level
H must comply with the following semantics:
(i) its initial (next-on-chain) reference is H; (ii)
after an update, it must refer to another node
in the chain or to a hash level; (iii) once it refers
to a hash level Hd (at least one level) deeper
than H, then it never refers again to H.

Inv6 An invalid node N in a chain of nodes start-
ing from a bucket entry B belonging to a hash
level H must comply with the following seman-
tics: (i) if N is temporarily visible then its
(next-on-chain) reference can be updated to a
hash level Hd (at least one level) deeper than
H; (ii) if N is invisible then its reference is
never updated again.

Inv7 The number of valid nodes in a chain of nodes
starting from a bucket entry B belonging to a
hash level H is always lower or equal than a
predefined threshold value MAX NODES ≥
1.

Inv8 Given a key K not present in the hash map,
it exists only one path P from the root hash
level to the insertion point IP (a hash bucket
or a chain node), where the node with K
should be inserted. At any given instant, the
insertion point IP is unique and is always the
last valid data structure in the path P .

Inv9 Given a key K present in the hash map, it
exists only one path P from the root hash level
to the invisibility point IP (a hash bucket or
a valid chain node), from where the node N
with K should be made invisible. After N be
marked as invalid, the invisibility point IP is
unique.

Next, we show the proof strategy used to prove
that the linearization points preserve the set of in-
variants. For simplicity of presentation, we show

10

the proof only for the linearization points LP1 and
LP2. The remaining linearization points follow a
similar proof strategy.

Lemma 1. In the initial state of the data structure
the set of invariants holds.

Proof. Consider that H represents the root level
for a hash trie (its initial configuration is the same
as the one represented in Fig. 2(a)). Since H is
the root level, the reference PrevHash(H) is Null
(Inv1), each bucket entry B is referring H (Inv2)
and the number C of nodes in any chain is 0 (Inv7).
The remaining invariants are not affected. �

Lemma 2. The linearization point LP1 preserves
the set of invariants.

Proof. After the execution of the ForceCAS()
procedure in line 1, node N refers to the hash level
H and its state remains unchanged, thus invariants
Inv3, Inv4, Inv5, Inv6 and Inv7 hold. The remain-
ing invariants are not affected. �

Lemma 3. The linearization point LP2 preserves
the set of invariants.

Proof. After the successful execution of the
CAS() procedure at line 6, the bucket entry B refers
to N (Inv2), N refers to H (Lemma 2) and the
number of valid nodes in the chain is C = 1 (Inv7).
Inv4 holds because if N is valid then it is visible,
otherwise if N is invalid then it is temporarily visi-
ble but will become invisible after the execution of
the MakeNodeInvisible() procedure in line 8. The
remaining invariants are not affected. �

5.2. Progress

To prove that progress occurs in a lock-free fash-
ion for all operations, we begin by defining the three
types of stages that specify the type of progress a
thread can make:

• the private stages (represented by white double
rectangles in what follows) do not change the
configuration of the data structures. A thread
progresses in a private fashion when traversing
the data structures without changing them.

• the public stages where a thread might change
the configuration of the data structures (gray
rectangles). Examples are the insertion of a
new key, the removal of an existent key or mak-
ing a node invisible.

• The public stages where a thread must change
the configuration of data structures (black
rectangles). Examples are the operations re-
quired for hash expansion.

Figure 7 shows the progress stages of a thread for
the search/insert operation and Fig. 8 shows the
progress stages of a thread for the search/remove
operation (in both figures, the oval boxes represent
the decisions points of the algorithms).

Search Key
Key

Found? Return
Yes

No

No

Insert Node
with Key

Node
Inserted?

Yes

Expand
Bucket Array

Yes

No

Adjust
Chain Nodes

Elected for
Expansion?

Yes

No

Elected for
Expansion?

Node Chain
Ended?

Yes

No

Figure 7: Progress stages for the search/insert operation

For the search/insert operation, the entry point
is the Search Key stage. In this stage, the thread
searches for a key in the chain of nodes and if the
key is found then the thread passes to the Return
stage. Otherwise, if the key is not found in the chain
of nodes, the thread tries to insert it. Before that, if
the conditions for expansion hold, it can be elected
to execute expansion. If elected, the thread passes
to the Expand Bucket Array stage, where first it
expands the current bucket array and then adjusts
all nodes in it to the new hash level, the Adjust
Chain Nodes stage. At the end of this process, it
can be elected for another expansion, otherwise it
returns to the Search Key stage. If not elected to
execute expansion, it moves to the Insert Node with
Key stage. Here, if the node is not inserted, it
moves again to the Search Key stage. Otherwise,
the node was successfully inserted and the thread
passes to the Return stage.

For the search/remove operation, the entry point
is also the Search Key stage, where the thread
searches for a key in the chain of nodes and if the
key is found then the thread passes to the Make
Node Invalid stage. In this stage, if the thread suc-
ceeds in turning the node invalid, it executes the

11

Search Key

Key
Found?

Return

No

No Node Chain
Ended?

Yes

Node
Invalidated?

Make Node
Invalid

Make Node
Invisible

YesNo

Yes

Figure 8: Progress stages for the search/remove operation

Make Node Invisible stage and returns. Otherwise,
if the thread fails in turning the node invalid, it con-
tinues assuming that it has not found the key and
passes again to the Search Key stage or returns if
reaching the end of the chain.

5.3. Complexity

Our design implements a hierarchy of hash levels
whose branching factor is given by a fixed (and pre-
defined) number of bucket entries per hash level and
whose maximum depth (or height) depends on the
overall number of keys inserted in the hash map. As
show in the previous sections, our design supports
multiple keys per bucket entry in the hash trie map
leaves, e.g., in Fig. 2, we showed three keys asso-
ciated to a single bucket. However, for the sake of
simplicity, next we will formalize the complexity of
our design, using the worst configuration possible
for memory usage, which is to associate each key to
a single bucket, i.e., all chains of nodes holding the
keys, will have only one node. This is formalized
next.

Lemma 4. Given a fixed number E of bucket en-
tries per hash level and an overall number K of keys
inserted in the hash map, the space complexity on
the number of hashes used is O(K

E).

Proof. In a worst case scenario, one would have
key collisions up to the leaf hash level, where the
keys must be necessarily different, otherwise they
would be the same and our design does not store
repeated keys.

Assuming that K keys generate a perfect hash
trie map, i.e., all internal hash levels have E chil-
dren, all leaves are at same level and all bucket
entries in the leaves are referring to different keys,
then the total number of hashes is given by T =∑H

h=0 E
h = EH+1−1

E−1 , where H is the height of the
hash trie map. On the other hand, the number

of leaves is given by L = EH , and since each key
is associated to a bucket entry in the leaves, then
K = E ∗ L, which means that T can be rewritten
as T = K−1

E−1 ≈
K
E . �

Lemma 5. Given a fixed number E of bucket en-
tries per hash level and an overall number K of
keys inserted in the hash map, the time complex-
ity (average depth) on the number of hashes used is
O(logE K).

Proof. In a worst case scenario, one would have
key collisions up to the leaf hash level, where the
keys must be necessarily different, otherwise they
would be the same and our design does not store
repeated keys.

Assuming that K keys generate a perfect hash
trie map, i.e., all internal hash levels have E chil-
dren, all leaves are at same level and all bucket
entries in the leaves are referring to different keys,
then the total number of leaves L is given by L =
EH ⇔ H = logE L, where H is the height of the
hash trie map. On the other hand, since each key
is associated to a bucket entry entry in the leaves,
K = E ∗ L ⇔ L = K

E , which means that H can

be rewritten as H = logE
K
E = logE K − logE E =

logE K − 1 ≈ logE K. �

6. Performance Analysis

This section presents experimental results com-
paring our proposal with other state-of-the-art con-
current hash map designs. The environment for
our experiments was a SMP (Symmetric Multi-
Processing) system, based in a NUMA (Non-
Uniform Memory Access) architecture with 32-Core
AMD Opteron Processor 6274 (2 sockets with 16
cores each) with 32GB of main memory, each pro-
cessor with caches L1, L2 and L3 respectively with
64KB, 2048KB and 6144KB, running the Linux ker-
nel 3.18.6-100.fc20.x86 64 with Oracle’s Java Devel-
opment Kit 1.8.0 66.

Although our proposal is platform independent,
we have chosen to make its first implementation
in Java, mainly for two reasons: (i) rely on Java’s
garbage collector to reclaim invisible/unreachable
data structures; and (ii) easy comparison against
other hash map designs. Some of the best-known
hash map implementations currently available are
already implemented in the Java library, such as

12

the Concurrent Hash Maps (CHM) and the Con-
current Skip-Lists (CSL) from the Java’s concur-
rency package. Additionally, we will be compar-
ing our proposal against Click’s Non Blocking Hash
Maps (NBHM) [13] and Prokopec et al. Concur-
rent Tries (CT) [14].2 We have ran our proposal
with a MAX NODES threshold value of 6 chain
nodes for the hash collisions and with two differ-
ent configurations for the number of buckets en-
tries per hash level, one with 8 and another with
32 buckets entries per hash level. In what follows,
we will name our proposal as Free Fixed Persistent
Hash Map (FFP) and those two configurations as
FFP8 and FFP32, respectively. To put the five pro-
posals in perspective, Table 1 shows how they sup-
port/implement the features of (i) be lock-freedom;
(ii) use fixed size data structures; and (iii) maintain
the access to all internal data structures as persis-
tent memory references.

Table 1: Features supported by the proposals evaluated
Features / Proposals CHM CSL NBHM CT FFP
Lock-freedom 7 7 3 3 3
Fixed size structures 7 - 7 3 3
Persistent references 7 3 3 7 3

To test the proposals, we developed a testing en-
vironment that includes benchmark sets with dif-
ferent percentages of insert, search and remove op-
erations, for a fixed size of 106 randomized items.3

To spread threads among a benchmark set S, we di-
vide the size of S by the number of running threads
and place each thread in a position within S in such
a way that all threads perform the same number of
inserts, searches and removes on S. For the search
and remove operations, the corresponding items are
inserted beforehand and without counting to the
execution time. To warm up the Java Virtual Ma-
chine, we ran each benchmark 5 times beforehand
and then we took the average execution time of the
next 20 runs.

Table 2 shows the execution time results4 ob-
tained for the CHM, CSL, NBHM, CT, FFP8 and

2Both downloaded on January 18, 2016 from https:

//github.com/boundary/high-scale-lib and https:

//github.com/romix/java-concurrent-hash-trie-map/

tree/master/src/main/java/com/romix/scala/

collection/concurrent, respectively.
3Available from https://github.com/miar/ffp
4We are not including memory usage results since we

were not able to obtain meaningful results from JVM about
the memory footprints of the several designs. We used
the formula ‘Runtime.getRuntime().totalMemory() - Run-

FFP32 proposals using six benchmark sets that vary
in the percentage of concurrent operations to be ex-
ecuted. The 1st benchmark only performs inserts,
the 2nd only searches, and the 3rd only removes.
The remaining benchmarks perform mixed opera-
tions with different percentages of inserts, searches
and removes. For each benchmark, Table 2 shows
the execution time, in milliseconds, and speedup
ratio for 1, 8, 16, 24 and 32 threads.

Analyzing the general picture of the table, one
can observe that, for these benchmarks, each pro-
posal has it own advantages and disadvantages, i.e.,
there is no single proposal that overcomes all the
remaining proposals. For the execution times, the
table shows a clear trade-off balance between the
concurrent insertion, search and removal of items.
The proposals with the best execution times in the
concurrent insertions are not so good in the con-
current searches and the same happens with the
concurrent removal of items.

When the weight of insertions is high, as in the
1st and 4th benchmarks, our proposal outperforms
the remaining proposals. Clearly, the FFP32 pro-
posal has the best base times (one thread) and, as
we increase the number of threads, both FFP8 and
FFP32 proposals are able to scale properly. In par-
ticular, for 32 threads, FFP32 achieves the best ex-
ecution times. We explain the performance of our
proposal with the trie design and the hash func-
tion that spreads potential synchronization points
among the trie, minimizing this way false-sharing
and cache ping-pong effects. The FFP32 has better
results than FFP8 because it expands hash levels
more aggressively, i.e., on each expansion it con-
sumes 5 bits of the hash key, while FFP8 only con-
sumes 3 bits, thus reducing hash collisions of keys
in a hash level.

On the other hand, when the weight of search op-
erations is high, as in the 2nd and 5th benchmarks,
our proposal is not as efficient as the other pro-
posals. In the 2nd benchmark, the CHM proposal
shows the best base times, while NBHM shows the
best results as we increase the number of threads.
In the 5th benchmark, CHM has the best execu-
tion times and our FFP32 proposal is the second
best. In order to understand why our proposal is
not so good in the search operation, we measured
the time that threads spent just in the hash trie

time.getRuntime().freeMemory()’ but the results obtained
were not accurate, with no good reasons to have big differ-
ences across the different runs of the same design.

13

Table 2: Execution time, in milliseconds, for the execution with 1, 8, 16, 24 and 32 threads and the corresponding speedup
ratios against 1 thread, for six benchmark sets using different ratios for the number of concurrent insert, search and remove
operations (for each configuration, the best execution times and speedups are in bold)

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CHM CSL NBHM CT FFP8 FFP32 CHM CSL NBHM CT FFP8 FFP32

1st – Insert: 100% Search: 0% Remove: 0%
1 663 3,238 12,968 919 946 542
8 294 550 2,933 207 174 176 2.26 5.89 4.42 4.44 5.44 3.08
16 199 332 2,031 118 117 124 3.33 9.75 6.39 7.79 8.09 4.37
24 201 276 1,717 107 96 153 3.30 11.73 7.55 8.59 9.85 3.54
32 212 270 1,576 97 89 74 3.13 11.99 8.23 9.47 10.63 7.32

2nd – Insert: 0% Search: 100% Remove: 0%
1 155 3,753 225 773 720 379
8 38 535 34 120 118 76 4.08 7.01 6.62 6.44 6.10 4.99
16 27 327 25 78 76 53 5.74 11.48 9.00 9.91 9.47 7.15
24 30 309 22 70 64 53 5.17 12.15 10.23 11.04 11.25 7.15
32 32 315 26 78 69 54 4.84 11.91 8.65 9.91 10.43 7.02

3rd – Insert: 0% Search: 0% Remove: 100%
1 314 4,144 451 1,585 872 582
8 105 595 122 226 172 137 2.99 6.96 3.70 7.01 5.07 4.25
16 62 341 77 156 108 89 5.06 12.15 5.86 10.16 8.07 6.54
24 55 303 66 132 94 130 5.71 13.68 6.83 12.01 9.28 4.48
32 54 306 64 124 101 102 5.81 13.54 7.05 12.78 8.63 5.71

4th – Insert: 60% Search: 30% Remove: 10%
1 721 2,510 15,342 1,027 873 618
8 150 413 4,030 174 148 142 4.81 6.08 3.81 5.90 5.90 4.35
16 128 247 2,803 115 91 106 5.63 10.16 5.47 8.93 9.59 5.83
24 75 191 2,566 89 72 74 9.61 13.14 5.98 11.54 12.13 8.35
32 72 178 1,870 90 80 67 10.01 14.10 8.20 11.41 10.91 9.22

5th – Insert: 20% Search: 70% Remove: 10%
1 282 1,890 12,370 764 757 395
8 51 282 8,517 171 157 74 5.53 6.70 1.45 4.47 4.82 5.34
16 39 184 3,623 87 72 82 7.23 10.27 3.41 8.78 10.51 4.82
24 37 143 3,058 73 69 64 7.62 13.22 4.05 10.47 10.97 6.17
32 38 145 2,081 74 69 65 7.42 13.03 5.94 10.32 10.97 6.08

6th – Insert: 25% Search: 50% Remove: 25%
1 279 2,059 12,181 1,087 808 440
8 113 340 3,125 159 127 83 2.47 6.06 3.90 6.84 6.36 5.30
16 64 214 3,482 104 82 70 4.36 9.62 3.50 10.45 9.85 6.29
24 42 180 2,609 87 71 78 6.64 11.44 4.67 12.49 11.38 5.64
32 44 166 1,902 83 77 66 6.34 12.40 6.40 13.10 10.49 6.67

levels for the FFP8 and FFP32 proposals and we
noticed that, if we subtracted such time to the over-
all execution time, we got execution times similar
to those of CHM. Notice that the CHM proposal
implements a single hash level, which is expanded
each time the hash becomes saturated, and for hash
collisions in bucket entries, it uses a separate chain-
ing mechanism that is implemented as a red-black
tree whenever the chain becomes saturated.

A further profiling study lead us to conclude that
our proposal is actually suffering from a cache miss
penalty when threads navigate through many hash
levels. We took some internal statistics about the
depth of the hash levels used on both FFP8 and
FFP32 configurations. For example, for the 2nd

benchmark, the FFP8 configuration has a minimum
and a maximum hash trie depth of 5 and 7, re-
spectively, and an average number of nodes in non-
empty chains of 2.39. The FFP32 configuration has
a minimum and a maximum depth of 4 and 6, re-
spectively, and an average number of nodes in non-
empty chains of 1.48. Thus, the higher the num-
ber of bucket entries per hash level, the lower the
number of hash levels and the number of nodes in
non-empty chains, and, in consequence, the lower
the number of cache misses, on average. This ex-
plains why the FFP32 has better execution times
than FFP8 in Table 2 and the difference between
our proposal and the best proposals on the search
operation.

14

When the weight of removals is high, as in the
3rd benchmark, our FFP32 proposal is the third
best proposal, behind the CHM and NBHM pro-
posals. Again, this difference is explained by the
number of hash levels that threads need to traverse
to reach the level holding the node with the key
being searched. For this particular benchmark, the
FFP32 has a minimum and a maximum depth of 3
and 4, respectively.

Regarding scalability, in general, one can observe
that all designs seem to have scalability problems
(the best speedup of all experiments is just 14.10
obtained for the CSL design with 32 threads on
the 4th benchmark). Additionally, the lowest base
execution time is often associated with the lowest
speedup ratios (for example, on the 2nd benchmark,
where threads execute read-only operations, CHM
clearly achieves the lowest base execution time, but
the speedup ratios are consistently very low). Re-
call that the environment for our experiments was
a SMP/NUMA based architecture. A SMP sys-
tem is a share everything system where processors
work under the supervision of a single operating
system and where memory accesses use a common
bus or inter-connect path. This means that, as we
increase the number of threads in a computation,
the bus becomes overloaded which can result in a
performance bottleneck. NUMA tries to mitigate
the burden of the main bus by adding intermediate
levels of memory shared among some of the proces-
sors so that several data accesses do not need to
travel on the main bus. However, on applications
that have irregular data requests, the efficiency of
the intermediate levels of memory is lower and in
some situations can even have a negative impact in
the performance. These bottlenecks are analyzed
and discussed in detail in Drepper’s work [28].

Since our benchmark sets have irregular data re-
quests, the probability of using intermediate levels
of memory to satisfy data requests is not as high as
expected. Analyzing again Table 2, in general, the
CSL and CT proposals show the best speedup ra-
tios. This mostly happens because, in general, they
also show the worst base times. Our FFP8 configu-
ration consistently has better speedups than FFP32

which, again, can be explained by the higher base
times of FFP8, which suggests that our proposal is
not able to maintain similar speedups for different
configurations. This is explained by the fact that
FFP8 creates more hash levels than FFP32 and the
time required to traversing them is higher in FFP8

than in FFP32. Anyhow, both FFP8 and FFP32

configurations showed quite competitive speedups,
clearly in line with the remaining proposals.

In summary, the results on Table 2 show that
our proposal is quite competitive, when compared
against other state-of-the-art proposals and, in par-
ticular, whenever the weight of the insert operation
is high compared to the search and remove opera-
tions, our proposal shows the best execution times.
For mixed insert, search and remove operations, our
proposal stays in line with the remaining propos-
als but, if considering only the other lock-free ap-
proaches, NBHM and CT, then our FFP32 config-
uration showed the best execution times in almost
all benchmarks and thread configurations.

7. Conclusions & Further Work

We have presented a novel, simple and scalable
hash map design that fully supports the concurrent
search, insert and remove operations. To the best of
our knowledge, this is the first concurrent hash map
design that puts together being lock-free and using
fixed size data structures with persistent memory
references, which we consider to be characteristics
that have the best trade-off between performance,
correctness and computational environment inde-
pendence. Our design can be easily implemented in
any type of language, library or within other com-
plex data structures.

Experimental results show that our proposal is
quite competitive when compared against other
state-of-the-art proposals implemented in Java. Its
design is modular enough to allow different types of
configurations aimed for different performances in
memory usage and execution time.

In future work, we plan to implement our pro-
posal as an external library in order to be easily
included in bigger systems, such as the Yap Prolog
system [29], where the characteristics of being lock-
free and using fixed size data structures with per-
sistent memory references are key restrictions for
the efficiency of the system. Further work also in-
cludes studying a lock-free compression operation
that would compress clusters of internal hash lev-
els, thereby reducing the average depth of the trie
data structure, and an elastic hashing scheme that
would remove empty hash levels, such that, the av-
erage depth when searching for keys which are not
present in the hash map would be significantly re-
duced.

15

Acknowledgments

This work was funded by National Funds through
the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project
UIDB/50014/2020. Miguel Areias was funded by
the FCT grant SFRH/BPD/108018/2015.

References

[1] P. Bagwell, Ideal Hash Trees, Es Grands Champs 1195.
[2] E. Fredkin, Trie Memory, Communications of the ACM

3 (1962) 490–499.
[3] M. Areias, R. Rocha, An Efficient and Scalable Mem-

ory Allocator for Multithreaded Tabled Evaluation of
Logic Programs, in: International Conference on Paral-
lel and Distributed Systems, IEEE Computer Society,
2012, pp. 636–643.

[4] P. Tsigas, Y. Zhang, Evaluating the performance of
non-blocking synchronization on shared-memory mul-
tiprocessors, SIGMETRICS Perform. Eval. Rev. 29 (1)
(2001) 320–321.

[5] J. Reinders, Intel threading building blocks: outfitting
C++ for multi-core processor parallelism, ” O’Reilly
Media, Inc.”, 2007.

[6] H. Sundell, P. Tsigas, NOBLE: Non-blocking Pro-
gramming Support via Lock-free Shared Abstract Data
Types, SIGARCH Comput. Archit. News 36 (5) (2009)
80–87.

[7] The java concurrency package (JSR-166).
[8] M. Areias, R. Rocha, Towards a Lock-Free, Fixed

Size and Persistent Hash Map Design, in: M. Valero,
A. Melo (Eds.), Proceedings of the International Sym-
posium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD 2017), IEEE Computer
Society, Campinas, Brazil, 2017, pp. 145–152.

[9] M. Areias, R. Rocha, On the Correctness and Effi-
ciency of Lock-Free Expandable Tries for Tabled Logic
Programs, in: International Symposium on Practical
Aspects of Declarative Languages, no. 8324 in LNCS,
Springer, 2014, pp. 168–183.

[10] M. Areias, R. Rocha, A lock-free hash trie design for
concurrent tabled logic programs, International Journal
of Parallel Programming 44 (3) (2016) 386–406.

[11] P. Moreno, M. Areias, R. Rocha, Memory Reclama-
tion Methods for Lock-Free Hash Tries, in: R. Ferreira,
E. Ayguade (Eds.), Proceedings of the International
Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD 2019), IEEE Com-
puter Society, Campo Grande, Brazil, 2019, pp. 188–
195.

[12] P. Moreno, M. Areias, R. Rocha, A Compression-
Based Design for Higher Throughput in a Lock-Free
Hash Map, in: M. Malawski, K. Rzadca (Eds.), Pro-
ceedings of the 26th International European Confer-
ence on Parallel and Distributed Computing (Euro-Par
2020), LNCS, Springer International Publishing, War-
saw, Poland, 2020, pp. 458–473.

[13] C. Click, Towards a Scalable Non-Blocking Coding
Style (2007).
URL http://www.azulsystems.com/events/javaone_

2007/2007_LockFreeHash.pdf

[14] A. Prokopec, N. G. Bronson, P. Bagwell, M. Odersky,
Concurrent Tries with Efficient Non-Blocking Snap-
shots, in: ACM Symposium on Principles and Practice
of Parallel Programming, ACM, 2012, pp. 151–160.

[15] M. Herlihy, J. M. Wing, Axioms for Concurrent Ob-
jects, in: ACM Symposium on Principles of Program-
ming Languages, ACM, 1987, pp. 13–26.

[16] M. Herlihy, N. Shavit, On the Nature of Progress, in:
Principles of Distributed Systems, Vol. 7109 of LNCS,
Springer, 2011, pp. 313–328.

[17] M. Herlihy, V. Luchangco, M. Moir, Obstruction-free
synchronization: Double-ended queues as an example,
in: International Conference on Distributed Computing
Systems, ICDCS ’03, IEEE Computer Society, Wash-
ington, DC, USA, 2003.

[18] S. Prakash, Y. Lee, T. Johnson, Non-Blocking Al-
gorithms for Concurrent Data Structures, Tech. Rep.
TR91-002, Department of Computer and Information
Sciences, University of Florida (1991).

[19] G. Barnes, A method for implementing lock-free shared-
data structures, in: ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’93, ACM, 1993.

[20] M. Herlihy, A methodology for implementing highly
concurrent data objects, ACM Trans. Program. Lang.
Syst. 15 (5).

[21] T. L. Harris, A pragmatic implementation of non-
blocking linked-lists, in: International Conference on
Distributed Computing, DISC ’01, Springer-Verlag,
2001, pp. 300–314.

[22] M. M. Michael, High Performance Dynamic Lock-Free
Hash Tables and List-Based Sets, in: ACM Symposium
on Parallel Algorithms and Architectures, ACM, 2002,
pp. 73–82.

[23] O. Shalev, N. Shavit, Split-Ordered Lists: Lock-Free
Extensible Hash Tables, Journal of the ACM 53 (3)
(2006) 379–405.

[24] J. Triplett, P. E. McKenney, J. Walpole, Resizable,
Scalable, Concurrent Hash Tables via Relativistic Pro-
gramming, in: USENIX Annual Technical Conference,
USENIX Association, 2011, p. 11.

[25] W. Pugh, Skip lists: A probabilistic alternative to bal-
anced trees, Communications of the ACM 33 (6) (1990)
668—-676.

[26] M. Herlihy, Y. Lev, V. Luchangco, N. Shavit, A Prov-
ably Correct Scalable Concurrent Skip List, in: Interna-
tional Conference on Principles of Distributed Systems,
Technical Report, Bordeaux, France, 2006.

[27] M. Herlihy, J. M. Wing, Linearizability: a correctness
condition for concurrent objects, ACM Transactions on
Programming Languages and Systems 12 (3) (1990)
463–492.

[28] U. Drepper, What Every Programmer Should Know
About Memory - Version 1.0, Tech. rep., Red Hat, Inc.
(2007).

[29] V. Santos Costa, R. Rocha, L. Damas, The YAP Pro-
log System, Journal of Theory and Practice of Logic
Programming 12 (1 & 2) (2012) 5–34.

16

