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Abstract

Hash maps are a widely used and efficient data structure for storing and accessing data
organized as key-value pairs. Multithreading with hash maps refers to the ability to concur-
rently execute multiple lookup, insert, and delete operations, such that each operation runs
independently while sharing the underlying data structure. One of the main challenges in
hash map implementation is the management of collisions. Arguably, separate chaining is
among the most well-known strategies for collision resolution. In this paper, we present
a comprehensive study comparing two common approaches to implementing separate
chaining—linked lists and dynamic arrays—in a multithreaded environment using a lock-
based concurrent hash map design. Our study includes a performance evaluation covering
parameters such as cache behavior, energy consumption, contention under concurrent ac-
cess, and resizing overhead. Experimental results show that dynamic arrays maintain more
predictable memory access and lower energy consumption in multithreaded environments.

Keywords: hash maps; concurrency; performance evaluation

MSC: 68W10

1. Introduction
Hash maps [1] are widely valued for their nearly constant average-case time complex-

ity of O(1) for insertion, deletion, and lookup operations. As a result, they play a crucial role
in a broad range of applications, including symbol tables [2], dynamic programming [3],
and database indexing mechanisms [4]. A key aspect of hash map design is the management
of collisions. Separate chaining [5,6] is a widely adopted strategy for collision resolution,
typically implemented using either linked lists or dynamic arrays. Both approaches can be
elastic enough to accommodate an unbounded number of collisions.

Concurrent hash maps aim to retain the advantages of their non-concurrent counter-
parts while ensuring correctness and high performance in multithreaded environments [7].
In particular, a good collision management strategy is vital under concurrent hash map
designs [8]. Traditional synchronization approaches rely on varying levels of lock granu-
larity, ranging from coarse-grained to fine-grained locking. The choice of synchronization
has a significant impact on performance, particularly under high contention and work-
loads with frequent insertion, deletion, and lookup operations. Performance evaluation
of concurrent hash maps typically focuses on throughput, latency, and scalability. Com-
mon metrics include operations per second, speedup relative to sequential baselines, and
contention overhead. In addition, energy efficiency has become an increasingly impor-
tant metric, particularly on architectures with deep memory hierarchies and non-uniform
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memory access patterns. In particular, recent studies have started to explore the energy
profiles of data structures under concurrent workloads, aiming to better understand how
the irregular data accesses in concurrent hash maps can significantly impact the energy
consumption of memory operations [9]. However, to the best of our knowledge, there is no
comprehensive study that performs an in-depth comparison between separate chaining
mechanisms, linked list-based and dynamic array-based, within a context of a lock-based
concurrent hash map design. Despite their widespread use, the trade-offs between these
two approaches—particularly in terms of energy, cache behavior, contention under concur-
rent access, and resizing overhead—remain largely unexplored.

The remainder of this paper is organized as follows. We begin by introducing the
necessary related work and background, and provide an overview of the two separate
chaining approaches that were used in this work. Next, we provide a detailed description
of the key algorithms we implemented from scratch to facilitate the reproduction of our
work by others. We then present a comprehensive experimental study designed to evaluate
the performance of both approaches. To this end, we employ measurement tools such as
Intel’s Running Average Power Limit (RAPL) [10,11] and Linux performance counters [12]
to quantify relevant metrics, with particular emphasis on analyzing the energy and cache
performance trade-offs. Finally, we conclude by summarizing our contributions and
outlining potential directions for future work.

2. Background
Green software has emerged as an important area of research, as modern systems

increasingly prioritize not only performance but also energy efficiency [13–15]. In the
context of data structures, energy evaluation has been approached from both theoreti-
cal and empirical perspectives. On the theoretical side, energy-aware algorithmic cost
models formalize how computation, memory access, and communication contribute to
energy complexity [16]. On the practical side, studies on performance and energy often
rely on specialized tools and libraries, such as Linux’s profiling support with hardware
performance counters [12] and Intel’s Running Average Power Limit (RAPL) interface [10].
Both provide good estimations with sufficiently low overhead, making them suitable for
profiling concurrent (multithreaded) environments [11].

Concurrent hash map data structures represent a significant area of research due
to the challenges of maintaining both performance and consistency under concurrent
access. For example, Maier et al. [8] performed an extensive experimental study comparing
their implementations against six widely used concurrent hash maps. Other studies have
explored synchronization strategies to address these challenges, including lock-based, lock-
free, and wait-free approaches. Notable examples include the following: (i) the wait-free
resizable hash map by Fatourou et al. [17]; (ii) DHash, a dynamic hash map enabling on-the-
fly scaling by Wang et al. [18]; (iii) Ctries, a tree-based structure with efficient updates and
snapshot support, proposed by Prokopec et al. [19]; (iv) the split-ordered lists introduced
by Shalev and Shavit, which enables lock-free incremental resizing of hash maps [20]; and
(v) Malakhov’s description of Intel’s concurrent hash map implementation in the Threading
Building Blocks (TBB) library [21].

In addition, specialized concurrent hash map designs target specific real-world ap-
plications. Examples include the following: (i) concurrent cuckoo hashing optimized
for networking scenarios [22]; (ii) concurrent hash maps designed for data stream pro-
cessing [23]; and (iii) Red Hat’s fast, dynamically resizable concurrent hash map, which
emphasizes both safety and performance [24].

One of the main challenges in any hash map implementation is the management of
collisions, which occur when different keys are mapped to the same bucket. The mapping



Mathematics 2025, 13, 2820 3 of 19

between a key K and a value V is provided by a hash function, which deterministically
maps K to a specific index (or bucket) within an array-based structure. This bucket indicates
the location where the corresponding value V is stored. Common strategies for collision
resolution include open addressing and closed addressing.

In open addressing, values are stored in the hash map itself and locations within
the array structure are systematically probed to resolve collisions [5,6]. A variety of open
addressing schemes—such as linear probing, quadratic probing, cuckoo hashing, hopscotch
hashing—offer different trade-offs in terms of performance and cache locality. While open
addressing is attractive in terms of memory overhead, it can suffer from clustering, which
requires careful tuning of the load factor (the ratio of stored elements to available buckets)
to maintain performance [6,25–27].

In contrast, closed addressing approaches, such as separate chaining, resolve collisions
by associating each bucket with a secondary data structure that stores multiple values
corresponding to colliding keys. Separate chaining remains effective under moderate-
to-high load factors, but it introduces additional memory overhead and may degrade
performance when chains grow long [6].

When implementing separate chaining, two common data structures are linked lists
and dynamic arrays. Linked lists offer stable performance (linear complexity under key
collisions), but they tend to scale poorly on modern hardware architectures—characterized
by load/store execution models and multi-level caches—due to poor spatial locality. Linked
list nodes are not stored contiguously in memory, and pointer dereferencing incurs frequent
cache misses. This issue is well documented, and one can find multiple attempts in the
literature to mitigate it. For example, Zobel and Askitis explored contiguous-node and
array-based collision chains for strings, demonstrating substantial gains in both time and
cache-miss rates [28]. They also developed advanced hybrid data structures, such as
HAT-tries, which blend hash buckets and arrays for caching efficiency [29].

Dynamic arrays also mitigate this problem to some extent by offering better spatial
locality and cache performance. However, they introduce additional complexity in resizing
and shifting operations, particularly as the number of elements grows or when insertions
are highly interleaved with lookup and delete operations [30,31].

We refer to the dynamic growth characteristic of separate chaining approaches as
horizontal expansion. In contrast, when the load factor exceeds a predefined threshold, a
vertical expansion occurs, involving the allocation of a new, larger array of buckets (often
sized to a prime number or a power of two), followed by the rehashing of all existing keys.
Although vertical expansion incurs significant cost during the reallocation and rehashing
process, this overhead is amortized over time, enabling the hash map to maintain constant
average-case time complexity in the long run.

In concurrent environments, a major challenge is maintaining both correctness and
performance during the vertical and horizontal expansions. This requires careful synchro-
nization to prevent other threads from reading or writing while buckets are being expanded.
Common strategies include double-buffering, where a new hash map is constructed in par-
allel and buckets are migrated one by one; and incremental expansion, where the rehashing
is performed gradually as threads access individual buckets [8,20,21,32].

3. Separate Chaining Designs by Example
This section outlines the design choices behind our concurrent hash map implemen-

tation of the two alternative separate chaining approaches for collision resolution. Both
approaches share the same underlying structure of a hash array of buckets and differ only
in how the chaining mechanism is implemented.
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3.1. Linked Lists

We begin by presenting the key aspects of the linked list approach. Figure 1 illustrates
a simple example of how concurrent insertion is handled in this context. The figure depicts
the standard hash map configuration, which is formed by a header structure that stores
common information, such as the number of bucket entries or the number of key-value
pairs currently stored in the hash. It is also formed by a bucket array of entries, where each
bucket contains a lock field L and a pointer reference. A bucket entry begins with a Null
reference, and during execution it can store either a reference to a second hash level, if the
current hash has been (vertically) expanded, or a reference to a chain of nodes representing
hash collisions for that entry.

K1 K2
bucket
entries K1K1

(b) (c)

LBk

Header

...

...

LBk

Header

...

...

LBk

Header

...

...

(a)

Figure 1. Concurrent insertion with linked lists.

Figure 1a shows that Bk represents a particular bucket entry that already contains
a node with key K1. For simplicity, only the keys are shown in the figures. Figure 1b
shows the hash configuration before inserting a new node in Bk, which requires acquiring
the lock for the bucket (represented by the black background). Figure 1c shows the hash
configuration after inserting node K2 in Bk and before releasing the lock. New nodes are
inserted at the end of the chain. Each node contains a reference to the next node in the chain
and the last node contains a Null reference. When the number of nodes in a chain reaches
a given threshold, the hash map is checked for vertical expansion. If the total number of
nodes stored in and registered with the hash header exceeds a predefined load factor, the
hash map expands to a second hash level. Figure 2 shows how nodes are concurrently
expanded to a second hash level.

...
Header

(a) (b)

LBm

LBn

...

...

K1 K2

Header

...

...

LBk

K1

K2

Header

...

...

LBk

...
Header

LBm

LBn

...

...

Figure 2. Concurrent vertical expansion with linked lists.

The thread responsible for performing vertical expansion begins by allocating a new
hash level with twice the number of bucket entries. It then iterates over all buckets in the
original array to rehash and redistribute the existing keys into the new level. For each
bucket, the thread acquires the corresponding lock and transfers the chain nodes, one by
one, to the appropriate buckets in the new hash. Figure 2a illustrates the configuration after
acquiring the lock on bucket Bk, but before moving nodes K1 and K2 to the new hash level.
Figure 2b shows node K1 being moved to bucket Bm and node K2 to bucket Bn in the new
level. Once all nodes have been moved, bucket Bk is updated to reference the new hash
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level, indicating that future operations on Bk should be performed at the new level from
this point onwards.

Once all buckets have been processed, the global entry point of the hash map is
also updated to reference the new hash level, ensuring that all subsequent operations are
performed on the new level.

Regarding the deletion operation, it also begins by acquiring the lock for the corre-
sponding bucket. The chain is then traversed in search of the target key to be deleted. If
a node N containing the key is found, N is deleted from the chain, the chain is updated
accordingly, and N is subsequently freed.

3.2. Dynamic Arrays

For the dynamic array approach, we also begin with a simple example that illustrates
how concurrent insertion works, as shown in Figure 3. This figure depicts the same hash
map structure as before. As with linked lists, each bucket entry initially contains a Null
reference. During execution, this reference may be updated to point either to a second hash
level or to a dynamic array representing hash collisions for that entry. In addition, bucket
entries in this approach include two numeric fields: one indicating the size of the dynamic
array (zero if no array is allocated), and another representing the number of elements stored
in it.

bucket
entries K1LBk

Header

...

...

(a)

2
2 K2 K1LBk

Header

...

...

(c)

4
3 K2 K3 --K1LBk

Header

...

...

(b)

2
2 K2

K1 K2

Figure 3. Concurrent insertion with dynamic arrays.

Figure 3a illustrates a bucket entry Bk that already contains a fully allocated dynamic
array of size 2, storing keys K1 and K2. Figure 3b shows the hash map configuration just
before inserting a new key K3, which requires acquiring the lock for that bucket. Finally,
Figure 3c depicts the configuration after inserting K3 into Bk and before releasing the lock.
Since the original array was full, a new array with double the capacity (size 4 in this
example) had to be allocated (horizontal expansion). The existing elements were copied
into the new array, key K3 was inserted, and the old array was then released. As before,
when the number of elements in a dynamic array reaches a predefined threshold, the hash
map checks whether vertical expansion is necessary. Figure 4 illustrates how concurrent
vertical expansion is handled with dynamic arrays.

...
Header

(a) (b)

Bm

Bn

...

...

K1LBk

Header

...

...

4
3 K2

L
0
0

L
0
0

LBk

Header

...

...

0
0

...
Header

Bm

Bn

...

...

L
2
1

L
2
2

K3 --

K1 --

K2 K3

Figure 4. Concurrent vertical expansion with dynamic arrays.
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Figure 4a shows the configuration after acquiring the lock on bucket Bk and before
moving keys K1, K2, and K3 to the new hash level. Figure 4b illustrates key K1 being moved
to bucket Bm, while keys K2 and K3 are moved to bucket Bn in the new hash level. Once all
keys have been moved, Bk is updated to reference the new hash level.

Finally, the deletion operation also begins by acquiring the lock for the bucket and
searching for the target key K to be deleted. If K is found in the dynamic array, the last
element of the array is copied into K’s position, and the element count is decremented
by one. It is important to note that the dynamic array is not deallocated, even when the
number of stored elements reaches zero.

3.3. Optimizations

As mentioned earlier, vertical expansion is triggered when the total number of ele-
ments recorded in the hash header exceeds a predefined load factor. Since this count can
change with every insertion or deletion, frequent updates to the shared counter may cause
significant contention under high thread concurrency. To reduce this overhead, each thread
maintains a local counter to track its own successful insertions and deletions, updating the
shared counter only after a fixed number of local operations. We refer to this optimization
as delayed updates.

Moreover, for vertical expansion, we adopt a double-buffering strategy in which a
new hash map is built in parallel and the buckets are migrated one by one. To accelerate
this process, we implement a form of incremental rehashing where non-expanding threads
assist by relocating individual buckets as they access them. We refer to this optimization as
cooperative expansion. Note that this optimization is triggered specifically during the insert
operation, when a thread accesses a bucket in a hash map that is currently expanding. At
that point, the thread migrates any pre-existing elements into the new hash map before
completing its initial task. Through empirical experimentation, we observed that the time
required to migrate a bucket during an insert operation is negligible compared to the posi-
tive impact on performance obtained by this optimization. To mitigate contention between
the expanding thread and the helper threads, our approach uses power-of-two hash sizes
along with a simple bit-wise modulo hashing function, such that elements from a given
bucket in the old hash can only relocate to two possible positions in the new hash. In
practice, this means that a thread expanding a bucket will be the only thread using the
two relocation options, effectively eliminating competition among threads for the same
buckets in the new hash.

4. Algorithms
We now present the algorithms that detail the core mechanisms of our two ap-

proaches, which we fully implemented from scratch. We begin with Algorithm 1, which
provides the pseudo-code for inserting a given (K, V) pair into a hash map H. Briefly,
the InsertOnHash() algorithm begins by computing the hash of key K to determine the
appropriate bucket B within hash level H (line 1). It then attempts to acquire exclusive
access to bucket B (line 2) and reads the current reference R stored at that location (line 3).
If R indicates that B has already been expanded into a second hash level, the algorithm
recursively invokes itself on that new hash level (lines 4–7).

Otherwise, the algorithm checks whether the hash level H is currently being expanded
by another thread to a new hash level, nextH. If so, the current thread assists by expanding
the current bucket B into nextH using the AdjustBucket() procedure (lines 8–13). After
the expansion, it updates B to reference nextH and recursively calls itself on the new hash
level. The MaskAsHashRe f () procedure (line 11) applies a bitmask to mark a reference as
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pointing to a hash structure, while the corresponding UnmaskHashRe f () procedure (line 5)
removes this marker to retrieve the original reference.

Algorithm 1 InsertOnHash(hash H, key K, value V)

1: B← Bucket(H, Hash(K, Size(H)))

2: Lock(Mutex(B))

3: R← EntryRe f (B)

4: if IsHashRe f (R) then ▷ R refers to a second hash level

5: nextH ← UnmaskHashRe f (R)

6: Unlock(Mutex(B))

7: return InsertOnHash(nextH, K, V)

8: else if IsHashExpanding(H) then ▷ Cooperative expansion

9: nextH ← NextHash(H)

10: AdjustBucket(B, nextH)

11: EntryRe f (B)← MaskAsHashRe f (nextH)

12: Unlock(Mutex(B))

13: return InsertOnHash(nextH, K, V)

14: else

15: N ← InsertOnBucket(B, K, V)

16: Unlock(Mutex(B))

17: return N

18: end if

If no expansion has been performed or is in progress, the algorithm proceeds to
safely insert (K, V) into bucket B. This is achieved by invoking the auxiliary procedure
InsertOnBucket(), which returns the updated number of key-value pairs in the bucket
upon a successful insertion, or 0 if insertion fails (lines 15–17).

The InsertOnBucket() procedure, shown in Algorithm 2, assumes that the separate
chaining mechanism uses linked lists. To keep the discussion concise, the array-based
version is omitted; however, it is expected that the reader can easily grasp it. Conversely,
for the delete procedure in Algorithm 3, we provide the pseudo-code for the array-based
implementation and omit the version based on linked lists.

The InsertOnBucket() algorithm begins by initializing a counter S to track the number
of key-value pairs in the bucket (line 1). If the bucket is empty, a new node representing the
pair (K, V) is allocated and initialized (lines 2–3). Otherwise, the algorithm enters a search
phase, traversing the chain to locate the pair (K, V) (lines 5–14). If the pair is found, the
procedure returns 0 to indicate that no insertion was performed (lines 7–8). If the pair is
not present, a new node is allocated and appended to the end of the chain (line 15). Finally,
the updated number of key-value pairs in the bucket is returned (line 17).

The deletion algorithm follows a structure similar to that of insertion. The
DeleteOnHash() algorithm begins by checking whether a second hash level exists or if
it can assist in expanding the current bucket entry. In either case, as with insertion, it
recursively calls itself on the next hash level. If no expansion has occurred or is in progress,
the algorithm proceeds to safely delete the given (K, V) pair from bucket B by invoking the
DeleteOnBucket() procedure.

The DeleteOnBucket() algorithm, shown in Algorithm 3, assumes that separate chain-
ing uses dynamic arrays. It starts by checking whether the given bucket B is empty,
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returning false if it is (lines 1–2). Otherwise, it enters search mode, scanning the array A
referenced by B for the target pair (K, V) (lines 4–12). If the pair is found at position A[i],
the array size S is decremented by one; the last element in the array is moved to position
A[i], overwriting the target pair; and the updated size S is stored in B. The algorithm then
returns true to indicate a successful deletion (line 10). If the pair is not found, it returns
false (line 13).

Algorithm 2 InsertOnBucket(bucket B, key K, value V) // for linked lists

1: S← 0 ▷ Size of the bucket chain

2: if EntryRe f (B) = NULL then ▷ Bucket is empty

3: EntryRe f (B)← AllocNewNode(K, V)

4: else

5: R← EntryRe f (B)

6: repeat

7: if Key(R) = K ∧Value(R) = V then

8: return 0 ▷ The pair (K, V) was found

9: else

10: S← S + 1

11: Prev← R

12: R← NextRe f (R)

13: end if

14: until R = NULL

15: NextRe f (Prev)← AllocNewNode(K, V)

16: end if

17: return S + 1

Algorithm 3 DeleteOnBucket(bucket B, key K, value V) // for dynamic arrays

1: if EntryRe f (B) = NULL then ▷ Bucket is empty

2: return False

3: else

4: (A, S)← EntryRe f (B)

5: for i = 0 to S− 1 do

6: if Key(A[i]) = K ∧Value(A[i]) = V then

7: S← S− 1

8: A[i]← A[S]

9: EntryRe f (B)← (_, S)

10: return True

11: end if

12: end for

13: return False

14: end if

Finally, Algorithm 4 presents the pseudo-code for the vertical expansion procedure
applied to a given hash H. Recall that vertical expansion is triggered after a successful
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insertion when both of the following conditions are satisfied: (i) the number of nodes in a
chain reaches a specified threshold; and (ii) the total number of elements recorded in the
hash header exceeds a predefined load factor.

Algorithm 4 VerticalExpansion(hash H)

1: if IsHashExpanding(H) then ▷ Check for ongoing vertical expansion on H

2: return

3: else if TryLock(Mutex(H)) then ▷ Try to do expansion

4: if IsHashExpanding(H) then ▷ Recheck for ongoing expansion on H

5: Unlock(Mutex(H))

6: return

7: end if

8: S← Size(H)

9: NextHash(H)← AllocNewHash(2× S)

10: IsHashExpanding(H)← True ▷ Mark expansion as ongoing on H

11: Unlock(Mutex(H))

12: nextH ← NextHash(H)

13: for i = 0 to S− 1 do

14: B← Bucket(H, i)

15: Lock(Mutex(B))

16: R← EntryRe f (B)

17: if not IsHashRe f (R) then ▷ Not expanded yet

18: AdjustBucket(B, nextH)

19: EntryRe f (B)← MaskAsHashRef(nextH)

20: end if

21: Unlock(Mutex(B))

22: end for

23: end if

To ensure that only one thread performs the hash expansion operation for a given
hash H, the VerticalExpansion() algorithm begins by checking whether an expansion is
already in progress (line 1). If not, it attempts to acquire exclusive access to H (line 3).
After acquiring the lock, it rechecks whether an expansion has started in the meantime
and aborts if that is the case (lines 4–7). Note that if the call to TryLock() fails, the thread
proceeds without blocking and will retry the operation in a subsequent attempt. If access
is successfully granted, the algorithm proceeds to allocate a new hash with double the
size of H, marks H as being in expansion, and then releases the lock (lines 8–11). The
algorithm then iterates over the buckets of H, expanding each bucket B that has not yet
been processed into the new hash nextH using the AdjustBucket() procedure, and updates
B to reference nextH (lines 12–22).

We conclude with Algorithm 5, which presents the AdjustBucket() procedure for
dynamic arrays. The algorithm iterates over the elements of the array A referenced by the
given bucket B, re-inserting each element into the next-level hash H (lines 1–4). Once all
elements have been reinserted, the current array A is deallocated (line 5).
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Algorithm 5 AdjustBucket(bucket B, hash H) // for dynamic arrays

1: (A, S)← EntryRe f (B)

2: for i = 0 to S− 1 do

3: InsertOnHash(H, key(A[i]), Value(A[i]))

4: end for

5: FreeArray(A)

6: return

Finally, Figure 5 presents a consolidated view of the insertion process, illustrating how
the algorithms InsertOnHash(), InsertOnBucket(), and VerticalExpansion() interact. The figure
summarizes the sequence from identifying the correct hash level through recursive restarts,
to detecting duplicates early in order to avoid unnecessary work, and to triggering vertical
expansion when the structural conditions are met.

Figure 5. Execution flow of the insertion process.

5. Experimental Results
The experimental environment was based on a NUMA architecture with an Intel Core

i9-10920X processor with 12 physical cores (24 hyperthreads) running at 3.50 GHz. The
system included 384KiB L1d + L1i (2 × 12 instances), 12MiB L2 (12 instances), 19.3MiB L3
(1 instance), and 251 GB of main memory. It ran the Linux kernel 6.1.140 with GLIBC 2.36
(for the POSIX threads). All programs were compiled with GCC 13.3.0 and linked with the
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jemalloc memory allocator (version 5.3) [33]. To quantify the relevant metrics, particularly
energy and cache performance trade-offs of both approaches, we used Linux’s profiling
tools with performance counters [12] powered by Intel’s Running Average Power Limit
(RAPL) interface [10,11].

5.1. Methodology

To evaluate the performance and energy efficiency of separate chaining mechanisms in
concurrent hash maps, we relied on an existing benchmarking tool, described in detail by
Moreno et al. [34], which has been widely adopted in several recent works [35–37]. This tool
enables the measurement of execution time by setting the following parameters: the number
of threads to use, the total number of operations to execute, and the distribution of insert,
delete, and lookup operations. To ensure that the corresponding key-value pairs exist in the
hash map when required by the delete and lookup operations, the tool implements a setup
stage in which such pairs are pre-inserted into the hash map before benchmarking begins.

To integrate our hash map with the benchmarking tool, we created a support a data
structure that serves as an interface, enabling the tool to control execution and run the
required operations. This support structure maintains a pointer to the current hash map
instance, a lock to protect that pointer, and a header that includes an array of counters used
for bookkeeping as part of the delayed updates optimization. Each thread is assigned a
unique ID, which it uses to access its corresponding entry in the counters array without
requiring locking. Each thread tracks (i) the total number of operations it has executed,
(ii) the number of operations since its last header update, and (iii) the number of elements
to add or subtract from the header when an update is eventually performed.

Although integration was fairly easy, using the total number of operations as an
upper limit proved problematic with vertical expansion. Specifically, this caused running
times to be dominated by a single thread performing the final expansion alone, effectively
executing many operations serially near the end of the benchmark. As a result, increasing
the number of threads resulted in performance degradation, as many threads would finish
progressively earlier. To address these effects and improve fairness across threads, we
implemented a global synchronization mechanism to ensure that all threads started and
completed their operations as simultaneously as possible, minimizing discrepancies in
thread start times and helping ensure a more uniform distribution of work.

The adopted solution proceeds as follows: after launching all threads and signaling
them to begin execution via a shared synchronization flag, the main thread monitors
progress by scanning the counters array. When the main thread detects that any thread has
completed its assigned batch of operations, it resets the shared flag to signal all threads
to stop, and then waits for their termination. Execution time is measured by recording
timestamps immediately before setting the start flag and after signaling the stop condition.
With both the total number of operations and elapsed time performed, throughput can
be accurately computed. This approach allows performance measurement without either
fixing a time limit or depending on the operation count, ensuring fairness and consistency,
especially in insert-heavy workloads.

For our experiments, we designed a set of benchmarks that explores various configu-
rations using 1, 2, 4, 8, 12, 16, and 20 threads. Each benchmark was executed with a fixed
workload of 8,388,608 operations, repeating every configuration 10 times. We measured
execution time, throughput in operations per second (throughput metrics may, in some
cases, reflect the volume of data processed rather than the number of operations; in this
work, the data we are using is always a key/value pair associated with an insertion, lookup,
or delete operation), energy consumption (via Intel RAPL), and, for cache behavior us-
ing perf, we collected statistics on cache-references, cache-misses, L1-dcache-load-misses, and
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LastLevelCache-load-misses. Both implementations were carefully aligned to 64-byte cache
lines to avoid alignment faults, which we verified using perf.

Additionally, preparatory steps, such as the benchmark’s setup stage, were excluded
from execution time, energy consumption, and cache-related metrics. To exclude these
readings, we performed auxiliary runs that measured these parameters just for the setup
stage of each configuration tested. We could then calculate the average for each parameter
for the setup stage and deduct it from the respective full benchmark run. While this method
does not yield perfectly precise results, it was the most practical approach we could find
given the current limitations of the perf tool, which does not natively support partial
measurement of execution intervals.

5.2. Performance Evaluation

To simulate realistic usage patterns, we adopted a methodology inspired by the YCSB
benchmarking framework [38], where each workload scenario is defined by a specific
combination of operation ratios. Specifically, we evaluated both designs under six repre-
sentative workloads: (i) 100% insertions; (ii) 100% lookups; (iii) 80% lookups combined
with 10% insertions and 10% deletions; (iv) 60% lookups combined with 20% insertions
and 20% deletions; (v) 40% lookups combined with 30% insertions and 30% deletions; and
(vi) 100% deletions. These combinations reflect a spectrum of access patterns ranging from
write-heavy to read-dominant workloads, and align with widely adopted experimental
practices in the literature [8,39,40]. Each hash map was further evaluated under load factors
of 3, 5, and 7, resulting in six variants: LL-3, LL-5, and LL-7 for the linked list approach,
and DA-3, DA-5, and DA-7 for the dynamic array approach. For all variants, the initial
size of the hash map was set to 214 (16,384) bucket entries, the local counter for the delayed
updates optimization was fixed at 1000 operations before updating the shared counter,
and the initial array size of the DA approaches (DA-3, DA-5, and DA-7) was fixed at four
elements, ensuring a fair comparison between linked lists and dynamic arrays in terms of
cache alignment.

Figure 6 presents the results for the 100% insertions benchmark, which is useful for
analyzing the impact of both horizontal and vertical expansion. Throughput scales well
with the number of threads for all variants, but dynamic arrays grow more sharply. In
terms of energy consumption, all variants show a steady upward trend, but LL-3 reaches a
peak at 12 threads before dropping, indicating non-linear performance/power behavior.
This can be attributed to LL-3’s poor cache performance at 12 threads, as confirmed by
the remaining figures, which focus on cache-related metrics. LL-5 and LL-7 also show a
change in the performance at 12 threads, but the energy consumption does not decrease
as the remaining variants (this effect may be related to the underlying CPU architecture
and requires further study; note that the host CPU has 12 physical cores and supports
24 hyperthreads). Overall, all linked list variants consistently exhibit higher cache miss
rates across all cache levels compared to their dynamic array counterparts.

Figure 7 presents the results for the 100% lookups benchmark. The highest throughput
is achieved by the DA variants. The LL variants consistently perform worse. As expected,
dynamic arrays benefit from better cache locality, especially under read-heavy workloads
like this one. On the other hand, linked lists suffer from pointer chasing, which leads
to more cache references, poor spatial locality, and consequently higher cache miss rates.
One can observe that LL-7 performs worse than all other variants. Interestingly, LL-3’s
cache performance approaches that of DA-5 and DA-7, when using 20 threads, suggesting
that in this particular benchmark, the negative impact of pointer chasing in LL-3 becomes
negligible at high thread counts.
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Figure 6. Lists vs. arrays—100% insertions.
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Figure 7. Lists vs. arrays—100% lookups.

Next, Figures 8–10 show how results evolve as the proportion of lookup operations
decreases, and the share of insertion and deletion operations increases.
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Figure 8. Lists vs. arrays—80% lookups + 10% insertions/deletions.
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Figure 9. Lists vs. arrays—60% lookups + 20% insertions/deletions.
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Figure 10. Lists vs. arrays—40% lookups + 30% insertions/deletions.

Across these workloads, dynamic arrays consistently outperform linked lists, espe-
cially as the number of threads increases. Dynamic arrays exhibit better scalability, whereas
linked lists, particularly LL-7, lag behind. In terms of energy consumption, dynamic
arrays generally consume less energy, with the gap increasing at higher thread counts.
This suggests that the better spatial locality of arrays reduces both memory and energy
consumption, even when updates occur frequently. Analyzing cache behavior, both figures
show that dynamic arrays have lower cache misses, both L1 data and last-level, compared
to linked lists. This advantage is especially visible in Figure 8, where the high proportion
of lookup operations amplifies the overhead of pointer chasing in linked lists. In particular,
LL-5 and LL-7 have more cache references and misses, likely due to longer chains and
increased memory traversal. In contrast, dynamic arrays store elements contiguously,
reducing memory indirection and improving cache efficiency.

Finally, Figure 11 presents the results for the 100% deleted benchmark. This workload
is particularly interesting because it involves intensive writing activity. Each deletion
operation typically triggers multiple write operations and does not include any struc-
tural expansion. In contrast, all other evaluated scenarios either include expansion
(e.g., insert-heavy workloads) or consist solely of read operations, such as the 100%
searches scenario. The absence of expansion in this case allows us to isolate and better
understand the performance implications of write-heavy workloads independent of
growth-related overhead.
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Figure 11. Lists vs. arrays—100% deletions.

In the 100% deletion benchmark, DA variants consistently outperform their LL coun-
terparts in terms of throughput, especially under high thread counts. The performance
gap becomes more pronounced with increasing concurrency, highlighting the benefits of a
compact memory layout and reduced pointer traversal during write-intensive operations.
Cache analysis further reveals additional insights. DA-based variants generate fewer cache
references and incur a lower number of cache misses compared to LL variants, especially at
higher load factors. Notably, LL-3 exhibits similar cache misses to that of the DA variants.
Key divergence in cache performance between both variants actually occurs at the last-level
cache, highlighting a clear advantage for DA-based variants, thus indicating that their more
cache-friendly memory access patterns play a critical role in sustaining higher throughput
under contention.

5.3. Discussion

The performance evaluation across multiple workloads reveals clear differences between
the two separate chaining strategies—linked lists (LLs) and dynamic arrays (DAs)—under
varying load factors and thread counts. Across all benchmarks, DA variants consistently
achieved higher throughput, particularly under high thread counts, whereas LL-based variants
showed saturation or degradation due to the overhead of pointer-heavy traversal.

DA variants maintained stable and competitive throughput across increasing thread
counts in nearly all workloads. This suggests that, for randomly distributed keys (as
used in this study), the load factor does not significantly impact performance for DA-
based chaining. In contrast, LL variants exhibited poor throughput with deeper chains,
leading to worse performance due to increased traversal costs. Among LL variants, shorter
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chains consistently outperformed deeper ones. For instance, LL-3 typically exhibits better
throughput than LL-5 or LL-7, reinforcing the notion that minimizing linked list depth is
critical for performance.

The observed performance differences between the variants can be further explained
by their cache behavior. In general, the LL variants generated a greater total number of cache
references and cache misses, particularly at higher load factors. This behavior is largely due
to bulkier write operations and more fragmented memory access patterns inherent to the
pointer-based structure of linked lists. In contrast, the DA variants consistently exhibited
lower L1 cache data load misses across most workloads, reinforcing their advantage in
terms of memory efficiency and predictable memory access patterns compared to their LL
counterparts. Furthermore, last-level cache misses were significantly higher in LL variants,
especially in write-intensive scenarios. This indicates that although LL variants may seem
more lightweight on a per-access basis, their inherently random, pointer-based organization
leads to inefficient utilization of the cache hierarchy under high memory pressure. Overall,
these cache-level observations provide a clear mechanistic explanation for the superior
performance of DA variants in terms of both speed and memory efficiency.

Energy consumption measurements indicate that the LL-3 and DA-3 variants con-
sistently exhibited higher energy usage across all benchmark scenarios. In contrast, the
DA-7 variant demonstrated the most energy-efficient behavior on average, achieving the
best overall balance between throughput and resource utilization. These results suggest
that DA-7 may serve as a particularly suitable default choice in resource-constrained
environments—such as battery-powered systems with processor characteristics similar
to those used in our experiments—especially when the workload characteristics or con-
currency levels are not known in advance. The improved energy efficiency of DA-7 is
likely due to its optimized memory layout and reduced cache misses, which collectively
minimize wasted computational effort and unnecessary memory accesses.

Prior works on concurrent hash maps largely emphasize designs that improve memory
locality, scalability, and energy efficiency under contention [5,7,8,13,25–29]. In particular,
Maier et al. [8] showed how an array-oriented design can achieve high throughput via
predictable and cache-friendly accesses, while Pereira et al. [13] highlighted the importance
of evaluating the energy efficiency of data structures in their most fundamental operations,
such as inserting, deleting, and iterating over elements. Our contribution complements
these lines of research by isolating separate chaining within a concurrent hash map design
and providing a systematic comparison between linked lists and dynamic arrays. The
scenarios evaluated in this study cover a wide and diverse range of real-world workloads,
and the results are consistent with prior works, showing a clear difference between using
linked list or dynamic array strategies for separate chaining in hash maps. Across all
experiments, dynamic arrays variants consistently maximized throughput, maintained
stable energy consumption (with no observed energy usage peaks), and leveraged cache
memory more effectively than their linked list counterparts. We believe this work can
serve as a practical reference for system developers and users when selecting a collision
resolution strategy, helping to align data structure choices with workload characteristics
and platform constraints.

6. Conclusions and Further Work
This work offers a comprehensive comparison of linked lists and dynamic arrays for

separate chaining in multithreaded lock-based hash maps, evaluating them in terms of
throughput, multi-level cache performance, and energy efficiency.

Experimental results consistently show that dynamic arrays offer more predictable
memory access patterns and lower energy consumption in multithreaded scenarios. Dy-
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namic arrays achieve higher throughput across all thread counts, with better scalability and
reduced cache overhead. This advantage stems from improved spatial locality, which mini-
mizes L1 and last-level cache misses and enhances memory efficiency. In contrast, linked
lists suffer from pointer-chasing and fragmentation, particularly under high load factors.

As further work, we plan to extend our study by investigating how different synchro-
nization mechanisms, such as read-write locks, lock-free designs, and lock-free locks [41],
impact the performance of the dynamic arrays approach.
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