The First Workshop on Software Engineering for Parallel Systems (SEPS 2014)
Portland, Oregon, United States
October 21, 2014

On Scaling Dynamic Programming Problems
with a Multithreaded Tabling System

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{miguel-areias, ricroc} @dcc.fc.up.pt

Abstract

Tabling is a recognized and powerful implementation technique that improves the declarativeness and ex-
pressiveness of traditional Prolog systems in dealing with recursion and redundant computations. In a
nutshell, tabling consists of storing intermediate answers for subgoals so that they can be reused when a
variant subgoal appears. The tabling technique can thus be viewed as a natural tool to implement dynamic
programming problems, where a general recursive strategy divides a problem in simple sub-problems that,
often, are the same. When tabling is combined with multithreading, we have the best of both worlds, since
we can exploit the combination of higher declarative semantics with higher procedural control. However,
such combination for dynamic programming problems is very difficult to exploit in order to achieve execu-
tion scalability as we increase the number of running threads. To the best of our knowledge, no previous
work showed to be able to scale the execution of multithreaded dynamic programming problems. In this
work, we focus on two well-known dynamic programming problems, the Knapsack and the Longest Common
Subsequence problems, and we discuss how we were able to scale their execution by taking advantage of the
multithreaded tabling engine of the Yap Prolog system.

Keywords: Dynamic Programming, Multithreaded Tabling, Scalability

1. Introduction from the base sub-problems and recursively com-
putes the next level sub-problems until reaching the
answer to the given problem. On the other hand,
the top-down approach starts from the given prob-

lem and uses recursion to subdivide a problem into

Dynamic programming [1] is a general recur-
sive strategy that consists in dividing a problem

in simple sub-problems that, often, are the same.
The idea behind dynamic programming is to re-
duce the number of computations: once an an-
swer to a given sub-problem has been computed,
it is memorized and the next time the same answer
is needed, it is simply looked up. Dynamic pro-
gramming is especially useful when the number of
overlapping sub-problems grows exponentially as a
function of the size of the input. Dynamic program-
ming can be implemented using either a bottom-up
or a top-down approach. In bottom-up, it starts

Preprint submitted to Elsevier

sub-problems until reaching the base sub-problems.
Answers to previously computed sub-problems are
reused rather than being recomputed. An advan-
tage of the top-down approach is that it might not
need to compute all possible sub-problems.

Most of the proposals that can be found in
the literature to parallelize dynamic programming
problems follow the parallelization of a sequential
bottom-up algorithm. All these proposals are usu-
ally based on a careful analysis of the sequential

October 16, 201}

algorithm in order to find the best way to mini-
mize the data dependencies in the supporting data
structure for memorization, often a matrix or an
array, resulting in a parallelization that requires a
synchronization mechanism before recursively com-
puting the next level sub-problems. Alternatively,
a generic proposal to parallelize top-down dynamic
programming algorithms is Stivala et al.’s work [2],
where a set of threads solve the entire dynamic pro-
gram independently but with a randomized choice
of sub-problems, i.e., each thread runs exactly the
same function, but the randomization choice of sub-
problems results in the threads diverging to com-
pute different sub-problems while reusing the sub-
problem’s results computed in the meantime by the
other threads.

Tabling [3] is a recognized and powerful imple-
mentation technique that proved its viability and
efficiency to overcome Prolog’s susceptibility to in-
finite loops and redundant computations. Tabling
consists of saving and reusing the results of sub-
computations during the execution of a program
and, for that, the calls and the answers to tabled
subgoals are memorized in a proper data structure
called the table space. Tabling can thus be viewed as
a natural tool to implement dynamic programming
problems. When tabling is combined with multi-
threading, we have the best of both worlds, since
we can exploit the combination of higher declarative
semantics with higher procedural control. However,
such combination for dynamic programming prob-
lems is very difficult to exploit in order to achieve
execution scalability as we increase the number of
running threads. To the best of our knowledge,
XSB [4] and Yap [5] were the only Prolog sys-
tems that were able to combine both multithread-
ing with tabling, but none of them showed until
now to be able to scale the execution of multi-
threaded dynamic programming problems. This is
a difficult task since we need to combine the ex-
plicit thread control required to launch, assign and
schedule tasks to threads, with the built-in tabling
evaluation mechanism, which is implicit and can-
not be controlled by the user. This main motiva-
tion of this work is to show a simple multithreaded
table space design that is efficient enough to ob-
tain good a scalability. To do so, we focus on two
well-known dynamic programming problems, the
Knapsack and the Longest Common Subsequence
(LCS) problems, and we discuss how we were able
to scale their execution by taking advantage of the
multithreaded tabling engine of the Yap Prolog sys-

tem. For each problem, we present a multithreaded
tabled top-down and bottom-up approach. For the
top-down approach, we use Yap’s mode-directed
tabling support [6] that allows to aggregate an-
swers by specifying pre-defined modes such as min
or maz. For the bottom-up approach, we use Yap’s
standard tabling support [7]. To put our results in
perspective, we also experimented with the state-
of-the-art XSB Prolog system® using thread shared
tables [4]. Our experiments on a 32-core AMD ma-
chine show that using Yap’s simple and efficient
multithreaded table space design, we were able to
scale the execution of both problems for both top-
down and bottom-up approaches. Regarding the
comparison with XSB and since the Yap’s results
clearly outperform the results of obtained for XSB,
we complete the comparison by outline some of the
possible reasons for the big gap between both sys-
tems. The remainder of the paper is organized as
follows. First, we briefly describe some background
about Yap’s standard, mode-directed and multi-
threaded tabling support. Then, we discuss related
work and briefly introduce XSB’s approach to mul-
tithreaded tabling. Next, for both Knapsack and
LCS problems, we introduce the problem, present
in detail our parallel implementations using either
a top-down and bottom-up dynamic programming
approach, and discuss the experimental results. At
the end, we outline some conclusions.

2. Background

This section introduces some background needed
for the following sections.

2.1. Standard Tabling

The basic idea behind tabling is straightfor-
ward: programs are evaluated by storing answers
for tabled subgoals in an appropriate data space,
called the table space. Variant calls? to tabled
subgoals are not re-evaluated against the program
clauses, instead they are resolved by consuming the
answers already stored in their table entries. Dur-
ing this process, as further new answers are found,
they are stored in their tables and later returned to
all variant calls.

1To the best of our knowledge, Yap and XSB are the
unique Prolog systems that combine multithreading with
tabling support.

2Two terms are considered to be variant if they are the
same up to variable renaming.

With these requirements, the design of the table
space is critical to achieve an efficient implemen-
tation. Yap uses tries which is regarded as a very
efficient way to implement the table space [8]. Tries
are trees in which common prefixes are represented
only once. The trie data structure provides com-
plete discrimination for terms and permits look up
and possibly insertion to be performed in a single
pass through a term, hence resulting in a very ef-
ficient and compact data structure for term repre-
sentation. Figure 1 shows the general table space
organization for a tabled predicate in Yap.

Tabl ed Predicate
Conpi | ed Code
-
Subgoal Trie Structure

v

Subgoal Subgoal
Frame

call _1

Answer Answer Answer
Trie Trie Trie
Structure Structure S Structure

Subgoal
Frane
call_n

Frane
call _2

Figure 1: Yap’s table space organization

At the entry point we have the table entry data
structure. This structure is allocated when a tabled
predicate is being compiled, so that a pointer to the
table entry can be included in its compiled code.
This guarantees that further calls to the predicate
will access the table space starting from the same
point. Below the table entry, we have the subgoal
trie structure. Each different tabled subgoal call to
the predicate at hand corresponds to a unique path
through the subgoal trie structure, always starting
from the table entry, passing by several subgoal trie
data units, the subgoal trie nodes, and reaching a
leaf data structure, the subgoal frame. The subgoal
frame stores additional information about the sub-
goal and acts like an entry point to the answer trie
structure. Each unique path through the answer
trie data units, the answer trie nodes, corresponds
to a different tabled answer to the entry subgoal.

2.2. Mode-Directed Tabling
In a traditional tabling system, all the arguments
of a tabled subgoal call are considered when storing

answers into the table space. When a new answer
is not a variant of any answer that is already in the
table space, then it is always considered for inser-
tion. Therefore, traditional tabling is very good for
problems that require storing all answers. However,
with dynamic programming, usually, the goal is to
dynamically calculate optimal or selective answers
as new results arrive. Writing dynamic program-
ming algorithms can thus be a difficult task without
further support.

Mode-directed tabling is an extension to the
tabling technique that supports the definition of
modes for specifying how answers are inserted into
the table space. Within mode-directed tabling,
tabled predicates are declared using statements of
the form ‘table p(my,...,m,)’, where the m;’s are
mode operators for the arguments. The idea is to
define the arguments to be considered for variant
checking (the index arguments) and how variant
answers should be tabled regarding the remaining
arguments (the output arguments). In Yap, index
arguments are represented with mode indez, while
arguments with modes first, last, min, max, sum
and all represent output arguments [6]. After an
answer is generated, the system tables the answer
only if it is preferable, accordingly to the meaning of
the output arguments, than some existing variant
answer.

2.3. Multithreaded Tabling

Yap implements a SWI-Prolog compatible mul-
tithreading library [9]. Like in SWI-Prolog, Yap’s
threads have their own execution stacks and only
share the code area where predicates, records, flags
and other global non-backtrackable data are stored.
For tabled evaluation, a thread views its tables as
private but, at the engine level, we use a common
table space, i.e., from the thread point of view,
the tables are private but, from the implementa-
tion point of view, the tables are shared among all
threads.

In previous work [5], he have proposed three de-
signs for the common table space. This work uses
the Subgoal Sharing (SS) design. In the SS de-
sign, the subgoal trie structure is shared among all
threads and the leaf data structures representing
each tabled subgoal call C;, instead of pointing to
a single subgoal frame, they point to a list of pri-
vate subgoal frames, one per thread that is eval-
uating the call C;. In the previous version of the
SS design, threads would store the results of their

Subgoal Trie Structure

Thread_1 Conpl et e Thr ead_k
Subgoal Subgoal Subgoal
Frane [EEELE " Frame
call _i call _i call _i
a0
Answer Answer Answer
Trie Trie Trie
Structure Structure Structure

Figure 2: Subgoal sharing design

sub-computations in private structures and after-
wards whenever they finished their execution, they
would remove their private structures. As conse-
quence no information about the results of sub-
computations was shared among threads. In this
work, we propose a new asynchronous version of
the SS design, where the key idea is that a thread
does not wait for the other threads to compute its
sub-problem, but is able to use the result of the
sub-problem, if another thread has already com-
puted it. Thus, whenever a thread has to compute
a sub-problem, it lookups if any other thread has
already computed the result for that sub-problem.
If it exists, then the thread uses the result, oth-
erwise it computes the sub-problem itself in a pri-
vate fashion (without concurrency) and afterwards,
when the computation is completed it publishes the
results, thus that they can be used by any other
threads. Fig. 2 shows a small overview about the
new asynchronous SS design. Concurrency among
threads is restricted to the subgoal trie structure
and to completed subgoal frames (black data struc-
tures in Fig. 2). All subgoal frames and answer tries
are initially private to a thread (white data struc-
tures in Fig. 2). Later, when the first subgoal frame
is completed, i.e., when we have found the full set
of answers for it, it is marked as completed and
put in the beginning of the list of private subgoal
frames (configuration shown in Fig. 2). Following
calls made by other threads to this subgoal call sim-
ply consume the answers from the completed sub-
goal frame, thus avoiding recomputing the subgoal
call at hand. By sharing only completed answer
tries, we avoid the problem of dealing with con-
current updates to the answer tries, the problem
of managing the different set of answers that each
thread has found, and, more importantly, the prob-

lem of dealing with concurrent deletes, as in the
case of using mode-directed tabling.

3. Related Work

In this section, we briefly introduce XSB’s alter-
native approach to multithreaded tabling. Remem-
ber that, to the best of our knowledge, Yap and
XSB are the unique Prolog systems that combine
multithreading with tabling support.

The XSB system supports two types of models
for the combination of multithreading with tabling:
private tables and shared tables [4, 10]. On the pri-
vate tables model, each thread keeps its own copy
of the table space. On one hand, this avoids con-
currency over the tables but, on the other hand, the
same table can be repeatedly computed by several
threads, thus increasing the memory usage neces-
sary to represent the table space. Moreover, since
no information is shared between threads, a thread
cannot reuse the results being tabled by another
thread to reduce execution time in a concurrent en-
vironment.

For shared tables, the running threads store only
once the same table, even if multiple threads use
it. This model can be viewed as a variation of the
table-parallelism proposal [11], where a tabled com-
putation can be decomposed into a set of smaller
sub-computations, each being performed by a dif-
ferent thread. Each sub-computation is computed
independently by the first thread calling it, the gen-
erator thread, and each generator is the sole respon-
sible for fully exploiting and obtaining the complete
set of answers for a sub-computation. Variant sub-
computations by other threads are resolved by con-
suming the answers stored by the generator thread.
When a set of sub-computations being computed
by different threads is mutually dependent, then a
usurpation operation [12] synchronizes threads and
a single thread assumes the computation of all sub-
computations, turning the remaining threads into
consumer threads. This maintains the correctness
of the table space in a concurrent environment, but
has a major disadvantage: it restricts the poten-
tial of concurrency to non-mutually dependent sub-
computations. In particular, as our experiments
will show, this severely constraints the goal of scal-
ing multithreaded dynamic programming problems.

4. The 0-1 Knapsack Problem

The Knapsack problem [13] is a well-known prob-
lem in combinatorial optimization that can be
found in many domains such as logistics, manufac-
turing, finance or telecommunications. Given a set
of items, each with a weight and a profit, the goal
is to determine the number of items of each kind
to include in a collection so that the total weight
is equal or less than a given capacity and the total
profit is as much as possible. The most common
variant of the problem is the 0-1 Knapsack prob-
lem, which restricts the number of copies of each
kind of item to be zero or one. In what follows, we
will focus on this variant. The 0-1 Knapsack prob-
lem can be formulated as follows. Given a set of
items i € {1,...,n}, each with a weight w; € N*
and a profit p; € N*, and a Knapsack with ca-
pacity C € N*, the following formulas define the
Knapsack problem (K S) and the restriction (KSg)
that avoids any trivial solution, by insuring that
each item fits into the Knapsack and that the total
weight of all items exceeds the Knapsack capacity.

n

max Y. p;.x;,

i=1
n

KS = s.t. E W;.T; S O,
i=1

v €{0,1} i € {1,..,n}.

V; € {1,...,n},wi <C,

KSp=< &
R w; > C.
=1

K2

(1)

4.1. Top-Down Approach

We first introduce a standard top-down approach
that solves the Knapsack problem using mode-
directed tabling. Figure 3 shows our Yap’s imple-
mentation adapted from [14] to include the dimen-
sion of profitability.

The table directive declares that predicate ks/3
is to be tabled using modes (index,index, mazx),
meaning that the third argument (the profit) should
store only the maximal answers for the first two ar-
guments (the index of the number of items being
considered and Knapsack’s capacity). The remain-
ing part of the program implements a recursive top-
down definition of the Knapsack problem. The first
clause is the base case and defines that the empty
set is a solution with profit 0. The second clause
excludes the current item from the solution set and

% table declaration
:— table ks(index, index, max).
% base case

ks (0, C, 0).
% exclude case
ks(I, C, P) :—

I >0, ks_exc(I, C, P, 1).
% include case
ks(I, C, P) :—

I >0, ks_inc(I, C, P, 1).

% exclude N items starting from I
ks_exc (I, C, P, N) :—
Jis T — N, ks(J, C, P).
% include I and exclude the next
% N—1 items
ks_inc (I, C, P, N) :—
item (I, Ci, Pi), Cj is C — Ci,
Cj>= 0, J is I — N,
ks(J, Cj, Pj), P is Pi + Pj.

Figure 3: A top-down approach for the Knapsack problem
with mode-directed tabling

the third includes the current item in the solution
if its inclusion does not overcome the current ca-
pacity of the Knapsack. For simplicity of integra-
tion with the parallel approach presented next, we
are already using two auxiliary predicates, ks_exc/4
and ks_inc/4, as a way to implement the exclude
and include cases. These auxiliary predicates take
an extra argument N (fourth argument) that rep-
resents the number of items to jump (or exclude)
in the recursion procedure. Here, for the sequential
version of the problem, N is always 1, i.e, we always
move to the next item.

To parallelize top-down dynamic programming
algorithms, we followed Stivala’s et al. work [2]
where a set of threads solve the entire program inde-
pendently but with a randomized choice of the sub-
problems. For the Knapsack problem, we have two
sub-problems, the exclude and include cases. We
can thus consider two alternative execution choices
at each step: (i) exclude first and include next (as
in the sequential version presented in Fig. 3), or
(ii) include first and exclude next. The randomized
choice of sub-problems results in the threads diverg-
ing to compute different sub-problems simultane-
ously while reusing the sub-problem’s results com-
puted in the meantime by the other threads. Since
the number of overlapping sub-problem is usually

high in these kind of problems, it is expected that
the available set of sub-problems to be computed
will be evenly divided by the number of available
threads resulting in less computation time required
to reach the final result.

For the parallel version of the Knapsack prob-
lem, we have implemented two alternative versions.
The first version simply follows Stivala’s et al. orig-
inal random approach. The second version extends
the first one with an extra step where the computa-
tion is first moved forward using a random displace-
ment of the number of items to be excluded and
only then the computation is performed for the next
item, as usual. By doing this, it is expected that
the sub-problems closer to the base cases are com-
puted earlier, meaning that their subgoal frames are
also marked as completed earlier, which avoids re-
computation when other threads call the same sub-
problems. Figure 4 shows the implementation. The
difference between the two versions is that the first
version does not consider the first extra clause in
the aux_exc/4 and auzx_inc/4 auxiliary predicates.

4.2. Bottom-Up Approach

A straightforward method to solve the Knap-
sack problem bottom-up is for a fixed capacity c,
to consider all 2" possible subsets of the n items
and choose the one that maximizes the profit. The
recursive application of this algorithm to increas-
ing capacities ¢ € {1,...,C}, yields a Knapsack of
maximum profit for the given capacity C [15]. The
bottom-up characteristic comes from the fact that,
given a Knapsack with capacity ¢ and using ¢ items,
i < n, the decision to include the next item j,
j =i+ 1, leads to two situations: (i) if j is not
included, the Knapsack profit is unchanged; (ii) if j
is included, the profit is the result of the maximum
profit of the Knapsack with the same i items but
with capacity c—w; (the capacity needed to include
the weight w; of item j) increased by p; (the profit
of the item j being included). The algorithm then
decides whether or not to include an item based on
which choice leads to maximum profit. Figure 5
shows the K S[n,C] matrix. The rows define the
items and the columns define the Knapsack capaci-
ties. The first column and row are filled with zeros,
which are the initial profit for the Knapsacks with
no items or no capacity.

The sequential version of the algorithm can be
constructed row by row or column by column. The
computation of each sub-problem KS[j,¢] consid-
ers the maximum profitability obtained between

% table declaration
:— table ks(index, index, max).
% base case

ks (0, C, 0).
% random choice
ks(I, C, P) :—

I > 0, random (2, maxRandom, N),
R is N mod 2,
(R==0—>
aux_exc (I, C, P, N)
aux_inc (I, C, P, N)).
% try exclude first and include next
aux_exc (I, C, P, N) :—
ks_exc (I, C, P, N).
aux_exc (I, C, P, _) :—
ks_exc (I, C, P, 1).
aux_exc (I, C, P, _) :—
ks_inc (I, C, P, 1).
% try include first and exclude next
aux_inc (I, C, P, N) :—
ks_inc (I, C, P, N).
aux_inc (I, C, P, _) :—
ks_inc (I, C, P, 1)
aux_inc (I, C, P, _)
ks_exc (I, C, P, 1)

Figure 4: A top-down parallel version of the Knapsack prob-
lem with mode-directed tabling

KS[j—1,c] and KS[j — 1,¢ — w;_1] + p;. When
all sub-problems are computed, K S[n, C] holds the
best profitability for the full problem. Figure 6
shows Yap’s implementation. For simplicity of pre-
sentation, we are omitting the predicate that im-
plements the main loop used to recursively traverse
the matrix and launch the computation for each
sub-problem.

The table directive declares that predicate ks/3
is to be tabled using standard tabling. Since here a
sub-problem can be computed from the results of its
sub-problems, standard tabling is enough and there
is no need for mode-directed tabling. The first two
clauses of ks/3 are the base cases and define that
the Knapsacks with no items or no capacity have
profit 0. The third clause deals with the cases where
an item’s weight exceeds the Knapsack capacity and
the fourth clause is the one that implements the
main case discussed above.

Filling cells in subsequent rows requires access-
ing two cells from the previous row: one from the

0 c-w o ... c
ol o | o oo o | o
1o
il o L IO
il o \ /
| o

KS

nl O [n

Figure 5: Knapsack bottom-up matrix

% table declaration

:— table ks/3.

% base cases

ks(0, -, 0). ks(-, 0, 0).
% item I exceeds capacity C
ks(I, C, P) :—

I >0, item(I, Ci, Pi), Ci > C,
Jis 1 -1, ks(J, C, P).

% item I fits in capacity C

ks(I, C, P) :—
I >0, item(I, Ci, Pi), Ci =< C,
Cj is C— Ci, Cj >= 0,

Jis I — 1,
ks(J, Cj, Pj), Pl is Pj + Pi,
ks(J, C, P2), max(P1l, P2, P).

Figure 6: A bottom-up approach for the Knapsack problem
with standard tabling

same column and one from the column offset by
the weight of the current item. Thus, computing
a row ¢ depends only on the sub-problems at row
1 — 1. A possible parallelization is, for each row, to
divide the computation of the C' columns between
the available threads and then wait for all threads
to complete in order to synchronize before comput-
ing the next row.

Here, since we want to take advantage of the
built-in tabling mechanism, which is implicit and
cannot be controlled by the user, we want to avoid
this kind of synchronization between iterations.
Hence, when a sub-problem in the previous row was
not computed yet (i.e., marked as completed in one
of the subgoal frames for the given call), instead of
waiting for the corresponding result to be computed
by another thread, the current thread starts also
its computation and for that it can recursively call
many other sub-problems not computed yet. De-
spite this can lead to redundant sub-computations,

it avoids synchronization. In fact, as we will see,
this strategy showed to be very effective.

We next introduce our generic multithreaded
scheduler used to load balancing the access to a
set of concurrent tasks. We assume that the num-
ber of tasks is known before execution starts and
that tasks are numbered incrementally starting at
1. For the Knapsack problem, we will consider that
the number of tasks is the number of capacities
¢ € {1,..,C} (alternatively, we could have con-
sidered the number of items ¢ € {1,..,n}). In
a nutshell, the scheduler uses a user-level mutex
to protect a concurrent queue that stores the in-
dices of the available tasks. In fact, since tasks are
numbered incrementally, the queue simply needs to
store the index of the next available task. When a
thread gets access to the queue of tasks, it picks a
chunk of consecutive tasks and updates the queue’s
stored index accordingly. Figure 7 shows the Pro-
log code that implements the main execution loop
of each thread.

% initialize mutex
:— mutex_create (queueLock).
% initialize queue
:— set_value (queuelndex, 0).

do_work (NumberOfTasks, ChunkSize) :—
mutex_lock (queueLock)
get_value (queuelndex, Current),
(Current = NumberOfTasks —>
% terminate execution
mutex_unlock (queueLock)

First is Current + 1,

Last is Current + ChunkSize,
set_value (queuelndex, Last),
mutex_unlock (queueLock),
compute_tasks(First , Last),

% get more work

do_work (NumberOfTasks, ChunkSize)

Figure 7: The generic execution loop of each thread for the
bottom-up approach

The top declarations initialize the queueLock
mutex and the queuelndex queue. The predicate
do_work/2 implements the main execution loop of
each thread and is recursively executed until no
more tasks exist in the queue. It receives two ar-
guments: the total number of tasks in the prob-
lem (NumberO fTasks); and the chunk size to be

considered when retrieving tasks from the queue
(ChunkSize). In each loop, a thread starts by
gaining access to the mutex and then it checks the
queue. If the queue is empty, case in which the test
Current = NumberO fTasks succeeds (In order to
avoid low-level details which are not relevant to this
work, the reader can assume that NumberO fTasks
is a multiple of ChunkSize) the mutex is released
and the thread terminates execution. Otherwise,
the thread picks a new chunk of consecutive tasks
and updates the queue’s stored index accordingly.
Variables First and Last define the lower and up-
per bounds of the chunk of tasks obtained. The
tasks are then evaluated using the compute_tasks/2
predicate, which calls the ks/3 predicate for the set
of Knapsack sub-problems associated with the task.
After the compute_tasks/2 finishes, the do_work/2
predicate is called again to get more tasks from the
queue. The process repeats until no more tasks ex-
ist.

5. The Longest Common Subsequence Prob-
lem

The problem of computing the length of the
Longest Common Subsequence (LCS) is represen-
tative of a class of dynamic programming algo-
rithms for string comparison that are based on get-
ting a similarity degree. A good example is the
sequence alignment, which is a fundamental tech-
nique for biologists to investigate the similarity be-
tween species. The LCS problem can be defined as
follows. Given a finite set of symbols .S and two se-
quences U = (u1,ug, ..., up) and V = (v1, v, ..., Up,)
such that Vic1,... n,u; € S and Vie1,... m,v; € 5, we
say that U has a common subsequence with V' of
length k if there are indices i1, o, ..., ik, j1, J2 ---s Jk °
1< <ig<..<ip<nand 1 <7j; <js<..<
Jr < msuchthat Vie1,. . g, u; = vj,. Thelength £ is
considered to be the longest common subsequence
if it is maximal.

5.1. Top-Down Approach

We next introduce a standard top-down approach
that solves the LCS problem using mode-directed
tabling. Figure 8 shows Yap’s implementation
adapted from [14].

The first two clauses of lcs/3 are the base cases
defining that for empty sequences the LCS (third
argument) is 0. The third clause deals with the
cases where the current symbols in both sequences

% table declaration
:— table lcs(index, index, max).
% base cases
les(-, 0, 0).
% matched case
les (Iu, Iv, L) :—
Iu > 0, Iv > 0, symbol_u(Iu, S),
symbol_v(Iv, S), Ju is Tu — 1,
Jv is Iv — 1, les(Ju, Jv, Lj),
L is Lj + 1.
% sequence U case
les (Iu, Iv, L) :—
Iu > 0, Iv > 0,
les_u(Iu, Iv, L, 1).
% sequence V case
les(Tu, Iv, L) :—
Iu > 0, Iv > 0,
les.v (Iu, Iv, L, 1).
% jump N symbols in sequence U
les_u(Iu, Iv, L, N) :
symbol,u(Iu, Su), symbol,v(v, Sv),
Su =\= Sv, Ju is Iu — N,
les (Ju, Iv, L).
% jump N symbols in sequence V
les.v (Iu, Iv, L, N) :
symbol,u(Iu7 Su), symbol,v(v, Sv),
Su =\= Sv, Jv is Iv — N,
les (Iu, Jv, L).

les (0, _, 0).

Figure 8: A top-down approach for the LCS problem with
mode-directed tabling

match (arguments I,, and I, represent, respectively,
the current indices in sequences U and V' to be con-
sidered). The fourth and fifth clauses represent the
opposite case, where the symbols do not match, and
each clause moves one of the sequences to the next
symbol (note that recursion is done in descending
order until reaching index 0). Again, for simplicity
of integration with the parallel approach presented
next, we are already using two auxiliary predicates,
lescu/4 and les_v/4, as a way to implement the un-
matched cases. As for the Knapsack problem, these
two auxiliary predicates take an extra argument N
(fourth argument) that represents the number of
symbols to jump in the recursion procedure. For
the sequential version of the problem, IV is always
1, meaning that we always move to the next symbol.

Similarly to Knapsack’s problem, to parallelize
the LCS sequential top-down approach, we have im-
plemented two alternative versions. The first ver-

sion follows Stivala’s et al. original random ap-
proach. The second version extends the first one
with an extra step where the computation is first
moved forward using a random displacement of the
number of symbols to jump and only then the com-
putation is performed for the next symbol, as usual.
Figure 9 shows the implementation. The differ-
ence between the two versions is that the first ver-
sion does not consider the first extra clause in the
auzr_u/4 and aux_v/4 auxiliary predicates.

% table declaration
:— table lcs(index, index, max).
% base cases
les(-, 0, 0).
% matched case
les(Iu, Iv, L) :—

Iu > 0, Iv > 0,

symbol_u(Iu, S), symbol.v(Iv, S),

Ju is Tu — 1, Jv is Iv — 1,

les (Ju, Jv, Lj), L is Lj + 1.
% random choice
les(Iu, Iv, L) :—

Iu > 0, Iv > 0,

random (2, maxRandom, N),

R is N mod 2,

(R==0—>

aux_u(Iu, Iv, L, N)

les (0, _, 0).

aux-v(Iu, Iv, L, N)).
% try sequence U first and V next
aux_u(Iu, Iv, L, N) :—
les_u(Iu, Iv, L, N).

aux_u(Iu, Iv, L, _) :—
lescu (Iu, Iv, L, 1).
aux_u(Iu, Iv, L, _) :—

les_v(Iu, Iv, L, 1).
% try sequence V first and U next
aux.v (Iu, Iv, L, N) :—

les_v (Iu, Iv, L, N).

aux_v(Iu, Iv, L, _) :—
les_v(Iu, Iv, L, 1).
aux_v(Iu, Iv, L, _) :—

lescu(Iu, Iv, L, 1).

Figure 9: A top-down parallel version of the LCS problem
with mode-directed tabling

5.2. Bottom-Up Approach

We now introduce our bottom-up approach to
the LCS problem, which is based on [15]. In a nut-

shell, the bottom-up characteristic comes from the
fact that, the maximum length of a common sub-
sequence between two sequences U and V is: (i) if
the initial symbols of both sequences match, then
they are part of the longest common subsequence
and the length of the longest common subsequence
can be incremented by one; (ii) if the initial symbols
do not match then two situations arise: the longest
common subsequence may be obtained from U and
V' without the initial symbol or from V and U with-
out the initial symbol. Since we want the longest
subsequence, the maximum of these two must be
selected. The following formula formalizes the LCS
problem as described above:

LCS[j—1,1—-1]+1,
if U; = .
max {LCS[j,l — 1], LCS[j — 1,1]},
otherwise.
(2)

Figure 10 shows the LCS matrix that repre-
sents the bottom-up approach. The rows define
the indices to be considered in sequence U and the
columns define the indices in sequence V. The first
column and the first row are filled with zeros, mean-
ing that for empty sequences the LCS is 0. The se-
quential version of the algorithm can be constructed
row by row or column by column, since the compu-
tation of each sub-problem LCS[j,!] only depends
on the sub-computations done for the preceding row
and column. At the end, LC'S[n,m] holds the LCS
for the problem.

LCS[ii) =

0 k | . m
ol o | o oo oo
1 o
] 0 [{]
j O . . -ll’A
1 o

LCS

nl O [,

Figure 10: LCS bottom-up matrix

Figure 11 shows Yap’s implementation. Again,
for simplicity of presentation, we are omitting the
predicate that implements the main loop used to
recursively traverse the matrix and launch the com-
putation for each sub-problem.

The table directive declares that predicate lcs/3

% table declaration
:— table lecs /3.
% base cases
les(-, 0, 0).
% matched case
les(Iu, Iv, L) :—
Iu > 0, Iv > 0, symbol.u(Iu, S),
symbol_v(Iv, S), Ju is Tu — 1,
Jv is Iv — 1, les(Ju, Jv, Lj),
L is Lj + 1.
% unmatched case
les (Iu, Iv, L) :—
Iu > 0, Iv > 0, symbol.u(Iu, Su),
symbol_v(Iv, Sv), Su =\= Sv,
Ju is Tu — 1, Jv is Iv — 1,
les (Ju, Iv, L1), les(Iu, Jv, L2),
max (L1, L2, L).

les (0, _, 0).

Figure 11: A bottom-up approach for the LCS problem with
standard tabling

is to be tabled using standard tabling. The first two
clauses of lcs/3 are the base cases and the third and
fourth clauses deal with the cases where the initial
symbols of both sequences match and do not match,
respectively.

Concerning the parallelization of the matrix, a
possible approach is, for each row, divide the com-
putation of the m columns between the available
threads or, for each column, divide the computa-
tion of the n rows between the available threads.
Here, we will follow the same approach as for the
Knapsack problem and we will use the generic mul-
tithreaded scheduler that implements the thread
execution loop presented in Fig. 7. The number of
concurrent tasks to be considered is the size of se-
quence U (alternatively, we could have considered
the size of sequence V) and the evaluation of the
compute_tasks/2 predicate calls the lcs/3 predicate
for the set of LCS sub-problems associated with a
given task.

6. Performance Analysis

The environment for our experiments was a ma-
chine with 32-core AMD Opteron (tm) Processor
6274 @ 2.2 GHz with 32 GBytes of main memory
and running the Linux kernel 3.8.3-1.fc17.x86_64
with Jemalloc 3.1.0 [16]. We used Yap Prolog, ver-
sion 6.3.2, with the SS design and the memory al-
locator [17]. To put our results in perspective, we
also experimented with XSB Prolog version 3.4.0,

10

using the shared tables model. To verify the cor-
rectness of the benchmarks we have confirmed that
the final results of the computations were correct
on both Prolog systems and on all of the strategies
that we have implemented.

For the Knapsack problem, we fixed the num-
ber of items and capacity, respectively, 1600 and
3200. For the LCS problem, we used both sequences
with a fixed size of 3200 symbols each. Then, for
each problem we created three different datasets,
D19, D3g and Dsg, meaning that the values for the
weights/profits for the Knapsack problem and the
symbols for LCS problem where randomly gener-
ated in an interval between 1 and 10%, 30% and
50% of the total number of items/symbols, respec-
tively. For the top-down approaches, we only ex-
perimented with Yap since XSB does not support
mode-directed tabling. We tested Yap with Sti-
vala’s et al. original version (YAPrp,) and with
the extended version using the extra random dis-
placement clause (YAPrp,). For both Knapsack
and LCS problems, we used a maxRandom value
corresponding to 10% of the total number of item-
s/symbols in the problem. For the bottom-up ap-
proaches, we experimented with Yap (YAP gy) and
XSB (XSBpy) and we used a ChunkSize value of
5.

Table 1 and Table 2 show the results obtained, re-
spectively, for the Knapsack and LCS problems for
both top-down and bottom-up approaches using the
Yap and XSB Prolog systems. In particular, both
tables show the execution time, in milliseconds, for
one thread (column Time (T;)) and the corre-
sponding speedup, for the execution with 8, 16, 24
and 32 threads (columns Speedup (T1/T))). Re-
sults in bold highlight the best speedup obtained
for each system/dataset configuration. All results
are the average of 10 runs.

Analyzing the general picture of both tables, one
can observe that for both problems, the top-down
YAPrp, and bottom-up YAPpy approaches have
the best results with excellent speedups for 8, 16, 24
and 32 threads. In particular, for 32 threads, they
obtain speedups around 19 and 18, respectively, for
the Knapsack and LCS problems. The results for
the top-down YAPrp, approach are not so interest-
ing, regardless of the fact that it can slightly scale
for the Knapsack problem up to 16 threads.

Regarding the base execution times with one
thread, YAPrp, clearly pays the cost of the extra
clause with an average execution time around 1.4
to 1.5 times slower than YAPrp, and YAPgpy. As

Table 1: Execution time, in milliseconds, for one thread and corresponding speedup, for the execution with 8, 16, 24 and 32
threads, for the top-down and bottom-up approaches of the Knapsack problem using the Yap and XSB Prolog systems

Threads (p)
System/Dataset || Time (T;) Speedup (T,/T,)
1 8 16 24 32

Top-Down Approaches

Dy 18,319 1.96 2.10 2.01 1.89
YAPp, Dy 17,664 3.41 3.96 3.83 3.62

Dso 17,828 4.72 6.12 6.21 6.07

Do 23,816 6.78 11.95 14.81 16.79
YAPrp, D3 25,049 7.39 13.63 16.85 19.35

Dso 24,866 7.38 13.67 16.78 19.23
Bottom-Up Approaches

Dy 17,054 7.25 13.32 17.12 19.60
YAPpy Dy 17,005 7.22 1347 1729 19.64

Dso 16,550 7.16 13.29 17.04 19.60

Do 37,338 0.81 0.79 0.73 0.54
XSBgy Dy 38,245 0.82 0.75 0.75 0.56

Dso 39,100 0.82 0.79 0.73 0.54

a complementary information, note that the execu-
tion time with one thread for the clean top-down
approach without randomization for the Dig, D3q
and D5 datasets is, respectively, 11.844, 11.706 and
12.151 for the Knapsack problem and 23.722, 23.471
and 23.374 for the LCS problem. In this regard, the
execution times for YAP7rp, and YAP gy are quite
different although their similar average speedups.
For example, consider the D5y dataset of the Knap-
sack problem with 32 threads, while the speedup
19.23 of YAPrp, corresponds to an execution time
of 1.293 seconds, the speedup 19.60 of YAP gy cor-
responds to only 0.844 seconds. Similarly for the
LCS problem, if considering the Dsq dataset with
32 threads, while the speedup 18.33 of YAPrp, cor-
responds to 2.325 seconds, the speedup 18.07 of the
YAP gy corresponds to only 1.500 seconds.

Regarding the comparison with XSB, Yap’s re-
sults clearly outperform those of XSB. For the ex-
ecution time with one thread, XSB shows higher
times than all Yap’s approaches (around two times
the execution times for YAPrp, and YAPgy). For
the parallel execution of the Knapsack problem,
XSB shows no speedups and for the parallel execu-
tion of the LCS problem we have no results available
(n.a.) since we got segmentation fault execution er-
rors. From our point of view, these results that
were obtained for the XSB’s shared tables model
were a consequence of the wsurpation operation,
since it constrained the concurrency to non-mutual

11

dependent sub-computations, which consequently
constrained the full potentiality of the parallelism.
As the parallel algorithms implemented in this per-
formance analysis for the Knapsack and LCS prob-
lems, create mutual dependent sub-computations
which are executed in different threads, the XSB is
actually unable to execute the benchmarks in a par-
allel fashion. By other works, even if we launch an
arbitrary large number of threads on those bench-
marks, the system would only use one thread to
evaluate all the computations.

7. Conclusions and Further Work

Starting from two well-known dynamic program-
ming problems, the Knapsack and the Longest
Common Subsequence (LCS) problems, we have
discussed how we were able to scale their exe-
cution by taking advantage of the multithreaded
tabling engine of the Yap Prolog system. We
have presented multithreaded tabled top-down and
bottom-up approaches using, respectively, Yap’s
mode-directed tabling support and Yap’s standard
tabling support. QOur experiments, on a 32-core
AMD machine, showed that using either top-down
or bottom-up techniques, we were able to scale
the execution of both problems by taking advan-
tage of the state-of-the-art multithreaded tabling
engine of the Yap Prolog system. Further work
will include studying other dynamic programming

Table 2: Execution time, in milliseconds, for one thread and corresponding speedup, for the execution with 8, 16, 24 and 32
threads, for the top-down and bottom-up approaches of the LCS problem using the Yap and XSB Prolog systems

Threads (p)
System/Dataset || Time (T;) Speedup (T1/T,)
1 8 16 24 32
Top-Down Approaches
Dy 30,708 1.53 1.45 1.40 1.29
YAPrp, D3y 30,817 1.53 1.46 1.38 1.28
Dso 30,707 1.52 1.44 1.39 1.27
Dy 42,556 7.25 13.13 16.26 18.32
YAPrp, D3 42,511 7.21 13.24 16.19 18.34
Dsg 42,631 7.21 13.15 16.27 18.33
Bottom-Up Approaches
Dy 27,253 6.97 10.78 14.88 17.91
YAPgy D3 27,045 6.88 11.20 14.74 17.92
Ds5o 27,102 6.97 11.91 14.51 18.07
Dy 68,255 n.a. n.a. n.a. n.a.
XSBgy D3 69,700 n.a. n.a. n.a. n.a.
Dsg 70,100 n.a. n.a. n.a. n.a.
problems and explore the impact of applying mul- [7] V. Santos Costa, R. Rocha, L. Damas, The YAP Pro-
tithreaded tabling to other application domains. log System, Journal of Theory and Practice of Logic
Programming 12 (1 & 2) (2012) 5-34.
[8] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, D. S.
Warren, Efficient Access Mechanisms for Tabled Logic
Acknowledgments Programs, Journal of Logic Programming 38 (1) (1999)
31-54.
.)) [9] J. Wielemaker, Native Preemptive Threads in SWI-
This work is partlally funded by the ERDF Prolog, in: International Conference on Logic Program-
(European Regional Development Fund) through ming, no. 2916 in LNCS, Springer, 2003, pp. 331-345.
the COMPETE Programme and by FCT (POI— [10] T. Swift, D. S. Warren, XSB: Extending Prolog with
. . Y Tabled Logic Programming, Theory and Practice of
tuguese Foundation for Science and Technology) Logic Programming 12 (1 & 2) (2012) 157-187.
within project SIBILA (NORTE-07-0124-FEDER- [11] J. Freire, R. Hu, T. Swift, D. S. Warren, Exploiting Par-
000059)_ Miguel Areias is funded by the FCT grant allelism in Tabled Evaluations, in: International Sym-
posium on Programming Languages: Implementations,
SFRH/BD/69673/2010' Logics and Programs, no. 982 in LNCS, Springer, 1995,

[1] R. Bellman, Dynamic Programming, Princeton Univer- pp. 115-132. . .
sity Press, 1957. [12] R. Marques, T. Swift, J. C. Cunha, A Simple and Ef-

[2] A. Stivaia P. Stuckey, M. G. de la DBanda ficient Implementation of Concurrent Local Tabling,
M. Hermen’egildo, A. Wilzth, Lock-Free Parallel Dy: in: International Symposium on Practical Aspects of
namic Programming, Journal of Parallel and Dis- Declarative Languages, no. 5937 in LNCS, Springer,
tributed Computing 70 (8) (2010) 839-848. 2010, pp. 264-278. .

[3] W. Chen, D. S. Warren, Tabled Evaluation with Delay- [13] S. Martello, P. Toth, Knapsfack Problemg Algorithms
ing for General Logic Programs, Journal of the ACM and Computer Implementations, John Wiley and Sons,
43 (1) (1996) 20-74. 1990. o .

[4] R. Marques, T. Swift, Concurrent and Local Evaluation (14] H'_'F' G“:uo, G. G‘upta, Slmpl.lfylng Dynamic Prf)grarn—
of Normal Programs, in: International Conference on ming via Mode-directed Tabling, Software Practice and
Logic Programming, no. 5366 in LNCS, Springer, 2008, Experience 38 (1) (2098) 75-94.)
pp. 206-222. [15] V. Kumar, Introduction to Parallel Computing, 2nd

[5] M. Areias, R. Rocha, Towards Multi-Threaded Local Edition, Addison-Wesley, 2002.

Tabling Using a Common Table Space, Journal of The- [16] J. Evans, A Scalable Concurrent fnalloc(?)) Implemen-
ory and Practice of Logic Programming, International tation for FreeBSD, in: The Technical BSD Conference,
Conference on Logic Programming, Special Issue 12 (4 2006.

[17] M. Areias, R. Rocha, An Efficient and Scalable Mem-

& 5) (2012) 427-443.

J. Santos, R. Rocha, On the Efficient Implementation of
Mode-Directed Tabling, in: International Symposium
on Practical Aspects of Declarative Languages, no. 7752
in LNCS, Springer, 2013, pp. 141-156.

(6]

12

ory Allocator for Multithreaded Tabled Evaluation of
Logic Programs, in: International Conference on Paral-
lel and Distributed Systems, IEEE Computer Society,
2012, pp. 636—643.

