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Abstract A key aspect of any hash map design is the problem of dynami-
cally resizing it in order to deal with hash collisions. Compression in tree-based
hash maps is the ability of reducing the depth of the internal hash levels that
support the hash map. In this context, elasticity refers to the ability of au-
tomatically resizing the internal data structures that support the hash map
operations in order to meet varying workloads, thus optimizing the overall
memory consumption of the hash map. This work extends a previous lock-free
hash trie map design to support elastic hashing, i.e., expand saturated hash
levels and compress unused hash levels, such that, at each point in time, the
number of levels in a path is adjusted, as closely as possible, to the set of keys
that is stored in the data structure. To materialize our design, we introduce
a new compress operation for hash levels, which requires redesigning the ex-
isting search, insert, remove and expand operations in order to maintain the
lock-freedom property of the data structure. Experimental results show that
elasticity effectively improves the search operation and, in doing so, our design
becomes very competitive when compared to other state-of-the-art designs im-
plemented in Java.

Keywords Data Structures · Lock-Freedom · Hash Tries

This work is financed by National Funds through the Portuguese funding agency, FCT –
Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020. Miguel Areias
was funded by the FCT grant SFRH/BPD/108018/2015.

Miguel Areias
Faculty of Sciences – University of Porto
E-mail: miguel-areias@dcc.fc.up.pt

Ricardo Rocha
Faculty of Sciences – University of Porto
E-mail: ricroc@dcc.fc.up.pt



2 Miguel Areias, Ricardo Rocha

1 Introduction

Organizing data according to a specific layout or schema, making it more
presentable and/or accessible, can be a complex task. Such a task often involves
identifying uniquely a portion of the data through the use of a key (or an index)
and then using the key to quickly map and access the specific data without
having to search the entire dataset [20]. This procedure is widely implemented
by organizing data into key/content pairs and by using optimized techniques
to store keys in data structures where they can be quickly searched for. When
a key is found, the content’s field indicates where the data is stored.

Hash maps are a very common and efficient data structure used to store
data that can be organized as (K,C) pairs, where the mapping between the
unique key K and the associated content C is given by a hash function. Hash
tries (or hash array mapped tries) are a tree-based data structure with nearly
ideal characteristics for the implementation of hash maps [4]. A key aspect of
any hash map design is the problem of dynamically resizing it in order to deal
with hash collisions. This includes increasing the size of the underlying data
structure and remapping (or rehashing) all the existing keys to new locations
and decreasing (or compressing) the size of the data structure when a certain
amount of keys are removed.

The advantages of compressing tree-based data structures are well-known
in the literature [24,13]. Compression can be performed gradually or incre-
mentally at shallow or deeper tree levels, thus affecting just a small part of
the entire data structure, but a key advantage is that it can be done con-
currently with the other operations. Two good examples are: (i) the B*-tree
proposal [31], which supports a compression procedure that runs concurrently
with regular operations, such as searches, insertions and removals, to merge
nodes that are underfull; and (ii) the relaxed B-slack trees proposal [6] that
supports a similar concurrent absorb operation that reduces the number of
levels in the data structure.

In this context, elasticity refers to the ability of automatically resizing the
internal data structures that support the hash map operations in order to meet
varying (local) workloads, thus optimizing the overall memory consumption
of the hash map. Operations of tree-based hash-maps take O(logE K) time
to complete, where E represents the branching factor in a hash level and
K is the overall number of keys inserted in the hash map. Elasticity will
work on adjusting the depth of the internal hash levels within a hash map to
the number of keys K that the hash map holds at any given instant of the
execution. Thus, elasticity reduces, not only, memory consumption, but can
also potentially reduce the execution time, since the number of levels to be
traversed when trying to operate a key is expected to be lower.

In this work, we propose a novel concurrent hash map design, named Free
Fixed Persistent Hash Map with Elasticity (FFPE), that puts together the
following characteristics: (i) lock-freedom; (ii) fixed size data structures; (iii)
persistent memory references; (iv) sorted keys; and (v) elasticity. Our design
is based on hash tries to implement fixed size data structures with persistent
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memory references, on single-word CAS (compare-and-swap) instructions to
implement lock-freedom, and on xor operations to assist in sorting the hash
values corresponding to keys.

In previous work [3], Areias and Rocha proposed a concurrent hash map
design, named FFPS, that supports most of the characteristics above with
the exception of elasticity. This work extends that previous design to also
support elastic hashing, i.e., expand saturated hash levels and compress un-
used hash levels, such that, at each point in time, the number of levels in
a path matches the current demand as closely as possible. Recently, Moreno
et al. [26] presented an alternative lock-free compression design for a similar
lock-free trie-based hash map that was able to significantly reduce the depth of
the internal hash levels within the hash map structure, by swapping multiple
shallow hash levels for a single hash level that is extended enough (i.e., has
a sufficient amount of bucket entries) to hold all of the buckets entries of the
swapped shallow hash levels. By doing so, the lock-free compression design
was able to minimize cache misses and increase the overall throughput of the
default search, insert and remove operations.

Table 1: Characteristics support

Characteristics / Designs FFPE FFPS CSL CT

Lock-freedom 3 3 3 3
Fixed size structures 3 3 - 7
Persistent references 3 3 3 7
Sorted keys 3 3 3 7
Elastic hashing 3 7 - 3

To the best of our
knowledge, none of the
available designs in the lit-
erature fulfills all the above
five characteristics simul-
taneously. Table 1 shows
how the FFPE and FFPS
designs compare with two
other state-of-the-art designs, the Concurrent Skip-Lists (CSL) from the Java
concurrency package [1] and the Concurrent Tries (CT) [30,28], regarding
those characteristics.

To materialize our design, we introduce a new compress operation for hash
levels, which required adapting freezing (and unfreezing) based procedures [34,
8,29], and required redesigning the existing search, insert, remove and expand
operations in order to maintain the lock-freedom property of the whole design.
Experimental results show that elasticity reduces the number of hash levels
and, in doing so, it effectively improves the performance of the search opera-
tion, which is the backbone procedure for all other operations. Consequently,
FFPE became very competitive when compared to the CSL and CT designs.
In a nutshell, the main contributions of this work are:

– We present and discuss the key algorithms required to easily reproduce our
implementation by others;

– We present a proof of correctness showing that our proposal is linearizable
and lock-free for the search, insert and remove operations;

– We present a set of experiments comparing the benefits and drawbacks of
elasticity, and a comparison analysis of our design against other state-of-
the-art concurrent hash map designs.
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The remainder of the paper is organized as follows. First, we introduce rel-
evant background and present the main ideas of our design. Next, we describe
in detail the key algorithms required to easily reproduce our implementation
and we discuss their correctness. Then, we present a set of experiments com-
paring our design against other state-of-the-art concurrent hash map designs.
At the end, we present conclusions and further work directions.

2 Background

Nowadays, the CAS instruction is at the heart of many lock-free data struc-
tures [17]. A lock-free data structure guarantees that, whenever a thread exe-
cutes some finite number of steps, at least one operation on the data structure
by some thread must have made progress during the execution of these steps.
Herlihy and Shavit proposed a grand unified explanation [16] for the progress
properties using linearizability, which is an important correctness condition
for the implementation of concurrent data structures [18]. The first correct
CAS-based lock-free list-based set design was introduced by Harris [14]. Later,
Michael improved Harris work by presenting a design that was compatible with
all lock-free memory management methods and Michael used this design as
the building block for lock-free hash maps [25]. Skip lists are an alternative
and more efficient data structure to plain linked lists that allows logarithmic
time searching, insertions and removals by maintaining multiple hierarchical
layers of linked lists where each higher layer acts as an express lane for the
layers below. Concurrent non-blocking skip lists were later implemented by
Herlihy et al. [15] and, Shalev and Shavit [32].

Sorted search trees are important in systems that require indexing by keys,
such as, database systems. Several examples exist that show the importance
of these trees, for instance, B-Trees were proposed to organize large ordered
sets [5,10], and T-Trees have been proposed as a better index structure in
main memory database systems [21]. Hash tries (or hash array mapped tries)
are a trie-based data structure with nearly ideal characteristics for the imple-
mentation of hash tables [4]. An essential property of the trie data structure is
that common prefixes are stored only once [12], which in the context of hash
tables allows us to efficiently solve the problems of setting the size of the initial
hash table and of dynamically resizing it in order to deal with hash collisions.
Prokopec et al. presented the CTries [30,28], a non-blocking concurrent hash
trie-based on shared-memory single-word CAS instructions. The CTries intro-
duce a non-blocking, atomic constant-time snapshot operation, which can be
used to implement operations requiring a consistent view of a data structure
at a single point in time. And more recently, Brown et al. presented the C-
IST [7], a specialized trie-based data structure that is the first non-blocking
implementation of the classic interpolation search tree [23].

Traditional hash maps do not store sorted keys, which makes them un-
suitable for non-exact match queries, such as, to find all keys in an interval.
However, they are known for their excellent performance in searching for items.
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Searching is a crucial time-consuming part of many applications, and using a
good search method instead of a bad one often leads to a substantial increase
in performance [20]. The earliest search algorithm – binary search – was first
mentioned by John Mauchly [22] more than six decades ago, 25 years before
the advent of relational databases [9]. Later, Peterson proposed interpolation
search [27], an optimized version of binary search, that, instead of choosing the
middle element for splitting the search, chooses the splitting element accord-
ing to the value of the key being searched. Nowadays, one of the most critical
database primitives is tree-structured index search, which is used for a wide
range of applications where low latency and high throughput matter, such as,
data mining, financial analysis, scientific workloads, among others [19].

More recently, Areias and Rocha presented a novel trie-based lock-free
hash-map design, named FFPS, that combines hashing with sort and tree
search algorithms to support additional important properties, such as, fixed-
size data structures, persistent references and sorted keys [3]. Fixed size data
structures have pre-defined sizes, which allows to efficiently solve the prob-
lems of setting the size of the initial hash map and of dynamically expand-
ing/resizing it in order to deal with hash collisions, and it is also very im-
portant to take advantage of memory allocators where data structures of the
same size/class are (pre-)allocated within the same (regions of) pages [2]. Per-
sistent references pin memory references to information stored in a specific
data structure. By doing so, it avoids duplicating internal data structures by
creating new ones through copying/removing the older ones. The persistent
characteristic is very important in hash maps that are used not standalone
but as a component of a bigger module/library which, for performance rea-
sons, requires accessing directly the internal data structures.

At the implementation level, the FFPS design has only two types of data
structures, hash arrays of buckets and leaf nodes. The leaf nodes store the
key/content pairs and the hash arrays of buckets implement a hierarchy of hash
levels of fixed size 2w. To map a key K into this hierarchy, it first computes
the hash value h for K and then uses chunks of w bits from h to index the
entry in the appropriate hash level, i.e., for each hash level Hi, it uses the
ith chunk of w bits of h to index the entry in the appropriate bucket array
of Hi. The most significant chunk of w bits represents the first level and the
least significant chunk of w bits is the last level. To deal with collisions, the
leaf nodes form a linked list in the respective bucket entry until a threshold is
met and, in such case, the FFPS design executes an expansion operation to
update the nodes in the linked list to a new hash level Hi+1. This hierarchical
organization is also the basis for the new design that we present next.

3 Our Design By Example

In this section, we focus the discussion on our design for elastic hashing,
namely, on how the insert, expand and remove operations can work concur-
rently in a lock-free fashion with the new compress operation. We first intro-
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duce how the insertion of nodes triggers the expansion of hash levels and then
we present how the removal of nodes triggers the compression of hash levels.

3.1 Inserting Keys and Expanding Hash Levels

We begin with Fig. 1 showing a small example that illustrates how the con-
current insertion of nodes is done in a hash level.
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Fig. 1: Insert operation in a hash level

Figure 1(a) shows the
initial configuration for a
hash level Hi. Each hash
level consists in a bucket
array of 2w entries and
a header, which includes
a backward reference to
the previous hash level, a
hash level identifier and a
key representative of the
hash level, respectively,
values Pi, i and K1 in Fig. 1 (in Fig. 1(a), the key representative is marked
as ‘–’ since the hash level is still empty). For the root level, the backward
reference is nil.

The bucket entries are initialized with a reference to the current hash level.
In Fig. 1(a), Bx represents a particular bucket entry of Hi. Each bucket entry
stores either a reference to a hash level or a reference to a separate chaining
mechanism, using a chain of leaf nodes, that deals with the hash collisions
for that entry. Each leaf node includes a tuple that holds both a reference
to a next-on-chain leaf node and the state of the node, which can be valid
(V ) or invalid (I). The initial state of a node is valid. Figure 1(b) shows the
configuration after the insertion of node K1, on the bucket entry Bx, and
Fig. 1(c) shows the configuration after the insertion of nodes K2 and K3, also
in Bx. The insertion of nodes is done at the end of the chain and a new inserted
node closes the chain by referencing back the current hash level.

To better understand the figures, the different elements in a hash level are
colored accordingly to their condition. A black element, which we name an
Interest Point (IP ), represents a memory address that can be updated con-
currently, during the execution of the hash-map. To guarantee lock-freedom,
all updates to black elements are done using CAS operations. A gray element
can be updated only by a single thread, but can become an IP at any instant
of execution. A white element will no longer be updated.

When the number of valid nodes in a chain exceeds a threshold value, then
the corresponding bucket entry is expanded with a new hash level and the
nodes in the chain are remapped in the new level. To keep keys sorted, we
apply a xor operation between the hash values of the key being inserted and
the key representative of the hash level, to check in which level (chunk of bits)
they differ (remember that the most significant chunk of w bits represents the
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Fig. 2: Front-expansion with the concurrent insertion of nodes

first level). If they differ in a higher level than the hash level identifier, then
we insert a new hash level in a deeper level (we call this front-expansion).
Otherwise, we insert a new hash level in a shallow level (we call this back-
expansion) [3].

We next describe the front-expansion operation in more detail. Starting
from the configuration in Fig. 1(c), Fig. 2 illustrates the front-expansion op-
eration to a second level hash for the bucket entry Bx. The front-expansion
operation is activated whenever a thread T trying to insert a key K meets the
following two conditions: (i) K is not found in the current chain of leaf nodes,
and (ii) the number of valid nodes in the chain observed by T is equal to the
threshold value corresponding to the number of collisions allowed (in what
follows, we consider a threshold value of three keys). In this case, T starts by
pre-allocating a second level hash Hk, with all entries referring the respective
level and with a key representative (K2 in Fig. 2) consisting of the key in the
chain that differs in the lowest level from the key being inserted by T .

The new hash level Hk is then used to implement a synchronization point
with the current IP (node K3 in Fig. 2(a)) that will correspond to a successful
CAS operation trying to update Hi to Hk (Fig. 2(b)). From this point on, the
insertion of new nodes on Bx will be done starting from the new hash level Hk.
If the CAS operation fails, that means that another thread has gained access
to the IP and, in this case, T aborts its front-expansion operation. Otherwise,
T starts the remapping process of placing the valid nodes K1, K2 and K3



8 Miguel Areias, Ricardo Rocha

in the correct bucket entries in the new level.1 Figures 2(c) to 2(f) show the
remapping sequence in detail. For simplicity of illustration, we will consider
only the entries By and Bz on level Hk and assume that K1, K2 and K3 will
be remapped to these entries. In order to ensure lock-free synchronization, we
need to guarantee that, at any time, all threads are able to read all the available
nodes and insert/remove nodes without any delay from the remapping process.
To guarantee both properties, the remapping process is thus done in reverse
order, starting from the last node on the chain, initially K3.

Fig. 2(c) shows the hash trie configuration after the successful CAS oper-
ation that adjusted node K3 to entry Bz. After this step, Bz passes to the
gray state and K3 becomes the next IP for the insertion of new nodes on Bz.
Note that the initial chain for Bx has not been affected yet, since K2 still
refers to K3. Next, on Fig. 2(d), the chain is adjusted and K2 is updated to
refer to the second level hash Hk. The process then repeats for K2 (the new
last node on the chain for Bx). First, K2 is remapped to entry Bz and then
it is removed from the original chain, meaning that the previous node K1 is
updated to refer to Hk (Fig. 2(e)). Finally, the same idea applies to node K1.
In the continuation, K1 is also remapped to a bucket entry on Hk (By in the
figure) and then removed from the original chain, meaning in this case that
the bucket entry Bx itself becomes a reference to the second level hash Hk

(Fig. 2(f)). Concurrently with the remapping process, other threads can be
inserting nodes in the same bucket entries for the new level. This is shown in
Fig. 2(e), where a node K4 is inserted before K2 in Bz and in Fig. 2(f), where
a node K5 is inserted before K1 in By.
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Fig. 3: Concurrent back-expansion

We next describe the
back-expansion operation,
where a new hash levels is
inserted in a shallow level.
Figure 3 shows a possible
sequence of steps involv-
ing a back-expansion op-
eration concurrently with
a front-expansion opera-
tion. The back-expansion
operation has a lower
priority than the front-
expansion operation, i.e.,
a back-expansion only be-
gins if no front-expansion
is undergoing. If a front-expansion is undergoing and a thread T wants to
execute a back-expansion, T begins by assisting the threads doing the front-
expansion and only then it begins the back-expansion.

1 Note that with persistent memory, keys must remain pinned to their initial memory
references, i.e., the copy of a key to a new memory reference is not allowed.
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Figure 3(a) shows the initial configuration, where a front-expansion oper-
ation is undergoing for the bucket entry Bx to a second level hash Hk, and
Fig. 3(b) shows the end of the front-expansion, after the CAS operation up-
dating Bx to Hk. Assume now that during the front-expansion, a new thread
T reaches Bx looking to insert a key K4 and that K4 differs from K2 in a
level j that is lower than k. This means that a third hash level Hj must be
included between Hi and Hk. Figure 3(c) shows the resulting configuration
after the insertion of the hash level Hj . The initialization of a hash level in a
back-expansion is sightly different from the front-expansion, since one of the
bucket entries must refer the front hash level Hk. T uses the key representative
of the front hash level, K2 in Fig. 3(c), to compute the bucket entry Bw that
should refer to Hk. All the remaining bucket entries are initialized referring
back the respective level Hj . At the end of the initialization step, T applies a
CAS operation on Bx setting it to refer to Hj . Finally, T can insert the key
K4 in the hash level Hj . Figure 3(d) shows this final configuration.

3.2 Removing Keys and Compressing Hash Levels

In this subsection, we begin by describing how the concurrent removal of nodes
is done in a hash level and how it triggers the compress operation. Then, we
show how the compress operation is done in a lock-free fashion.

A remove operation can be seen as a sequence of two steps: (i) the invali-
dation step; and (ii) the unreachability step. The invalidation step searches for
the node N holding the key to be removed and updates the node state from
valid to invalid. The unreachability step then searches for the valid data struc-
tures B and A, respectively before and after N in the chain of nodes, in order
to bypass node N by chaining B to A. Starting again from the configuration
in Fig. 1(c), where all keys are valid, Fig. 4 illustrates how the concurrent
removal of nodes is done.
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Fig. 4: Remove operation in a hash level

Consider that a thread
T wants to remove the key
K2. T begins the invalida-
tion step by searching for
node K2 and by marking
it as invalid (Fig. 4(a)).
In the continuation, T
searches for the valid data
structures before and af-
ter K2, nodes K1 and K3 in this case. The next step is shown in Fig. 4(b),
where node K1 is chained to node K3, thus bypassing node K2. From this
point forward, node K2 is unreachable from the chain (unreachability step).
The reader can observe that, the chaining references of unreachable nodes are
left in a consistent state, allowing all late threads reading those nodes to be
able to recover to a valid data structure.
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The removal of a key might trigger the compression of the (leaf) hash
level Hi where the key has found, if all bucket entries of Hi are found empty.
To keep the lock-freedom property, the compress operation relies on a new
special node, named compression node, used to mark an undergoing compress
operation and in two key procedures: (i) the freezing procedure, used to mark
all bucket entries as ready for compression; and (ii) the unfreezing procedure,
used to abort an unsuccessful compression. At the implementation level, the
compress operation: (i) does not keep track of which hash levels are being
traversed by a thread; (ii) does not keep track of the number of buckets that
are empty on a hash level; and (iii) does not use snapshots to compress the
hash levels, because keys are stored in chain nodes and not in the hash buckets.
Figure 5 illustrates an example of a successful compress operation.
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Fig. 5: A successful compress operation

Figure 5(a) shows the
initial configuration of the
hash levels, where bucket
entry Bx is referring to
the hash level Hk, which
has only one node (with
the key K2) in the bucket
entry Bz (all the re-
maining bucket entries are
empty). The compress op-
eration will then be trig-
gered when a thread T1

removes the key K2 and
becomes aware that Bz is
empty (Fig. 5(b)). T1 then
uses the key representa-
tive K2 of Hk to find the corresponding bucket entry Bx in the previous hash
level Hi in order to insert the special compression node F , meaning that a
freezing procedure is undergoing in the hash level Hk (Fig. 5(c)).

After the insertion of F , T1 traverses all bucket entries in Hk and, for each
bucket entry, it applies a CAS operation trying to update the entry’s reference
to node F . If one of the bucket entries is not empty (i.e., the CAS has failed),
then T1 aborts the freezing procedure and starts the unfreezing procedure.
Otherwise, the freezing procedure has succeeded and all bucket entries are
referring node F , in which case T1 applies a final CAS on Bx to remove the
hash level Hk from the data structure (Fig. 5(d)).

It is important to notice that, while a thread is trying to compress a hash
level, other threads can be searching, removing or inserting keys in the hash
level under compression. Whilst the search and remove operations cannot col-
lide with the compress operation, the insert operation can.

For instance, consider again the example in Fig. 5 and assume that a second
thread T2 is preempted in Hk, at the time of the configuration in Fig. 5(c).
Later, if T2 is resumed after the configuration in Fig. 5(d), then it must be able
to detect that Hk has been compressed (and is not valid anymore) and must be
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able to position itself in a valid hash level. Otherwise, if T2 is resumed before
the configuration in Fig. 5(d), it must somehow synchronize with T1 in order
to be able to complete its insertion operation. In both situations, T2 knows
about the existence of a compress operation when it reaches the compression
node F (note that F can also be reached from the bucket entry Bx in Hi

but, in this case, the traversal can continue as usual to Hk). By rereading the
reference in Bx, T2 can check if the compression is undergoing (case in which
Bx still refers F ) or has already completed. If the compression is undergoing,
then T2 notifies T1 to abort the compression before proceeding with its insert
operation. Figure 6 illustrates the situation where a thread T1 is compressing
the hash level Hk and a thread T2 wants to insert a key K5.
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Fig. 6: Aborting a compress operation

Figure 6(a) shows the
initial configuration where
T1 has already updated
all bucket entries from Hk

to refer F and is about
to complete the process
with the final CAS on Bx.
Now consider that, due to
preemption, T1 suspends
before updating Bx, and
that, in the meantime, T2

is trying to insert K5 on
By. T2 follows the refer-
ence in By and reaches
node F (thus knowing
about the existence of an
undergoing compress operation). T2 then needs to notify T1 to abort the com-
pression, and for that it replaces F with another special compression node
U , meaning that an unfreezing procedure needs to be done (Fig. 6(b)). Once
this notification succeeds, T2 proceeds by inserting K5 in By (Fig. 6(c)). It
is important to notice that if another thread T3 is also trying to abort the
compression (e.g., to insert another key), it would not have to insert a second
node U , since one is enough to trigger the unfreezing procedure.

Later, when T1 resumes and tries to apply the CAS on Bx, the CAS will
fail. In the continuation, T1 will notice the existence of node U and will start
the unfreezing procedure. This requires traversing again all bucket entries in
Hk to unfreeze them. At the end, T1 applies a CAS operation on Bx to remove
U . Figure 6(d) shows the corresponding final configuration.

4 Algorithms

This section presents the most relevant algorithms of our design.
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4.1 The SearchRemoveKey Operation

Algorithm 1 shows the pseudo-code for the search/remove operation of a given
key K in a given hash level H.

Algorithm 1 SearchRemoveKey(Key K ,Hash H )

1: B ← GetBucket(K ,H )

2: R ← NextRef (B)

3: if IsCompressionNode(R)

4: R ← NextRef (R)

5: if IsHashLevel(R)

6: if R = H // empty chain, K is not in H

7: return

8: else // R references a second hash level

9: return SearchRemoveKey(K ,R)

10: repeat // traverse the chain of nodes

11: if IsValidChainNode(R) ∧Key(R) = K // key found

12: if MakeChainNodeInvalid(R)

13: return MakeChainNodeUnreachable(R,H )

14: R ← NextRef (R)

15: until IsHashLevel(R)

16: if R = H // chain ended in the same hash level

17: return

18: R ← GetHashLevel(R,Level(H ) + 1 )

19: return SearchRemoveKey(K ,R)

The algorithm begins by getting the bucket entry B from H that fits the
key K and by reading the reference R in B (lines 1–2). Next, the algorithm
checks if R is a reference to a compression node (lines 3–4), case in which R
is updated by following the chain, thus making R necessarily a reference to a
hash level (to H or to a second hash level). In the continuation, the algorithm
then checks if R is a reference to a hash level (lines 5–9), case in which it
simply returns if the current chain is empty (line 7) or restarts if R references
a second hash level (line 9).

Otherwise, R holds a reference to a chain node and the algorithm traverses
the chain of nodes looking for a valid node holding K. If a valid chain node
holding K is found, the algorithm proceeds to remove it (lines 11–13). Oth-
erwise, the chain of nodes was traversed and K was not found, which means
that R holds now a reference to a hash level. If R holds a reference to H then
no expansion/compression operation has interfered with the search of K, thus
the algorithm can simply return (line 16–17). Otherwise, R holds a reference
to a deeper hash level, thus the algorithm restarts in the hash level after H
(lines 18–19).
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4.2 The MakeChainNodeUnreachable Operation

Algorithm 2 presents next the pseudo-code for turning unreachable a given
node N in a given hash level H. Remember that, in the unreachability step,
we need to search for the valid data structures BR (before reference) and AR
(after reference), respectively before and after N in the chain of nodes, in
order to bypass node N by chaining BR to AR.

Algorithm 2 MakeChainNodeUnreachable(Node N ,Hash H )

1: R ← GetNextHashLevelOrValidChainNode(N )

2: AR ← R

3: if IsChainNode(R)

4: R ← GetNextHashLevel(R)

5: if R = H // chain ended in the same hash level

6: B ← GetBucket(Key(N ),H )

7: R ← B

8: repeat

9: BR ← R

10: BRN ← NextRef (BR)

11: R ← GetNextHashLevelOrValidChainNodeOrN (R,N )

12: until R = N ∨ IsHashLevel(R)

13: if R = N // we are in condition to bypass N

14: if BR = B // no valid chain nodes found

15: if CAS(NextRef (BR),BRN ,AR)

16: if AR = H // try to compress H

17: CompressHashLevel(Key(N ),H )

18: return

19: else

20: if CAS(Next(BR), (BRN , valid), (AR, valid))

21: return

22: return MakeChainNodeUnreachable(N ,H )

23: if R = H // N is already unreachable

24: return

25: R ← GetHashLevel(R,Level(H ) + 1 )

26: return MakeChainNodeUnreachable(N ,R)

The algorithm begins by setting R and AR with the next valid data struc-
ture starting from N (lines 1–2). If R is a chain node, then R is updated with
the hash level at the end of the chain (lines 3–4). Otherwise, R already refers
a hash level. In both cases, at the beginning of line 5, R refers a hash level.
If R refers a deeper hash level, the process is restarted in the hash level after
H (lines 25–26). Otherwise, the algorithm ended in the same hash level H
(lines 5–24) and it proceeds to compute the valid data structure BR before
N . For that, it starts from the bucket entry B in H that fits the key on N
and traverses the chain of nodes looking for the following valid data structures
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until reaching N or a hash level (lines 6–12). During the process, it saves in
BRN the chain reference of BR (line 10).

At the end of the traversal, if R reaches N then we are in condition to
bypass N by chaining BR to AR and thus make N unreachable (lines 13–22).
For that, the algorithm applies a CAS operation to BR trying to update it
from the reference saved in BRN to AR and keeping the node state as valid
if BR is a chain node (line 20). However, if BR refers a bucket entry and
AR refers to H (lines 14–18), then the algorithm tries to compress the hash
level H (more details later). Notice that if the CAS operation fails, it means
that the reference in BR has changed somewhere between the instant where it
was found valid and the CAS execution. In this case, the process is restarted
(line 22), thus forcing the algorithm to converge to a configuration where all
invalid nodes are made unreachable.

Otherwise, if R ends in a hash level at the end of the traversal, that means
that N is not on H. Therefore, if R refers to H that means that N is already
unreachable, thus the algorithm simply returns (lines 23–24). Otherwise, R
refers a deeper hash level and the process is restarted in the hash level after
H (lines 25–26).

4.3 The FreezeHashLevel & UnfreezeHashLevel Operations

Algorithm 3 FreezeHashLevel(Node F ,Hash H )

1: for B in BucketEntries(H)

2: if not CAS(NextRef (B),H ,F )

3: return false

4: return true

The allocation and insertion of a freezing compression node marks the be-
ginning of the freezing procedure. Algorithm 3 shows the process of trying to
freeze a hash level H, i.e., mark all bucket entries of H as ready for compres-
sion, given a freezing compression node F . For each bucket entry B of H, the
algorithm applies a CAS operation trying to update the entry’s reference to
node F . If one of the bucket entries is not empty, the CAS fails and the algo-
rithm immediately returns false, signaling that the procedure has failed. Only
when all CAS operations succeed, i.e., all bucket entries are made to refer to
node F , the algorithm returns true.

As an optimization, we kept track of the (non empty) bucket entry B where
the procedure has failed in such a way that the next freezing procedure for
the current hash level H only takes place if it is B to trigger the process (in
this way we avoid starting the freezing procedure knowing that there is, at
least, one non-empty bucket entry B). For simplicity of presentation, we are
not including this optimization in the algorithms being presented.
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Algorithm 4 then shows the process of unfreezing a hash level H, which is
triggered when the thread doing a compress operation detects the existence
of an unfreezing compression node. This requires traversing again all bucket
entries of H in order to update the ones referring a given freezing compression
node F , i.e., for each bucket entry B of H, the algorithm applies a CAS
operation trying to update the entry’s reference to H if it is referring F , thus
restoring the previous configuration.

Algorithm 4 UnfreezeHashLevel(Node F ,Hash H )

1: for B in BucketEntries(H)

2: CAS(NextRef (B),F ,H )

3: return

4.4 The CompressHashLevel Operation

Finally, Alg. 5 presents the pseudo-code for trying to compress a hash level.
The algorithm receives as arguments the key K that triggered the compress
operation and the hash level H to be compressed.

The algorithm begins by getting the previous hash level PH and if it does
not exist, it means that the algorithm is trying to compress the root hash level,
thus it returns (lines 1–3). Otherwise, it gets the bucket entry B from PH that
fits K, allocates a freezing compression node F (with the next reference to H),
and applies a CAS on B in order to insert F and thus mark the beginning of
the freezing procedure (lines 4–6). If the CAS fails, then B is not referring to
H anymore, thus the algorithm simply returns (line 28).

The freezing procedure starts by calling FreezeHashLevel() to freeze the
bucket entries in the hash level H (line 7). If it fails, the algorithm then al-
locates an unfreezing compression node U to replace F and thus mark the
beginning of the unfreezing procedure (lines 18–19). The unfreezing proce-
dure follows on lines 20–27. If FreezeHashLevel() succeeds, the algorithm then
updates the current previous hash level PH , in case any back-expansion has
occurred in the meantime (lines 9–13), in order to apply the CAS that will
remove H and thus effectively compress the data structure (line 14). In case of
success, the algorithm then tries to recursively compress the previous hash level
PH (line 15). In case of CAS failure, it means that another back-expansion
occurred in the meantime or that an unfreezing compression node has been
inserted by another thread. In the first case, we repeat the process of updating
the previous hash level PH . Otherwise, we move to the unfreezing procedure.

The unfreezing procedure starts by calling UnfreezeHashLevel() to unfreeze
the bucket entries in the hash level H (line 20). As before, the algorithm then
repeats the process of finding the current previous hash level, in case any back-
expansion has occurred in the meantime (lines 22–25), in order to reach the
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Algorithm 5 CompressHashLevel(Key K ,Hash H )

1: PH ← PrevHashLevel(H )

2: if PH = nil // abort if trying to compress the root hash level

3: return

4: B ← GetBucket(K ,PH )

5: F ← AllocCompressionNode(H , freeze)

6: if CAS(NextRef (B),H ,F )

7: if FreezeHashLevel(F ,H )

8: repeat

9: R ← NextRef (B)

10: while IsHashLevel(R) // back-expansion in the meantime

11: PH ← R

12: B ← GetBucket(K ,PH )

13: R ← NextRef (B)

14: if CAS(NextRef (B),F ,PH ) // try to remove hash level H

15: return CompressHashLevel(K ,PH )

16: until IsCompressionNode(R, unfreeze)

17: else // freezing failed

18: U ← AllocCompressionNode(H , unfreeze)

19: CAS(NextRef (B),F ,U )

20: UnfreezeHashLevel(F ,H )

21: repeat // remove unfreezing node and restore configuration

22: R ← NextRef (B)

23: while IsHashLevel(R) // back-expansion in the meantime

24: B ← GetBucket(K ,R)

25: R ← NextRef (B)

26: U ← R // reached unfreezing compression node

27: until CAS(NextRef (B),U ,H )

28: return

unfreezing compression node U (line 26) and apply the CAS that will restore
the initial configuration and thus keep H in the data structure (line 27).

5 Correctness & Complexity

In this section, we discuss the correctness and complexity of our design. The
full proof consists of two parts: (i) prove that the design is linearizable; and (ii)
prove that the lock-freedom property holds in all operations. Due to the lack of
space, in what follows, we focus on the linearization proof for the algorithms
described before. For that, we enumerate the linearization points, describe
the set of invariants and show parts of the proof that the linearization points
preserve the set of invariants.

5.1 Linearization Points

The linearization points in the algorithms shown are:
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LP1 SearchRemoveKey() (Alg. 1) is linearizable at successful procedure Make-
ChainNodeInvalid() in line 12.

LP2 MakeChainNodeUnreachable() (Alg. 2) is linearizable at successful CAS
in line 15.

LP3 MakeChainNodeUnreachable() (Alg. 2) is linearizable at successful CAS
in line 20.

LP4 FreezeHashLevel() (Alg. 3) is linearizable at successful CAS in line 2.
LP5 UnfreezeHashLevel() (Alg. 4) is linearizable at successful CAS in line 2.
LP6 CompressHashLevel() (Alg. 5) is linearizable at successful CAS in line 6.
LP7 CompressHashLevel() (Alg. 5) is linearizable at successful CAS in line 14.
LP8 CompressHashLevel() (Alg. 5) is linearizable at successful CAS in line 19.
LP9 CompressHashLevel() (Alg. 5) is linearizable at successful CAS in line 27.

5.2 Invariants

The set of invariants that must be preserved on every state of the data struc-
ture are:

Inv1 Given a hash level H, PrevHashLevel(H ) always refers to a hash level
PH which is previous to H.

Inv2 A hash level H must comply with the following semantics: (i) its initial
state is valid; (ii) after a successful compression, its state turns invalid and
never changes to valid again. While valid, all bucket entries are changeable,
whereas in a invalid state, all bucket entries are unaltered.

Inv3 A bucket entry B belonging to a hash level H must comply with the
following semantics: (i) its initial reference is H; (ii) after the first update,
it must refer to a chain node N1 or to a compression node C1; (iii) after a
follower update, it must refer to a different chain node N2, to a different
compression node C2, to the hash level H or to a deeper hash level Hd

such that PrevHashLevel(Hd) = H .
Inv4 A compression node C, of type Freeze or Unfreeze, must comply with

the following semantics: (i) its initial reference must refer to a hash level
H under compression and inserted in a bucket entry B within the previous
hash level PH ; (ii) the reference in C remains unaltered; (iii) if C is reach-
able then H is valid; (iv) if C is of type Unfreeze then H is valid; (v) if
C is of type Freeze and unreachable then H is invalid; (vi) if H is invalid
then C is reachable from all bucket entries in H.

Inv5 A chain node N must comply with the following semantics: (i) its initial
state is valid; (ii) after an invalidation step, its state turns invalid and never
changes to valid again.

Inv6 Given an invalid chain node N in a chain of nodes starting from a bucket
entry B belonging to a hash level H, N must comply with the following
semantics: (i) at any given instant, it exists only one point I (the bucket
entry B or a valid chain node) from where N should be made unreachable;
(ii) if N is unreachable then its reference is never updated again.
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5.3 Proofs

Next, we show the proof on how two of the linearization points, namely LP5

and LP7, preserve the set of invariants. The remaining linearization points
follow a similar proof strategy.

Lemma 1 LP5 preserves the set of invariants.

Proof After the execution of the CAS operation in line 2, the reference in the
bucket entry B either changes from the compression node F to the hash level
H (if the CAS operation succeeds) or remains unaltered (if the CAS operation
fails). In both situations, invariant Inv3 holds. The remaining invariants are
not affected. ut

Lemma 2 LP7 preserves the set of invariants.

Proof Consider that H is the hash level that is under compression, PH is the
previous hash level, B is a bucket entry within PH and F is a compression
node with type Freeze and referring H. This linearization point concerns the
final stage of the compress operation, thus it affects invariants Inv2, Inv3 and
Inv4. The remaining invariants are not affected.

Previous to the execution of the CAS in line 14, invariant Inv2 ensures
that H is valid. Then, if the CAS fails, H remains valid. Otherwise, if the CAS
succeeds, H is no longer reachable form PH. For the CAS to be executed, the
FreezeHashLevel() operation in line 7 must have succeeded, thus H is for sure
in an invalid state and invariant Inv2 holds.

Regarding the reference in B, it either changes to PH (if the CAS succeeds)
or remains unaltered (if the CAS fails). In both situations, invariant Inv3
holds.

If the CAS operation fails, that means that F is already unreachable from
B. Otherwise, the CAS operation makes F unreachable from B. In both sit-
uations, F is reachable from H as a result of the FreezeHashLevel() in line 7,
and thus invariant Inv4 also holds. ut

5.4 Complexity

Our design combines the identity hash function with a hierarchy of hash levels
whose branching factor is given by a fixed (and pre-defined) number of bucket
entries per hash level and whose maximum depth (or height) depends on the
overall number of keys inserted in the hash map. As show in the previous
sections, our design supports multiple keys per bucket entry in the hash trie
map leaves, e.g., in Fig. 1, we showed three keys associated to a single bucket.
However, for the sake of simplicity, next we will formalize the complexity of
our design, assuming an evenly distribution of keys, that generate the worst
configuration possible for memory usage, which is to associate each key to a
single bucket, i.e., all chains of nodes holding the keys, will have only one node.
This is formalized next.
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Lemma 3 Given a fixed number E of bucket entries per hash level and an
overall number K of keys inserted in the hash map, the average space com-
plexity on the number of hashes used is O(K

E ).

Proof Assuming that K keys generate a perfect hash trie map, i.e., all internal
hash levels have E children, all leaves are at the same level and all bucket
entries in the leaves are referring to different keys, then the total number of

hashes is given by T =
∑H

h=0 E
h = EH+1−1

E−1 , where H is the height of the hash

trie map. On the other hand, the number of leaves is given by L = EH , and
since each key is associated to a bucket entry in the leaves, then K = E ∗ L,
which means that T can be rewritten as T = K−1

E−1 ≈
K
E . ut

Lemma 4 Given a fixed number E of bucket entries per hash level and an
overall number K of keys inserted in the hash map, the time complexity (av-
erage depth) on the number of hashes traversed is O(logE K).

Proof Assuming that K keys generate a perfect hash trie map, i.e., all internal
hash levels have E children, all leaves are at same level and all bucket entries
in the leaves are referring to different keys, then the total number of leaves
L is given by L = EH ⇔ H = logE L, where H is the height of the hash
trie map. On the other hand, since each key is associated to a bucket entry
in the leaves, K = E ∗ L⇔ L = K

E , which means that H can be rewritten as

H = logE
K
E = logE K − logE E = logE K − 1 ≈ logE K. ut

6 Performance Analysis

This section presents experimental results comparing our design with other
state-of-the-art concurrent hash map designs. The environment for our exper-
iments was a SMP system based in a NUMA architecture with 32-Core AMD
Opteron (TM) Processor 6274 (2 sockets with 16 cores each) with 32GB of
main memory, running the Linux kernel 3.18.x86 64 with OpenJDK’s JDK-
13.0.1. Although our design is platform independent, we have chosen to make
its first implementation in Java, mainly for two reasons: (i) rely on Java’s
garbage collector to reclaim unreachable data structures; and (ii) easy com-
parison against other hash map designs.

For the experiments, we developed an open source benchmarking envi-
ronment that contains different benchmark sets with randomized operations,
where each set has a pre-defined ratio of the most used operations in hash-
maps: (i) insertion of items; (ii) searching for items; and (iii) removal of items.
To spread threads among a set S of operations, we equally divide the size of
S by the number T of running threads and allow each thread to run S

T ran-
domized operations, such that all threads execute a similar ratio of operations.
To support scalable and non concurrent random number generation on each
thread, we used JVM’s ThreadLocalRandom. Additionally, we configured the
benchmarking environment to run an initial setup, where some (or all) keys in
the set I = {0, ..., 88 − 1} are pre-inserted in the hash-map design, and then
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we measure the execution time of running 1, 4, 8, 16, 24 and 32 threads, with
88 (16,777,216) operations for random keys in set I. To measure the execution
times, we ran each benchmark 5 times beforehand to warm-up the JVM, and
then we took the average execution time of the next 10 runs.

In the next two subsections, we focus in understanding the overheads and
the benefits of the elasticity mechanism. To do so, we will be comparing the
FFPS and FFPE designs in worst-case and best-case scenarios. We ran both
designs with 8 buckets entries per hash level, a threshold value of 2 chain
nodes for the hash collisions, and implementing sorted keys. Finally, in the
last subsection, we focus in comparing our design against other state-of-the-
art concurrent hash map designs.2

6.1 Elasticity Overheads

We begin with a set of benchmarks specifically designed to show the behavior
of elasticity in extreme situations. To do so, within the setup stage, we pre-
inserted all 88 keys in set I and then we measured the execution time that
both designs take to: (i) search for all keys; and (ii) remove all keys.3 Figure 7a
shows the execution time, in milliseconds, for both benchmarks and designs.

The Search All benchmark (dashed lines) shows that elasticity has a negli-
gible or no cost when the remove operation is not being used. Remember that
only the remove operation triggers the hash compression process.

On the other hand, the Remove All benchmark (solid lines) shows slight
differences caused by the hash compression process. With one thread, there
is an overhead of 12% (on average, FFPS executes in 65,431 ms and FFPE
in 73,048 ms), but with 4 threads both designs have almost the same execu-
tion time. As we increase the number of threads, the difference between both
designs remains quite stable, ending with a 14% overhead for 32 threads (on
average, FFPS executes in 25,649 ms and FFPE in 29,167 ms). Given the
number of remove operations in this benchmark, we argue that these are very
acceptable results. Note that the compression process is also running in situ-
ations where the hash levels may not be empty and in situations where more
than one thread is trying to compress the same hash level.

Additionally to the execution time, we measured the number of hashes
successfully compressed with different number of threads launches (including
the base execution with one thread) and, in general, the number of hashes
compressions was quite similar, i.e., in almost all thread launches, the number
of empty hashes at the end of execution (not compressed hashes) was zero or
closer to zero, as expected by Lemma 3 and Lemma 4.

2 The designs and the benchmarks are available at https://github.com/miar/ffpe
3 Since we are using 8 bucket entries per hash level, all chain nodes will be located in a

hash level with depth 8.



A Lock-Free Compression-based Elastic Mechanism for a Hash Trie Design 21

6.2 Elasticity Benefits

(a) Elasticity overheads in worst-case scenario

(b) Elasticity benefits in best-case scenario

Fig. 7: Elasticity overheads and benefits

Again, within the setup stage,
we pre-inserted all 88 keys in
set I but then we also re-
move them, i.e., the FFPS has
all keys removed but keeps
its hash hierarchy unchanged,
while the FFPE design has all
keys and hashes removed (ex-
cept the root hash). We then
measured the execution time
that both designs take to: (i)
search for all keys; and (ii)
reinsert all keys. Figure 7b
shows the execution time, in
milliseconds, for both bench-
marks and designs.

The Search All benchmark
(dashed lines) shows the poten-
tial benefits of the FFPE de-
sign. With one thread, FFPE
is about 15 times faster than
FFPS (on average, FFPS exe-
cutes in 23,607 ms and FFPE
in 1,548 ms). This difference
reflects the fact that FFPS has to traverse paths of hash levels with depth
8 to verify that a key is missing, while FFPE only needs to consult the root
hash level. As we increase the number of threads, the memory caches becomes
more efficient and FFPS is able to reduce its difference. However, with 32
threads, FFPE is still about 4 times faster than FFPS (326 ms and 1,253 ms,
respectively).

Memory cache effects are really important to understand these results.
Remember that we are generating random keys in set I. We have also ex-
perimented with sequential keys, i.e., search for keys sequentially instead of
randomly, and, in that case, the gains obtained with elasticity were almost ne-
glectable (sequential keys traverse the same hashes, making it an ideal scenario
for memory caches).

For the Reinsert All benchmark (solid lines), one can observe that the
results seem to be consistent with the results from the previous benchmark.
The execution times are higher because this benchmark requires reinserting all
keys. With one thread, FFPE is about 2 times faster than FFPS (on average,
FFPS executes in 59,758 ms and FFPE in 30,582 ms) and, as we increase
the number of threads, the difference consistently increases, such that with 32
threads, FFPE is about 4 times faster than FFPS (4,965 ms and 18,355 ms,
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respectively). This shows that elasticity is a good strategy even if we have to
reinsert hashes when reinserting keys.

In summary, elasticity effectively improves the performance of the search
operation, because it adjusts the number of levels in a path to match the
current demand as stated by Lemma 3 and Lemma 4. The search operation
is the backbone procedure of both insert and remove operations, since to in-
sert or remove something, the search operation must be executed first. Our
experimental results show that, by reducing the number of hash levels to be
traversed, we are able to significantly improve the execution time of the search
operation. And, by doing so, we argue that the overheads of elasticity are in-
significant when compared to its benefits.

6.3 Comparison Against Other Designs

This subsection presents experimental results comparing our design against
other state-of-the-art hash map designs, namely the Concurrent Skip-Lists
(CSL) from the Java’s concurrency package and the Concurrent Tries (CT)
as proposed by Prokopec et al..

Here, our initial setup creates an even distribution of keys by the different
hash level depths, such that, each remove, search and insert operation has an
equal probability of 1

8 of traversing a path with depth d (1 ≤ d ≤ 8). To do
so, we begin by inserting all 88 keys in set I and then we remove 88 − 87 of
those keys, leaving the hash map with 87 (2,097,152) keys evenly distributed
by the 8 hash level depths. We then measured the execution time that all
designs take to run different benchmark sets with different pre-defined ratios
of remove, search and insert operations.

Table 2 presents the execution time results and speedups obtained when
running the CSL, CT, FFPS and FFPE designs on eight benchmark sets with
different ratios of concurrent remove, search and insert operations for 1, 4,
8, 16, 24 and 32 threads.4 The 1st and 2nd benchmarks perform only search
and insert operations, respectively. The 3rd benchmark splits the remove and
search operations in half, and the 4th benchmark, splits evenly the ratios of
the operations. The remaining benchmark sets aim to provide a more detailed
perspective of the behavior of the designs as we decrease the weight of the
remove operations. The 5th benchmark has 40% remove operations, while the
6th benchmark has 20%. The 7th and 8th benchmarks only have 10% remove
operations but differ on the search and insert ratios.5

4 We are not including memory usage results since we were not able to obtain meaningful
results from JVM about the memory footprints of the several designs. We used the formula
‘Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()’ but the re-
sults obtained were not accurate, with no good reasons to have big differences across the
different runs of the same design.

5 The approximated number of keys in the data structures at the end of each benchmark
is approximated by the expression 88 ∗ (RS + RI), where RS and RI are the ratios of the
keys searched and the keys inserted, respectively, described in each benchmark.
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Table 2: Execution time (average of 10 runs), in milliseconds, and speedup
ratio (against one thread) for running the CSL, CT, FFPS and FFPE designs
with 1, 4, 8, 16, 24 and 32 threads, on 8 benchmarks with different ratios of
concurrent remove, search and insert operations

#
Execution Time (ETp ) Speedup Ratio (ET1

/ETp )
CSL CT FFPS FFPE CSL CT FFPS FFPE

1st – remove: 0% search: 100% insert: 0%
1 54,850 14,720 25,529 9,511
4 15,221 4,293 6,650 2,154 3.60 3.43 3.84 4.42
8 7,825 2,093 3,021 1,282 7.01 7.03 8.45 7.42
16 4,807 1,251 1,804 859 11.41 11.77 14.15 11.07
24 4,773 990 1,448 733 11.49 14.87 17.63 12.98
32 4,428 904 1,570 631 12.39 16.28 16.26 15.07
2nd – remove: 0% search: 0% insert: 100%
1 100,033 36,781 48,321 31,666
4 30,646 11,740 16,992 9,265 3.26 3.13 2.84 3.42
8 16,089 7,119 11,048 5,537 6.22 5.17 4.37 5.72
16 9,903 5,341 9,983 3,871 10.10 6.89 4.84 8.18
24 9,191 4,980 9,083 3,691 10.88 7.39 5.32 8.58
32 8,636 4,838 9,177 3,923 11.58 7.60 5.27 8.07
3rd – remove: 50% search: 50% insert: 0%
1 52,188 16,008 25,874 9,801
4 15,656 4,699 6,552 2,444 3.33 3.41 3.95 4.01
8 8,544 2,399 3,263 1,480 6.11 6.67 7.93 6.62
16 5,591 1,524 2,023 1,108 9.33 10.50 12.79 8.85
24 5,274 1,280 1,415 945 9.90 12.51 18.29 10.37
32 5,188 1,344 1,768 952 10.06 11.91 14.63 10.30
4th – remove: 33% search: 33% insert: 33%
1 77,543 23,910 35,272 24,115
4 25,418 7,116 8,354 6,681 3.05 3.36 4.22 3.61
8 13,811 4,163 4,785 3,776 5.61 5.74 7.37 6.39
16 9,093 3,038 3,131 2,518 8.53 7.87 11.27 9.58
24 7,974 2,681 2,918 2,484 9.72 8.92 12.09 9.71
32 8,444 2,552 3,038 2,428 9.18 9.37 11.61 9.93
5th – remove: 40% search: 40% insert: 20%
1 76,120 21,843 30,589 21,690
4 23,187 6,414 7,700 5,685 3.28 3.41 3.97 3.82
8 12,511 3,515 3,980 3,156 6.08 6.21 7.69 6.87
16 7,875 2,386 2,629 1,998 9.67 9.15 11.64 10.86
24 7,906 2,209 2,452 1,779 9.63 9.89 12.48 12.19
32 7,027 2,200 2,333 1,791 10.83 9.93 13.11 12.11
6th – remove: 20% search: 40% insert: 40%
1 82,145 25,061 34,771 26,087
4 25,789 7,859 8,620 6,972 3.19 3.19 4.03 3.74
8 13,898 4,373 4,865 3,915 5.91 5.73 7.15 6.66
16 8,659 3,047 3,441 3,043 9.49 8.22 10.10 8.57
24 8,514 2,877 3,144 2,694 9.65 8.71 11.06 9.68
32 6,854 2,773 3,096 2,385 11.98 9.04 11.23 10.94
7th – remove: 10% search: 70% insert: 20%
1 72,679 21,071 29,106 21,418
4 22,452 6,305 7,564 5,598 3.24 3.34 3.85 3.83
8 11,990 3,358 4,039 2,993 6.06 6.27 7.21 7.16
16 7,872 2,217 2,560 1,954 9.23 9.50 11.37 10.96
24 7,265 2,097 2,297 1,617 10.00 10.05 12.67 13.25
32 7,426 1,913 2,234 1,581 9.79 11.01 13.03 13.55
8th – remove: 10% search: 10% insert: 80%
1 99,995 35,118 41,598 31,841
4 30,840 10,144 12,984 8,525 3.24 3.46 3.20 3.74
8 16,332 6,255 8,853 5,315 6.12 5.61 4.70 5.99
16 9,698 4,867 6,852 4,008 10.31 7.22 6.07 7.94
24 8,898 4,255 6,291 3,820 11.24 8.25 6.61 8.34
32 8,519 3,990 6,191 3,847 11.74 8.80 6.72 8.28
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For the 1st benchmark (remove: 0% search: 100% insert: 0%), the CSL
design shows the worst results with an execution time of 54,850 ms and, as we
increase the number of threads, it keeps a higher execution time when com-
pared to the other designs. As expected, FFPE is by far better than FFPS, and
it is also the best, performing also better than CT. FFPE maintains a steady
difference to CT even when we increase the number of threads. Both have a
similar behavior, their worst execution time is with one thread (9,511 ms and
14,720 ms, respectively), and their best execution time is achieved with 32
threads (631 ms and 904 ms, respectively).

For the 2nd benchmark (remove: 0% search: 0% insert: 100%), again, CSL
is the design with the worst results, having an execution time of 100,033 ms.
However, as we increase the number of threads, CSL is able to revert the dif-
ference to FFPS (the second worst) reaching, with 32 threads, an execution
time of 8,636 ms against 9,177 ms, respectively. On the other hand, FFPE is
still the design with the lowest execution time in all thread launches, it exe-
cutes in 31,666 ms with one thread, and keeps decreasing, as we increase the
number of threads, until it reaches the best execution time with 24 threads,
performing 3,691 ms. FFPE is immediately followed by CT that is able to ap-
proach the FFPE execution time with 32 threads (4,838 ms against 3,923 ms,
respectively).

For the 3rd benchmark (remove: 50% search: 50% insert: 0%), CSL is still
the design with the worst performance, having an execution time of 52,188 ms
and it is not able to reduce the difference to the other designs as we increase
the number of threads. Additionally, FFPE has again the best performance
in all thread launches, having an execution time of 9,801 ms and 952 ms for
1 and 32 threads, respectively.

For the 4th benchmark (remove: 33% search: 33% insert: 33%), CSL con-
tinues to show the worst results, having an execution time of 77,543 ms, and
it is not able to approach the performance of the remaining designs, as we
increase the number of threads. FFPE has again the best execution time,
reaching its best with 32 threads (execution time of 2,428 ms). FFPE has
a better execution time than FFPS, but it is immediately followed by CT.
The differences are so tight that, with one thread, are almost the same, CT
achieves an execution time of 23,910 ms against 24,115 ms. However, CT loses
the best performance to FFPE in all remaining thread launches. The biggest
difference between both designs is achieved with 16 threads, where CT has an
execution time of 3,038 ms against 2,518 ms for the FFPE design.

For the remaining benchmarks (5th to 8th), it is interesting to notice that
FFPE costs with the remove operation are pretty much compensated by the
benefits with the search operation. Remember that the search operation is
the backbone procedure of both insert and remove operations. FFPE always
achieves the best execution times and, when comparing against CSL, which
also supports sorted keys, FFPE executes in much less time in all benchmarks,
with differences being quite significant, in general. Concerning the overall com-
parison between the FFPS and FFPE designs, the values in the Table 2 show
that FFPE outperforms FFPS in all configurations, which clearly demon-
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strates the potential of the elasticity support and the advantages of the FFPE
design in terms of execution time when compared to FFPS.

For the speedups, one can observe a similar tendency in all benchmarks.
FFPS seems to scale better for the benchmarks that have a higher ratio of
searches (as a result of the memory cache effects discussed in Subsection 6.2),
while FFPE seems to scale better for the benchmarks that have a higher
ratio of inserts. In any case, since FFPS starts from higher execution times
with one thread, it has more space to achieve better speedups. In general, one
can observe that all designs seem to have scalability problems, once the best
speedup of all experiments is only 18.29 (obtained for the FFPS design with
24 threads on the 3th benchmark). To better understand these results, one
must remember that the environment for our experiments was a 2 sockets - 16
cores SMP/NUMA based architecture. A SMP system is a share everything
system where multiple processors are working under the supervision of a single
operating system and all processors access memory using a common bus or
inter-connect path. This means that, as we increase the number of processors
in the computation, the bus becomes overloaded which can result in a per-
formance bottleneck. NUMA tries to mitigate the burden of the main bus by
adding intermediate levels of memory shared among some of the processors so
that several data accesses do not need to travel on the main bus. However, on
applications that have irregular data requests, as the benchmarks that we are
using in these experiments, the efficiency of the intermediate levels of memory
is lower and in some situations can even have a negative impact in the perfor-
mance.6 As such, in this benchmark environment, the speedups of all designs
show a similar tendency in all designs, with some advantage to CSL when the
ratio of inserts is higher and to FFPE and CT when the ratio of searches is
higher. In any case, since, in general, FFPE starts from lower execution times
with one thread, the other designs have more space to achieve better speedups.

In summary, our novel FFPE design showed to be an excellent alternative
to the other state-of-the-art hash map designs. In general, the FFPE speedups
are in line with the competition, but the execution times are, most times,
significantly lower than the remaining designs. Moreover, the FFPE design
supports multiple features that are not supported by their competitors. Two
good examples are the support for sorted keys feature (not supported by CT ),
which implements non-exact match queries, such as, finding all keys in a given
interval, and the support for elasticity (not supported by CSL and FFPS ),
which optimizes memory resources to the current demand.

7 Conclusions and Further Work

We have presented a novel, scalable and elastic hash map design that fully sup-
ports the concurrent search, insert, remove, expand and compress operations.
To the best of our knowledge, this is the first concurrent hash map design that

6 SMP/NUMA bottlenecks are analyzed in detail in Drepper’s work [11].
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puts together being lock-free, using fixed size data structures with persistent
memory references, sorted keys and be elastic, which we consider to be char-
acteristics that have the best trade-off between performance, correctness and
computational environment independence.

Experimental results show that elasticity overheads are largely overcome
by its benefits and that it effectively improves the search operation, and, by
doing so, our design became very competitive, when compared against other
state-of-the-art designs implemented in Java. FFPE was able to achieve better
execution times than CT and CSL, in almost all scenarios, and, for some thread
launches, the differences are very significant. This is quite an accomplishment
if we consider that CT is native in Scala (runs on top of JVM) and CSL is
native in Java’s concurrency package.

As further work, we plan to use real world scenarios widely-used in the
community, such as, YCSB A-F workloads, Facebook or Twitter synthetic
memcached, and compare our design against other designs, such as, the Elastic
Cuckoo Page Tables design proposed by Skarlatos et al. [33]. We also plan to
extend our design to support snapshots, which will allow the usage of iterators
like in CTries, and create an extensive user-interface that allows users to do
non-exact match queries using iterators.
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