
Proceedings of the 15th International

Symposium on High-Level

Parallel Programming and Applications

Porto, Portugal

July 7–8, 2022

Miguel Areias Inês Dutra Jorge Barbosa

(Eds.)

Preface

This volume contains the proceedings of the 15th edition of HLPP, the

International Symposium on High-Level Parallel Programming and Applica-

tions, which took place in the Department of Computer Science, Faculty of

Sciences, University of Porto, Portugal, during July 7–8, 2022.

Since 2001, the HLPP series of workshops/symposia has been a forum

for researchers developing state-of-the-art concepts, tools and applications for

high-level parallel programming. The general emphasis is on software quality,

programming productivity and high-level performance models. Contributions

to HLPP are sought in all topics in high-level parallel programming, its tools

and applications, including:

– High-level programming and performance models (BSP, CGM, LogP, MPM,

etc) and tools

– Declarative parallel programming methodologies

– Algorithmic skeletons and constructive methods

– Declarative parallel programming languages and libraries: semantics and

implementation

– Verification of declarative parallel and distributed programs

– Software synthesis, automatic code generation for parallel programming

– Model-driven software engineering with parallel programs

– High-level programming models for heterogeneous/hierarchical platforms

– High-level parallel methods for large structured and semi-structured datasets

– Applications of parallel systems using high-level languages and tools

– Formal models of timing and real-time verification for parallel systems

This year, we received 17 paper submissions. Each paper was reviewed by

at least three referees who provided detailed written evaluations. At the end,

10 papers were selected for publication in this volume and presentation at

the symposium. The set of selected papers present a variety of contributions

and were divided into three sessions for presentation at the symposium. After

the symposium, the authors of the selected papers will have the opportunity

to revise their papers, taking into account the comments and remarks of the

referees, and submit them to the HLPP 2022 Special Issue to be published by

Springer in the International Journal of Parallel Programming (IJPP).

We would like to thank our generous sponsors – the Department of Com-

puter Science at Faculty of Sciences, University of Porto (FCUP); the CRACS

& INESCTEC research unit; and Huawei – and the EasyChair conference man-

agement system for making the life of the Program Chairs easier. We would

i

also like to thank the staff of FCUP (Alexandra Ferreira, Daniel Pereira, Isabel

Gonçalves and Paulo Ramos) for making the online event possible.

We want also to express our gratitude to the Steering Committee mem-

bers, for giving us the opportunity to organize the event, and to the Program

Committee members and external reviewers, as the symposium would not have

been possible without their knowledge, dedicated time and enthusiastic work.

Finally, thanks should go also to the authors of all submitted papers for their

contribution and interest in the symposium and to the participants for mak-

ing the event a meeting point for a fruitful exchange of ideas and feedback on

recent developments. Thank you all for your contribution to HLPP 2022.

July 2022,

Miguel Areias

Inês Dutra

Jorge Barbosa

ii

Organization

Steering Committee

Frédéric Dabrowski Université d’Orléans, France

Marco Danelutto University of Pisa, Italy

Inês Dutra University of Porto, Portugal

Arturo Gonzalez-Escribano Universidad de Valladolid, Spain

Clemens Grelck University of Amsterdam, Netherlands

Gaétan Hains Huawei Paris Research Centre, France

Christoph Kessler Linköping University, Sweden

Herbert Kuchen University of Münster, Germany

Kiminori Matsuzaki Kochi University of Technology, Japan

Virginia Niculescu Babes,-Bolyai University, Romania

Program Chairs

Miguel Areias University of Porto, Portugal

Inês Dutra University of Porto, Portugal

Jorge Barbosa University of Porto, Portugal

Publicity Chair

Carlos Ferreira Polytechnic Institute of Porto, Portugal

iii

Program Committee

Marco Aldinucci University of Torino, Italy

Murray Cole The University of Edinburgh, UK

Iacopo Colonnelli University of Torino, Italy

Frédéric Dabrowski LIFO - Université d’Orléans, France

Marco Danelutto University of Pisa, Italy

João Gama University of Porto, Portugal

Arturo Gonzalez-Escribano The University of Valladolid, Spain

Clemens Grelck University of Amsterdam, Netherlands

Dalvan Griebler PUCRS/SETREM, Brasil

Gaétan Hains Huawei Paris Research Center, France

Ali Jannesari Iowa State University, USA

Christoph Kessler Linköping University, Sweden

Peter Kilpatrick Queen’s University Belfast, UK

Herbert Kuchen University of Münster, Germany

Kiminori Matsuzaki Kochi University of Technology, Japan

Virginia Niculescu Babes,-Bolyai University, Romania

Aleksandar Prokopec Ecole Polytechnique Fédérale de Lausanne, Switzerland

Nuno Roma University of Lisbon, Portugal

Kostis Sagonas Uppsala University, Sweden

João Sobral University of Minho, Portugal

Massimo Torquati University of Pisa, Italy

External Reviewers

Nina Herrmann, Chong Li, Nuno Neves, Wijnand Suijlen,

Thibaut Tachon, João Vieira and Albert Wong

Web Page

https://hlpp2022.dcc.fc.up.pt

Sponsors

iv

Table of Contents

A Fault-model-relevant Classification of Consensus Mechanisms for MPI and HPC

Grace Nansamba, Amani Altarawneh and Anthony Skjellum

Accelerating OCaml programs on FPGA

Löıc Sylvestre, Emmanuel Chailloux and Jocelyn Sérot

Assessing Application Efficiency and Performance Portability in Single-Source

Programming for Heterogeneous Parallel Systems

August Ernstsson, Dalvan Griebler and Christoph Kessler

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System

Fabian Knorr, Peter Thoman and Thomas Fahringer

Distributed Calculations with Algorithmic Skeletons for Heterogeneous Computing

Environments

Nina Herrmann and Herbert Kuchen

Distributed-memory FastFlow Building Blocks

Nicolò Tonci, Massimo Torquati, Gabriele Mencagli and Marco Danelutto

Efficient High-Level Programming in plain Java

Rui Silva and João Sobral

Generic Exact Combinatorial Search at HPCScale

Ruairidh MacGregor, Blair Archibald and Phil Trinder

Interruptible Nodes: Reducing Queueing Costs in Irregular Streaming Dataflow

Applications on Wide-SIMD Architectures

Stephen Timcheck and Jeremy Buhler

SMSG: profiling-free parallelism modeling for distributed training of DNN

Haoran Wang, Thibaut Tachon, Chong Li, Sophie Robert and Sébatien Limet

v

Noname manuscript No.
(will be inserted by the editor)

A Fault-model-relevant Classification of Consensus
Mechanisms for MPI and HPC

Grace Nansamba · Amani Altarawneh ·
Anthony Skjellum

Received: date / Accepted: date

Abstract Large-scale HPC systems experience failures arising from faults in
hardware, software, and/or networking. Failure rates continue to grow as sys-
tems scale up and out. Crash fault tolerance has up to now been the focus
when considering means to augment the Message Passing Interface (MPI) for
fault-tolerant operations. This narrow model of faults (usually restricted only
to process or node failures) is insufficient. Without a more general model for
consensus, gaps in the ability to detect, isolate, mitigate, and recover HPC
applications efficiently will arise. Focusing on crash failures is insufficient be-
cause a chain of underlying components may lead to system failures in MPI.
What is more, clusters and leadership-class machines alike often have Relia-
bility, Availability, and Serviceability Systems (RAS) to convey predictive and
real-time fault and error information, which does not map strictly to process
and node crashes. A broader study of failures beyond crash failures in MPI
will thus be useful in conjunction with consensus mechanism for developers as
they continue to design, develop, and implement fault-tolerant HPC systems
that reflect observable faults in actual systems. We describe key factors that
must be considered during consensus-mechanism design. We illustrate some of
the current MPI fault tolerance models based on use case. We offer a novel
classification of common consensus mechanisms based on these factors such as
the network model, failure types, and based on use cases (e.g., fault detection,

Grace Nansamba
University of Tennessee at Chattanooga
E-mail: jpp751@mocs.utc.edu

Amani Altarawneh
Colorado State University
E-mail: amani.altarawneh@colostate.edu

Anthony Skjellum
University of Tennessee at Chattanooga
E-mail: tony-skjellum@utc.edu

2 Grace Nansamba et al.

synchronization) of the consensus in the computation process, including crash
fault tolerance as one category.

Keywords consensus mechanisms · fault tolerance · replication · synchro-
nization · fault detection · message-passing model

1 Introduction

High performance computing (HPC) requires the aggregation of processing
power to solve large science, engineering, and business problems. Processes’
interactions in HPC create complexity because of the number of processors
used in a given computation and the need for coordination between them (e.g.,
shared memory and message passing). Interprocess communication may cause
faults that lead to system deadlocks, system halts, and unexpected output.

Consensus is a fundamental building block for fault-tolerant HPC systems.
Processes in an MPI [Forum(2015)] program need to utilize consensus mecha-
nism to avoid, prevent, and mitigate faults. A consensus model is a mechanism
used to make shared decisions. These decisions are mainly for fault tolerance,
replication and synchronization1. Because of the significant roles of consensus
in HPC systems, several mechanisms have been designed to fit application
purposes and requirements. Consensus ensures agreement between processes
and maintains consistency during interprocess communication in peer mod-
els such as MPI provides. Many novel consensus mechanisms have been de-
signed for distributed systems and have been extended for use in HPC systems.
However, there is a need to study and classify consensus mechanisms to fill
apparent gaps and to design new, reliable consensus mechanisms for HPC sys-
tems (and especially for a fault-tolerant MPI) [Hassani et al.(2014)Hassani,
Skjellum, and Brightwell, Sultana et al.(2019)Sultana, Rüfenacht, Skjellum,
Laguna, and Mohror]. Consensus mechanism designers and developers need
to be aware of various factors during the mechanisms designing process, and
taking to account that the new design must not increase the system overhead
or affect the current system scalability [Altarawneh et al.(2020)Altarawneh,
Herschberg, Medury, Kandah, and Skjellum].

However, designing a byzantine consensus mechanism is a challenging task
because of the complexity of the type of failures that need to be considered
during the parallel computation process. There is a need to study the ro-
bustness and reliability for such mechanisms. Byzantine failures prevent peer
processes from reaching agreement on a given value, which introduces another
level of messages integrity requirements [Altarawneh and Skjellum(2020)].

The main contributions of this paper are 1) an explanation of the factors
that must be considered during consensus-mechanism design; 2) A description
of the types of failures that are encountered in HPC systems beyond crash
failures; 3) an illustration of some of the current MPI fault tolerance models

1 Consensus under fault-free operations is also an inherent property of typical bulk-
synchronous parallel programs / data-parallel programs.

Title Suppressed Due to Excessive Length 3

based on how they are used; 4) a novel classification of common consensus
mechanisms based on these aspects such as the network model, failure types,
and based on use cases (e.g., fault detection, synchronization) of the consensus
in the computation process.

The remainder of this paper is organized as follows: Importance of this
classification 2, background and related work are described in Section 3. Fac-
tors that arise during the consensus mechanism design are described in three
subsections as follows: network model, usage, and failure source and types
in section 4. MPI fault tolerance models are described in 5. Section 6 de-
scribes a consensus mechanism classification for HPC. Finally, Section 7 offers
conclusions and future work.

2 Why this classification is important

A fault-model-relevant classification of consensus mechanisms provides a use-
ful basis for determining the appropriate consensus algorithms for a variety
applications in HPC. The classification presented in this paper is important
for the design of consensus algorithm that are fit for purpose and a possibility
to design robust generalised consensus models that can be used for different
applications. Based on the fact that the classification highlights factors dur-
ing consensus mechanism design in section 4, a consensus mechanism tailored
toward particular usage or network model or failure type can be applied in
different HPC applications.

Classifying consensus mechanisms in the HPC domain is a contribution
toward achieving fault tolerance for HPC models and applications. The ex-
amples of the HPC fault tolerant models and the consensus algorithms they
use provides rationale for which other new and old models can be improved.
Further, the classification suggest that MPI programs should be re-imagined
to have appropriate consensus mechanisms in concert with the faults to be
addressed.

We reviewed the consensus mechanisms proposed so-far and we present
a classification of the popular consensus mechanisms in HPC. The classifica-
tion focuses on how useful consensus algorithms are in fault tolerant HPC
models such as MPI Stages [Sultana et al.(2019)Sultana, Rüfenacht, Skjellum,
Laguna, and Mohror], ULFM [Bland et al.(2013)Bland, Bouteiller, Herault,
Bosilca, and Dongarra] and FAMPI [Hassani et al.(2014)Hassani, Skjellum,
and Brightwell]. The classification will enhance the application and use of
consensus algorithms in HPC to design fault tolerant and thus scalable and
better performing applications.

3 Background and Related Work

In this section, we describe background and related work. First, RAS (Reliabil-
ity, Availability, and Serviceability) [Wikipedia contributors(2021c)] Systems

4 Grace Nansamba et al.

provide a rich source of multifarious fault data, including predictive fault in-
formation in certain cases. This data source motivates the need for fault mod-
els that mirror the complexity and variety of available information at runtime.
Second, in complement to fault information, consensus algorithms provide peer
processes and threads in an MPI application and/or runtime system with the
ability to reach agreement2 on key state, such as program status and observed
faults. Understanding the state of the art is important, as well as potential
need for extensions when considering new forms of fault information.

3.1 RAS Systems and Fault Data

We note that RAS systems and mechanisms (Reliability, Availability, and
Serviceability) offer rich, timely information3 about predictive and detected
failures in clusters and leadership-class machines, including IPMI [Manage
Engine(2021)] and SNP-traps [DNS Stuff(2021)], and Linux/OS event logs,
that jointly provide node, network, disk, memory, and other levels of temporary
and permanent failure information. Because such data are available, and are
usually not exploited in existing MPI Fault Tolerant concepts and systems,
there is room for rethinking and extending fault-tolerant MPI approaches.
We note that our generalized taxonomy meshes well with this rich, real-time
source of fault information [Scargall(2020),Wikipedia contributors(2021c)].

3.2 Consensus Mechanisms

Consensus is a fundamental computing problem in distributed systems; it has
been explored over the past 30+ years. It is required for agreement between dif-
ferent actors (e.g., processes, threads, devices, ...) about state changes within
distributed systems. Consensus is required to ensure consistency and reliability
of a given system. Many researchers have designed, implemented and classi-
fied consensus mechanisms for distributed systems that are fit for particular
purposes. Most of these classifications, of late, have been in the blockchain
technology area because of the recent popularity of this technology for cryp-
tocurrency applications [Bano et al.(2019)Bano, Sonnino, Al-Bassam, Azouvi,
McCorry, Meiklejohn, and Danezis].

Blockchain is a well-known cryptocurrency technology that is now extended
to other non-cryptocurrency applications in distributed systems [Cachin and
Vukolić(2017)]. Consensus is applied in a blockchain protocol to reach agree-
ment on the miner (peer participant in advancing the underlying digital ledger
state, a process called mining). Miners cooperate/compute in order to mine
the next data block and when committing blocks and transactions validation.

2 Reaching agreement is never guaranteed in theory, but often possible heuristically in
practice (cf, FLP [Borowsky and Gafni(1993)]).

3 There can be security concerns about enabling a parallel program to receive fault infor-
mation from the exterior of the parallel system. Coping with any possible covert channels
through translation and vetting of such information appears tractable in practice.

Title Suppressed Due to Excessive Length 5

Consensus algorithms have recently been classified by some of us and oth-
ers [Altarawneh et al.(2020)Altarawneh, Herschberg, Medury, Kandah, and
Skjellum,Bano et al.(2019)Bano, Sonnino, Al-Bassam, Azouvi, McCorry, Meik-
lejohn, and Danezis,Cachin and Vukolić(2017)] according to different criteria.
They have been classified as either leader-based or voting-based. Leader-based
algorithms notionally have a leader actors/process that is in charge of broad-
casting to other nodes (miners) and committing state changes. The classifi-
cation was further categorized into competitive and collaborative consensus.
Examples of leader-based algorithms in [Altarawneh et al.(2020)Altarawneh,
Herschberg, Medury, Kandah, and Skjellum] include; proof of work (PoW)
[Dwork(1993)], proof of stake (PoS) [King and Nadal(2012)], proof of elapsed
time (PoET) [Intel(????)] and RAFT [Ongaro and Ousterhout(2014)]. Voting-
based consensus means that the processors/actors vote for state change or can
be both representative and gossip voting. Some of these are Delegated Proof
of Stake (DPoS) [Fan and Chai(2018)], Practical Byzantine Fault Tolerance
(PBFT) [Castro and Liskov(1999)], Hotstuff [Yin et al.(2019)Yin, Malkhi, Re-
iter, Gueta, and Abraham], LibraBFT [Baudet et al.(2019)Baudet, Ching,
Chursin, Danezis, Garillot, Li, Malkhi, Naor, Perelman, and Sonnino], hash-
graph and the gossip protocol [Katti et al.(2015)Katti, Di Fatta, Naughton,
and Engelmann] , and tangle and weight protocol [Popov(2016)].

Consensus has been used to attain fault tolerance in MPI applications
but no classification has been conducted for HPC consensus mechanisms of
which we are aware. A classification will aid researchers in the design of fault
tolerant consensus mechanisms for HPC system. Consensus in HPC is useful
for agreement about the systems state and for making decision on whether
to commit or abort state changes, particularly when coping with a transition
from a failure state to a new, non-failure state.

Al-Mamun et al. [Al-Mamun et al.(2019)Al-Mamun, Li, Sadoghi, Jiang,
Shen, and Zhao] proposed HPChain, an MPI-based blockchain framework de-
signed for HPC systems that employs a new consensus protocol. The protocol
requires only 51% of the processes to be correctly running in order for the
distributed system performance to continue which implies a level of fault tol-
erance. HPChain aims to achieve immutability, decentralization, and reliabil-
ity of HPC data by utilizing blockchains, which boosts data fidelity. HPChain
leverages the data provenance that are stored in the blockchain to tolerate
failures caused by faulty MPI processes.

In 2020, Al-Mamun and Zhao [Al-Mamun and Zhao(2020)] designed a pro-
totype, BAASH (blockchain-as-a-service framework for HPC). This is a frame-
work of consensus protocols and a fault-tolerant subsystems for MPI to lever-
age the advantages of blockchain; they overcame the limitations of applying
blockchains into HPC (i.e., consensus protocols and serialized I/O subsystems).
Earlier, Buntinas [Buntinas(2012)] described a scalable distributed consensus
algorithm for fault tolerant features in MPI. It is a ballot-based algorithm
where the root broadcasts the ballot, agree message and commit message to
other processes using an MPI validate function. Buntinas [Darius(2012)] de-
scribed a scalable, distributed consensus algorithm that is used to support

6 Grace Nansamba et al.

MPI fault-tolerance features in MPI-3. Other distributed consensus algorithms
are described in [Ranganathan et al.(2001)Ranganathan, George, Todd, and
Chidester,Herault et al.(2015)Herault, Bouteiller, Bosilca, Gamell, Teranishi,
Parashar, and Dongarra,De Camargo and Duarte(2016)], and elsewhere.

4 Factors during consensus-mechanism design

In this section, we explain the essential aspects or factors that impact consensus-
mechanism design. These factors include network model, usage, and failure
source and types.

4.1 Network model

A network is a major component in HPC systems because of the presence
of many processors that demand use of a network to support communication
among peer processes or clusters. In this section, we discuss three network
models in HPC: synchronous, asynchronous, and partially synchronous:

– Synchronous network model: In the synchronous HPC model, mes-
sages from one process to another are expected to be delivered after a finite
amount of time . The message passing between processes is in real time
and significant delays are reported as process failures. A classic example of
synchronous HPC models is the Bulk Synchronous Parallel (BSP) model,
which is used in many HPC applications [Sultana et al.(2019)Sultana,
Rüfenacht, Skjellum, Laguna, and Mohror]. In MPI, the synchronous oper-
ations block a process till the operation completes and completeness means
that the message has been delivered to the receiving process (but not yet
necessarily to the receiving buffer).

– Asynchronous network model: Messages in asynchronous models in
HPC are not time bound. Messages delivered between a pair or a group
of processes can be delayed by an unknown and sometimes an infinite
amount of time. In MPI, asynchronous message passing is non-blocking
and it only initiates the operation and does not need to progress/transfer
them immediately. This allows more parallelism in asynchronous operations
than in synchronous.

– Partially synchronous network model: A partially synchronous model
is at the intersection of the two models described above. In this model, mes-
sages between processes are delivered in an undefined but finite amount.
There is an upper time bound for messages to be delivered from one proces-
sor to another that is not known priori [Dwork et al.(1988)Dwork, Lynch,
and Stockmeyer]. Fault tolerant protocols use distributed clocks to al-
low partially synchronous processes to agree on time. Distributed clocks
are fault-tolerant variations on the clock as described by Lamport [Lam-
port(1983)]. This model is more practical in HPC environments as com-
pared to the asynchronous model. This model is a viable solution to the

Title Suppressed Due to Excessive Length 7

FLP impossibility result [Borowsky and Gafni(1993)] and thus more appli-
cable and preferred in HPC systems [Moise(2011)].

4.2 Usage

Consensus is useful in HPC environments for synchronization, replication, fault
tolerance, decision-making, and optimization. All these operations are applied
at different stages in the life cycle of an HPC application. We describe of the
use-cases where consensus is applied in HPC environments and particularly in
MPI.

4.2.1 Synchronization

In distributed systems, process or node synchronization is fundamental. This
is because peer processes must agree on certain system state to ensure reli-
ability of the entire system. Synchronization is important when failures oc-
cur in order to make proper recovery decisions. Synchronization is applied
when many processes must agree on a single value in order for the system
to continue working correctly. Consensus is used to achieve this agreement
between the different processes. In nonblocking MPI operations, synchroniza-
tion is achieved using MPI calls such as MPI Wait() and MPI Barrier or
other synchronizing MPI collectives such as MPI Allreduce. In MPI Stages
[Sultana et al.(2019)Sultana, Rüfenacht, Skjellum, Laguna, and Mohror], an
agree/commit consensus approach was used such that the live processes syn-
chronize with the relaunched processes during process recovery. In the FA-MPI
model [Hassani et al.(2014)Hassani, Skjellum, and Brightwell], synchronization
is the third phase in the process of achieving fault tolerance. This is a result of
the global state of MPI that requires all peers to remain consistent at the end
of every transaction. This phase is also referred to as error synchronization
since all the error information should be synchronized among all peers.

4.2.2 Replication

MPI applications can use replication as an alternative to checkpoint/restart
in case of failures, as proposed by Ropars et al. using an intra-parallelization
technique [Ropars et al.(2015)Ropars, Lefray, Kim, and Schiper]. The intra-
parallelization was designed to overcome the resource requirements of full repli-
cation through work-sharing between replicas. The algorithm was based on
task parallelism where the work load is shared between replicas of a logical
process and message passing done with MPI. Process replication was examined
and evaluated as a viable solution for fault tolerance and reliability of exas-
cale systems [Ferreira et al.(2011a)Ferreira, Stearley, Laros, Oldfield, Pedretti,
Brightwell, Riesen, Bridges, and Arnold]. This research mainly focused on MPI
applications and MPI process replication, which require consistency between
replicas. They designed a simple MPI library, rMPI, that replicates each MPI

8 Grace Nansamba et al.

process (in MPI COMM WORLD in an application and in case of failure of original
MPI process, the replicas continue. The protocols used for consistency apply
the leader-based consensus since they have a leader node for each replicated
MPI process and the non-leader processes/nodes hold the replicas. From their
results, the state-machine replication approach performed better than clas-
sic fault rollback recovery techniques such as checkpoint/restart [Sankaran
et al.(2005)Sankaran, Squyres, Barrett, Sahay, Lumsdaine, Duell, Hargrove,
and Roman].

Ferreira et al. [Ferreira et al.(2011b)Ferreira, Stearley, Laros, Oldfield, Pe-
dretti, Brightwell, Riesen, Bridges, and Arnold] presented an evaluation for
use of state machine replication mechanism as an alternative to checkpoint-
restart for fault tolerance in exascale sytems. Woo Son et al. presented a
block replication approach where the data is stored redundantly using repli-
cation aware derived MPI data types [Woo et al.(2011)Woo, Lang, Latham,
Ross, and Thakur]. Transparent replication was achieved within MPI-IO via
the profiling interface to MPI (PMPI). This research showed that parallel file
system redundancy through block replication creates a more reliable MPI-IO
layer, which provides overall better reliability for MPI applications.

The consensus mechanisms that use state machine replication that we de-
scribed in this paper are mainly for distributed systems (i.e., Paxos [Lam-
port(1998)], RAFT [Ongaro and Ousterhout(2014)] and PBFT [Castro and
Liskov(1999)]).

4.2.3 Faults detection and recovery

There is drastic increase in failure rates arising from increased parallelism
in HPC systems. This has motivated the design and implementation of MPI
models that are fault tolerant; that is, they can detect failures and support
recovery of processes in case of failure. Consensus mechanisms are required in
the design of fault-tolerant models, some of which are described in this section.

The ULFM MPI model was designed with capabilities of failure reporting a
mechanism for recovery using defined ULFM constructs [Bland et al.(2013)Bland,
Bouteiller, Herault, Bosilca, and Dongarra]. Some of the ULFM constructs in-
clude; MPI COMM REVOKE for resolving non-uniform reporting and MPI COMM SHRINK

for creating a new functional communicator thus recovery. A special construct
MPI COMM AGREE was used for consensus among alive processes to ensure con-
sistent state at completion by returning a boolean value.

FA-MPI (Fault Aware MPI) is a model extension to MPI that adds transac-
tions for failure detection, isolation and recovery [Hassani et al.(2014)Hassani,
Skjellum, and Brightwell]. The FA-MPI model uses a TryBlock function to
detect and propagate failure information in non-blocking transactions. It also
includes a timeout mechanism to report when operations successfully or un-
successfully finish. HPC applications that apply FA-MPI have high chances
of running to completion compared to nominal MPI execution that is non-
fault aware. FA-MPI uses a fault tolerant Allgatherv/Allreducev protocol for
consensus agreement. This creates a list of all failures gathered from all MPI

Title Suppressed Due to Excessive Length 9

processes (in a given communicator’s scope/group) involved in the MPI oper-
ation, and they can be reported as error codes to other MPI processes. The list
of failures is broadcast to all other processes to create awareness of failures. It
further has a query for failure functionality with which the user can retrieve
information about failures in the system.

4.2.4 Making decisions

The presence of multiple processes working on the same problem in HPC de-
mands decision-making at all stages of the parallel task. The common decisions
made in HPC systems are commit or abort decisions about system state, trans-
action (e.g., a value to be agreed on) and failure recovery decisions. Consensus
mechanisms are essential while every process submits their local decision to
the global knowledge of all other peer processes.

4.2.5 Optimization

Designing of algorithms in distributed large-scale system requires optimiza-
tion. Optimization involves comparisons between different parameters in the
algorithms. The optimization problem can be formulated as a consensus prob-
lem as showed in Chang et al. and Boyd et al. [Chang et al.(2016)Chang, Hong,
Liao, and Wang,Boyd et al.(2011)Boyd, Parikh, Chu, Peleato, and Eckstein].
A given algorithm can be more performant than another depending on the cri-
teria used to optimize consensus. Some of the optimization problems include
the global consensus problem where all the local variables should agree.

4.3 Failure source and types

HPC systems are prone to failures that are caused by human errors, hardware
failures and software issues in the operating system. Failure in HPC systems
lead to substantial performance degradation. Several failure classifications have
been proposed for distributed systems. De Angelis [De Angelis(2018)] proposed
the Byzantine failures model, a hierarchy showing sub classes of failure in the
following ascending order. Fail-stop fault, crash fault, omission fault, timing
fault, incorrect computation fault, authenticate Byzantine fault and Byzantine
fault (super class).

4.3.1 Crash Failures

Crash failures happen when a compute node or process becomes unrespon-
sive. The process stops abruptly and fails to resume [Wikipedia contribu-
tors(2021b)]. General examples of crashes in computing systems include pro-
cess crash, operating system crashes, device driver crashes, application dead-
locks, and hardware failures [Leners et al.(2011)Leners, Wu, Hung, Aguilera,
and Walfish]. Crash failures in synchronous systems can be detected due to

10 Grace Nansamba et al.

timeout, but in pure asynchronous systems it is impossible to solve even a sin-
gle process crash failure [Moses and Raynal(2009)]. This is also called the FLP
impossibility result [Altarawneh and Skjellum(2020)]. An example of crash fail-
ure in HPC systems is the process failure or fail-stop and crash [Amin(2014)].
Process failure occur when MPI codes on computational nodes in a cluster
and the processes involved in an MPI job fail. Process crashes can be a result
of hardware, network or software failure, making one or more processes unre-
sponsive. Process failures are also defined as failures which occur even in the
presence of a reliable connection channel between processes [Rel(1999)] due to
other software or human errors.

4.3.2 Byzantine Failures

Byzantine failure results from erroneous behavior of the processes or nodes.
This can be caused by malicious communications from particular nodes. In
1982 Lamport et. al. described the byzantine fault using the byzantine generals
problem in 1982 [Lamport et al.(1982)Lamport, Shostak, and Pease]. Due
to byzantine faults, byzantine failures occur. This problem states that in a
distributed system, some of the processes, imaginary, referred to as ’lieutenants
and general’ are malicious and cannot be trusted during peer communication.
In order to make a final decision about communication a super-majority from
processes in the distributed system need to come to a consensus. A super-
majority must be greater than 2/3rd of the nodes in the system. If a third
or greater of nodes are malicious, then the system is susceptible to failures.
From Driscol et al. [Driscoll et al.(2004)Driscoll, Hall, Paulitsch, Zumsteg,
and Sivencrona] a byzantine fault is a fault presenting different symptoms to
different observers whereas a byzantine failure is the loss of a system service
due to a byzantine fault in systems that require consensus. Altarawneh et al.
affirmed that any failure that prevents nodes or processes from agreeing on a
value in a system is a byzantine failure [Altarawneh and Skjellum(2020)].

4.3.3 Hardware failures

Hardware failures [El-Sayed and Schroeder(2013)] occur when a hardware com-
ponent malfunctions and/or stops working because of hardware errors. Some
of these errors undetected by hardware become more frequent as comput-
ing systems scale up into exascale and may eventually affect many compu-
tations [Snir et al.(2014)Snir, Wisniewski, Abraham, Adve, Bagchi, Balaji,
Belak, Bose, Cappello, Carlson, Chien, Coteus, Debardeleben, Diniz, Engel-
mann, Erez, Fazzari, Geist, Gupta, Johnson, Krishnamoorthy, Leyffer, Lib-
erty, Mitra, Munson, Schreiber, Stearley, and Hensbergen]. Hardware errors
are classified into hard errors and soft errors. Hard errors are physical defects
that cause malfunctions and the system stops working such as power supply
or fan failure.

Silent memory errors are errors that will not be detected yet they corrupt
memory while the application continues to operate and eventually wrong re-

Title Suppressed Due to Excessive Length 11

sults are reported. They are also referred to as soft error which are transient
failures that occur in memory and are not correctable by Error Checking and
Correcting (ECC) such as bit flips. Chipkill [Wikipedia contributors(2021a)] is
an advanced ECC technology that protects the computer memory system from
errors that arise from a single memory chip [Wikipedia contributors(2021a)].
Chipkill has been used in HPC environment to design approaches that use
prediction to proactively avoid memory errors [Costa et al.(2014)Costa, Park,
Rosenburg, Cher, and Ryu,Schroeder and Gibson(2009)].

4.3.4 Timing failures

these failures occur in synchronous HPC systems when the response time of a
process exceeds the expected time range. These failures lead to delays in the
system since other processes could be waiting for a communication from that
particular delaying process. Omission failure occurs when a node’s response
is infinitely late. The node may fail to send messages or receive massages
[1000projects.org(2021)].

4.3.5 Software failures

these failures are associated with the system software and they occur when
the software prevents the system from functioning properly [Schroeder and
Gibson(2009)].

4.3.6 Network failures

these refer to all incidents that cause network downtime ranging from poorly
configured network devices to cable damages. The network requires regular
maintenance to prevent failures [Schroeder and Gibson(2009)].

4.4 HPC Models ability to terminate

Termination refers to a state when all processes in a distributed system finish
their tasks and become idle. It is a fundamental feature of a consensus algo-
rithm which should be considered in the design of HPC consensus models and
algorithms. Termination is one of the properties of a fault tolerant consensus
protocol, others including integrity and agreement. Termination detection is a
popular problem of study in HPC and distributed systems.

Termination can be achieved and applied to HPC through termination
detection algorithms. Huang proposed the original Credit Distribution Algo-
rithm in 1989 [Huang(1989)] which uses messages with weights to determine
termination. Bosilca et. al , [Bosilca et al.(2021)Bosilca, Bouteiller, Herault,
Le Fèvre, Robert, and Dongarra] defined termination detection algorithms as
distributed algorithms that observe that the global state has been reached

12 Grace Nansamba et al.

and then announces it to all processes. Some examples of termination detec-
tion algorithms for HPC discusses in [Bosilca et al.(2021)Bosilca, Bouteiller,
Herault, Le Fèvre, Robert, and Dongarra] include; Huang’s CDA (HCDA)
where messages carry credit between processes. The credit that each process
has is calculated as its weight, each process starts with an initial credit weight
which decreases or increases depending on the number of messages it has sent
and received. Termination is detected when the process weight equals its initial
total credit. The Four Counters wave algorithm is another algorithm which in-
volves propagation of messages throughout the nodes using counters to record
the number of sent and received messages. Each process has an up or down
state and when a process is idle, it informs all other processes in the system.
Using these messages and counters, the process sends a stop message to the
parent or root of the tree and this invokes termination. The Efficient Delay-
Optimal Distributed algorithm (EDOD) aims at achieving optimal detection
delay for the communication patterns while passing messages. All children
processes send stop message to the parent which becomes idle and announce
termination. It uses acknowledgement messages to prevent early termination.

5 MPI Fault Tolerance Models

In this section, we provide common MPI fault tolerance models that are used
for different uses cases such as synchronization, and detect failures. Many
powerful advances and extensions have been added to the MPI protocol,
to support the design of fault tolerant MPI. Each of the models such as:
ULFM [Bland et al.(2013)Bland, Bouteiller, Herault, Bosilca, and Dongarra],
MPI Stages [Sultana et al.(2019)Sultana, Rüfenacht, Skjellum, Laguna, and
Mohror], and FA-MPI [Amin(2014)] require a consensus mechanism during
their life cycle.

5.1 ULFM for failure detection and recovery

The User Level Failure Mitigation (ULFM) [Bland et al.(2013)Bland, Bouteiller,
Herault, Bosilca, and Dongarra] is the proposed fault tolerant model by the
MPI Forum which uses error codes to recover from failure. This is a post-
failure recovery model with the necessary flexibility for the implementation of
fault tolerant MPI applications [Losada et al.(2020)Losada, González, Mart́ın,
Bosilca, Bouteiller, and Teranishi]. ULFM’s design rationale includes failure
detection, communicator revocations and reconfiguration constructs (fault tol-
erance routines) to restore the communication among the processes and allow
continuation of program execution thereafter. Some of the constructs are as
follows: MPIX COMM REVOKE for failure reporting and ensuring that all processes
will be notified of processes failure, MPI COMM SHRINK which creates a new func-
tional communicator excluding the failed processes [Bland et al.(2013)Bland,
Bouteiller, Herault, Bosilca, and Dongarra].

Title Suppressed Due to Excessive Length 13

5.2 MPI stages for synchronization and decision-making

MPI stages is a fault tolerant failure recovery approach that significantly re-
duces the recovery time of Bulk Synchronous applications [Sultana et al.(2019)Sultana,
Rüfenacht, Skjellum, Laguna, and Mohror]. In the implementation of MPI
stages, MPI state checkpoint supports transparent replacement of a failed
process. The MPI state and application checkpoint are stored and loaded to
allow all the processes to start execution from the main computation loop
instead of from the main program, thus achieving the goal of MPI stages to
reduce recovery time. During failure recovery, failed processes are replaced by
new instance of the process. The MPI runtime system is notified by the failure
detector to replace the failed process with a new process and relaunch it.

5.3 FA-MPI for synchronization

FA-MPI [Hassani et al.(2014)Hassani, Skjellum, and Brightwell] is a lightweight
transactional model that uses fault awareness to decide the level of fault tol-
erance. FA-MPI supports failure detection, isolation, mitigation, and recovery
for non-blocking communication operations. The model includes the TryBlock,
a fundamental function which is used to try operations and decide on whether
to commit when all operations succeed else roll-back or roll-forward when
some fail [Hassani et al.(2015)Hassani, Skjellum, Bangalore, and Brightwell].
The TryBlock can be applied to three different transaction levels (i.e., local,
group-wise, and an in-between mode) which make FA-MPI per transaction
fault-aware.

All the above models are designed to fit particular application purposes
and we are not able to generalize a single consensus mechanism for all MPI
applications. However, with a classification of the common consensus mecha-
nisms based on network model, failure types, and on usage researchers will be
able to fill the gaps in the future designs of fault tolerant MPI applications.

6 Consensus classification in HPC

In this section, we provide a classification of common consensus mechanisms
based on the usage, the network model, and the type of failures, see Figure 1.

HPC system reliability is a fundamental subject as the systems continue
to expand even to Exascale, systems that are complex and more challenging
to design. Researchers are focusing on design of fault tolerant systems based
on the failure statistics from present HPC systems. The different types of
failures as described in Section 4 have different impact on the reliability of HPC
systems. Consensus is useful for coordination of processes in HPC systems to
attain reliability in the presence of faults or failure. It is at the center of various
fault tolerant mechanisms in HPC systems since there is always an agreement
required in the presence of many processes or nodes.

14 Grace Nansamba et al.

ReplicationFault detections

Agree
 Commit*‡‡

2PC*‡‡

3PC*‡‡

Making Decisions

PRC*‡‡

Raft*‡‡‡

Poax*‡‡‡

Static Tree
structure*‡‡

Dynamic Tree
structure*‡‡

PBFT**‡

Synchronization

Consensus Mechanisms

Coordinator-based
approaches

Gossip-based
approach*‡

Optimization

AD-ADMM*‡

Fig. 1 A Novel HPC Consensus Algorithms Classification based on usage. * – Crash fault
tolerant, ** – byzantine fault tolerant, ‡ - Asynchronous, ‡‡ – Synchronous, ‡‡‡ – Partially
Synchronous, note that the only asynchronous

The Message Passing Interface (MPI) is a popular communication pro-
tocol used in HPC for transmitting messages between peer processes that
forms a parallel job execution environment. Consensus is important in the de-
sign of fault tolerant MPI, such as MPI Stages [Sultana et al.(2019)Sultana,
Rüfenacht, Skjellum, Laguna, and Mohror]. In MPI Stages, consensus was
used to achieve synchronisation. An agree/commit approach of consensus was
used to agree on a value called the epoch value for MPI Stages that sig-
nificantly reduced on the recovery time after failure. Consensus mechanisms
have a vital role in fault tolerant applications [Hursey et al.(2011)Hursey,
Naughton, Vallee, and Graham] such as Bulk synchronous applications [Sul-
tana et al.(2019)Sultana, Rüfenacht, Skjellum, Laguna, and Mohror].

State Machine Replication is an approach used in building fault tolerant
systems. A state machine stores the state of a systems at any point during
process transaction. HPC involves the use decentralization and distributed
systems where state machines are required. State machine replication means
that the functioning components are replicated through redundancy that sup-
ports availability of the system. It supports liveliness and safety in case the
replicas are faulty at the same time. Consensus is needed to synchronize the
different replicas of the state machine to ensure consistence of the system.
Some of the consensus mechanisms such as PBFT and Paxos are classified as
state machine replication [Duan(2016)]. Consensus mechanisms are described
as follow:

– agree/commit approach: This approach was designed and implemented
for consensus in MPI Stages, for synchronous applications [Sultana et al.(2019)Sultana,
Rüfenacht, Skjellum, Laguna, and Mohror]. The value to agree on is the
epoch value, which is a key in the MPI Stages implementation. The epoch is
a variable, which is used to differentiate between first time processes (epoch
value must be zero) and relaunched processes. In this consensus approach,
the coordinator gathers all decisions from live processes and sends an agree
or disagree message to the head coordinator. The MPI processes compare

Title Suppressed Due to Excessive Length 15

and to agree on the epoch value, send it to the coordinatorl, which then
forwards to all live processes.

– Partially Reliable consensus (PRC): This synchronous mechanism was
described and proved by Amin Hassani [Amin(2014)]. This is a centralised
approach with one coordinator and many groups. PRC was designed to
agree on the correct MPI state in regard to the communicator. It used two
reliable operations; reduce and broadcast. In the reduce phase, live process
form a list of local errors and forward it to the coordinator with a flag
showing the MPI state; that is, failure or no failure. In the reliable broad-
cast operation, the coordinator broadcasts the list to all love processes.
PRC also involves unsolicited voting in contrast to 2PC and 3PC where
all live processes send votes to the coordinator. Further in his thesis, Has-
sani discussed a Better Partially Reliable Consensus (BPRC). This exten-
sion overcomes the inconsistencies in PRC where the coordinator fails be-
fore broadcasting its final decision. The mechanism uses sub-coordinators,
which are basically duplicates of the coordinator and are responsible for
sending the final decision to other processes in case of coordinator failure.

– Two-phase commit protocol (2PC): Two-phase commit protocol (2PC)
is a specialised synchronous consensus protocol that coordinates all par-
ticipating processes in a distributed transaction to decide on whether to
commit or abort the transaction. In 2PC, one of the nodes is assigned as
the coordinator and the rest of the nodes are designated as the partici-
pants. The coordinator is responsible for making the final decision after
receiving response from the participants. 2PC algorithm has two phases;
the commit request or voting phase where the coordinator sends a request
to commit message to all participants and waits, the participants respond
with an agreement message.
The second phase is the commit or completion phase where the coordinator
sends a commit message to all participants, each participant sends an ac-
knowledgement to the coordinator, which completes the transaction. The
shortcoming of 2PC as described in Hassani’s dissertation [Amin(2014)] is
that if the coordinator fails after making the decision and before broadcast-
ing it, then all the participants should wait until the coordinator recovers
making 2PC a blocking protocol. There are variants of the 2PC protocol
based on the recovery mechanisms in case of failure and protocol optimiza-
tions.

– Three-phase commit (3PC): 3PC is a more failure tolerant protocol
that overcomes the limitation of 2PC by introducing a third prepared to
commit or ready to commit phase. The algorithm is designed in that before
the commit phase the coordinator sends a prepared to commit message to
participants and are aware of the decision to commit. In case of coordinator
failure before the commit phase, but after the ready to commit phase,
other participants commit the transaction on timeout, thus overcoming the
blocking of 2PC [Amin(2014)]. 3PC is classified as a synchronous protocol.

– Coordinator-based Approaches: the processes in this approach are di-
vided in that one of the processes is a coordinator and others are partic-

16 Grace Nansamba et al.

ipants. It can also be referred to leader based Katti et. al. classified the
coordinator based approach [Katti et al.(2015)Katti, Di Fatta, Naughton,
and Engelmann] by transforming the original 2PC and 3PC to be fault
tolerant over a tree structure; that is over a static tree structure and over
a dynamic tree structure. The communication in this approach is syn-
chronous.
A) Over a static tree structure [Katti et al.(2015)Katti, Di Fatta, Naughton,
and Engelmann]: this structure applies to the 2PC consensus protocol. The
coordinator is at the root of the tree and makes the final decision after
receiving all the votes from participants. In the first phase, the coordina-
tor uses a gather operation to gather votes from the participants at the
leaves through the intermediate parent. In the second phase, the decision
is broadcast from root to leaves. In case of failure of the leaves, the parent
recursively adopts its children and if a parent fails, the child queries its
grandparent for updates, the child can vote again if the parent fails before
broadcasting its vote. If the coordinator fails after broadcasting the deci-
sion, a termination algorithm is called and the preceding parent reports
success or abort based on the termination status. If the coordinator fails
before propagating, then the tree is re-balanced with new alive processes.
B) Over a dynamic tree structure [Katti et al.(2015)Katti, Di Fatta, Naughton,
and Engelmann]: this uses the 3PC consensus protocol combined with reli-
able broadcast algorithm that constructs broadcast tree dynamically. The
three phases are Balloting, broadcasting the agree message and broadcast-
ing the commit message. The second phase, overcomes the challenges that
would occur if the coordinator fails before broadcasting the final decision.
The algorithm uses several messages such as REJECT, ACK, ACCEPT during
the balloting phase to ensure proper coordination as the root broadcasts
the ballot plus a list of failed processes to the child(ren). If the root fails,
the processes with the highest rank among the failed appoints itself as next
leader.

– Gossip-based Approaches: In the Gossip based consensus mechanism,
each processes randomly picks neighbors and shares information in an asyn-
chronous format. There are no leaders or followers but all processes are
peers each knowing the information about all other processes. Two gossip
based fault tolerant algorithms for HPC, which are intrinsically fault tol-
erant were proposed in [Katti et al.(2015)Katti, Di Fatta, Naughton, and
Engelmann]. The algorithms are built on the MPI COMM SHRINK() opera-
tion of UFLM [Bland et al.(2013)Bland, Bouteiller, Herault, Bosilca, and
Dongarra]. Each process detects failure by randomly pinging a process pe-
riodically also referred to as stochastic pinging. It involves a gossip cycle
in which a process p randomly selects to ping another process q, q must
reply before end of the cycle to prove that it is alive else it has failed.
Consensus is achieved by maintaining global knowledge at each MPI pro-
cess using a matrix to store status of all other processes. Another way
to achieve consensus is through an efficient heuristic method where each
process maintains a list of failed processes of which it is aware.

Title Suppressed Due to Excessive Length 17

– AD-ADMM (Asynchronous Distributed- Alternating Direction
Method of Multipliers): This is an asynchronous mechanism that uses
a star topology to solve consensus problems in parallel mannerS [Chang
et al.(2016)Chang, Hong, Liao, and Wang]. In their model, a master node
coordinates the rest of the distributed nodes referred to as ’workers’ on
the topology. The coordinator can make decisions based on a partial set
of nodes and does not need to wait for all the nodes on the network. This
mechanism overcomes the delays and idle time in synchronous models as
there is need to wait for the slowest worker to send information. The key
purpose of the AD-ADMM mechanism is optimization of communication
performance and how the network may impact the parallel computation.

– Paxos: This is a classic algorithm published in 1998 by Leslie Lamport
[Lamport(1998)]. The Paxos algorithm guarantees that a set of machines
will choose a single proposed value as long as majority of the nodes are
available. Paxos is an example of state machine replication, since copies of
the same value are shared among the participating processes. This is done
in a partially synchronous manner.
The algorithm uses agents; that is, proposers, ’acceptors’ and learners and
these are processes or nodes. These processes are involved in two phases
per successful round with assumptions that the communication between
processes is asynchronous. To ensure safety in the Paxos algorithm validity
is enforced since only proposed values are chosen and only one proposed
value is selected. The original algorithm solves crash failure [Garćıa-Pérez
et al.(2018)Garćıa-Pérez, Gotsman, Meshman, and Sergey] but improve-
ments have been made enable handling of byzantine failures [Castro and
Liskov(1999)].

– Raft (Reliable, Replicated, Redundant And Fault-Tolerant): This
algorithm was developed by Diego Ongara during his PhD dissertation
with novel features such as: strong leader, leader election, and membership
changes. It produces the equivalent results and is as efficient as Paxos [Lam-
port(1998)] but its structure is more understandable [Ongaro and Ouster-
hout(2014)]. Raft uses a replicated log, which contains information about
the state changes of each node. Raft divides the process into subsections:
leader election that happens when the current leader fail or when the
leader’s term ends. The leader must receive majority of votes from other
nodes. The message flow between leader and follower is maintained through
a heartbeat mechanism where the leader regularly sends a message about
its existence. When the follower stops receiving heartbeat messages, the
randomized election timeout ensures that no two or more follower or nodes
are being selected to be the new leader [Ongaro and Ousterhout(2014)].
Secondly, the leader receives and accepts log entries from other nodes. The
log entries include the state changes to the system. The leader broadcasts
state changes and the followers replicate them and store an individual
copy. The follower can reject a message if there are inconsistencies and
if they are resolved the leader must go through the previous entry and
broadcasts again. Once majority of the followers confirm that replication

18 Grace Nansamba et al.

of the log entry, the leader applies to its local state machine. The committed
leader’s state is also adapted by the rest of the follower and applied to their
state machine thus log replication in all the nodes. Raft ensures safety
through the use of state machine. Safety prevents malicious behavior from
happening in the system. Raft is classified into the partially synchronous
network model.

– PBFT (Practical Byzantine Fault Tolerance): This is a standard
consensus algorithm designed as a solution to Byzantine Fault Tolerance
(BFT) problems in 1999 by Lisvok and Castro [Miguel Castro(2002)].
PBFT is an asynchronous mechanism that tolerates faults in a system as
long as less than 1

3 of the nodes are faulty. Its design and implementation
is based on the state machine replication approach. There is no leader in
PBFT and all nodes participate in voting for state changes in the system.
The nodes are grouped into a primary node and replicas where the pri-
mary node acts the representative and the replicas have equal right to be
representatives [Altarawneh et al.(2020)Altarawneh, Herschberg, Medury,
Kandah, and Skjellum]. PBFT is energy efficient since it does not use
complex mathematical computations and gives transaction finality as the
transactions do not require multiple confirmations.

7 Conclusion and future work

In HPC, various consensus mechanisms that are fit for purpose have been de-
signed. Some of these mechanism are used in fault-tolerant MPI applications
mainly to solve crash failures or process failures. Common consensus mecha-
nisms are mostly based on the synchronous network model. Some of the usage
of consensus mechanisms in HPC include; failure detection, synchronization,
replication, and optimization. However, to the best of our knowledge, these
HPC consensus mechanisms are not classified.

In this paper, we explained the essential factors that must be considered
during consensus-mechanism design as most of them applied to peer-models
like MPI. We described the types of failures that are encountered in HPC
systems beyond crash failures because the other failures eventually lead to
process failures in HPC. We classified common consensus mechanisms based on
various factors such as the network model, which is important when designing
fault tolerant HPC applications. We presented a novel consensus classification,
see Figure 1. A mechanism such as PBFT [Castro and Liskov(1999)] would
be an ideal byzantine consensus mechanisms with an asynchronous underlying
model; however, it is not scalable because of its inherently high overhead.

We discussed the current MPI fault tolerance models based on the their
intended use. A classification according to use cases is useful in MPI environ-
ments to detect failures as soon as reasonably possible as they happen, syn-
chronize the processes on the current system states, and make the processes
able to make decisions and take actions in critical conditions. This paper is
useful to researchers since it describes the various fault tolerant consensus

Title Suppressed Due to Excessive Length 19

mechanisms in HPC. Failures in HPC have been explained more broadly than
process failures here, which is a common type failure that has been broadly
studied in HPC. With the research in this paper, HPC researchers can rec-
ognize other types of failures and the factors to consider while designing a
consensus mechanism and thus be able to detect, mitigate and recover from
failures in a more effective and efficient manner.

The major outcome of this paper is that the availability of RAS data
coupled with the fault classification and consensus mechanisms considered here
suggests that fault-tolerant models for MPI programs should be re-imagined
to use such external data together with generalized faults, not just process
and node failure. Then, they should use appropriate consensus mechanisms
in concert with the faults to be addressed. This remains as opportunities for
future work.

8 Acknowledgement

This work was performed with partial support from the National Science
Foundation under Grants Nos. CCF-1562659, CCF-1562306, CCF-1617690,
CCF-1822191, CCF-1821431. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

[Rel(1999)] (1999) On classes of problems in asynchronous distributed systems with pro-
cess crashes. In: Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems, IEEE Computer Society, USA, ICDCS ’99, p 470

[1000projects.org(2021)] 1000projectsorg (2021) Types of failures in distributed systems.
URL https://www.dnsstuff.com/snmp-monitoring-tools, [Online; accessed 23-May-
2021]

[Al-Mamun and Zhao(2020)] Al-Mamun A, Zhao D (2020) BAASH: enabling blockchain-as-
a-service on high-performance computing systems. CoRR abs/2001.07022, URL https:

//arxiv.org/abs/2001.07022, 2001.07022
[Al-Mamun et al.(2019)Al-Mamun, Li, Sadoghi, Jiang, Shen, and Zhao] Al-Mamun A, Li

T, Sadoghi M, Jiang L, Shen HT, Zhao D (2019) Hpchain: An mpi-based blockchain
framework for data fidelity in high-performance computing systems

[Altarawneh and Skjellum(2020)] Altarawneh A, Skjellum A (2020) The security ingredi-
ents for correct and byzantine fault-tolerant blockchain consensus algorithms. In: 2020
International Symposium on Networks, Computers and Communications (ISNCC), pp
1–9, DOI 10.1109/ISNCC49221.2020.9297326

[Altarawneh and Skjellum(2020)] Altarawneh A, Skjellum A (2020) The security ingredi-
ents for correct and byzantine fault-tolerant blockchain consensus algorithms. In: 2020
International Symposium on Networks, Computers and Communications (ISNCC), pp
1–9, DOI 10.1109/ISNCC49221.2020.9297326

[Altarawneh et al.(2020)Altarawneh, Herschberg, Medury, Kandah, and Skjellum]
Altarawneh A, Herschberg T, Medury S, Kandah F, Skjellum A (2020) Buterin’s
scalability trilemma viewed through a state-change-based classification for common
consensus algorithms. In: 2020 10th Annual Computing and Communication Workshop
and Conference (CCWC), pp 0727–0736, DOI 10.1109/CCWC47524.2020.9031204

20 Grace Nansamba et al.

[Amin(2014)] Amin H (2014) Toward a scalable, transactional, fault-tolerant message pass-
ing interface for petascale and exascale machines PhD dissertation, The University of
Alabama at Birmingham

[Bano et al.(2019)Bano, Sonnino, Al-Bassam, Azouvi, McCorry, Meiklejohn, and Danezis]
Bano S, Sonnino A, Al-Bassam M, Azouvi S, McCorry P, Meiklejohn S, Danezis G
(2019) Sok: Consensus in the age of blockchains. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, pp 183–198

[Baudet et al.(2019)Baudet, Ching, Chursin, Danezis, Garillot, Li, Malkhi, Naor, Perelman, and Sonnino]
Baudet M, Ching A, Chursin A, Danezis G, Garillot F, Li Z, Malkhi D, Naor O,
Perelman D, Sonnino A (2019) State machine replication in the libra blockchain

[Bland et al.(2013)Bland, Bouteiller, Herault, Bosilca, and Dongarra] Bland W, Bouteiller
A, Herault T, Bosilca G, Dongarra J (2013) Post-failure recovery of MPI communication
capability: Design and rationale. Int J High Perform Comput Appl 27(3):244–254, DOI
10.1177/1094342013488238, URL https://doi.org/10.1177/1094342013488238

[Borowsky and Gafni(1993)] Borowsky E, Gafni E (1993) Generalized flp impossibility re-
sult for ¡i¿t¡/i¿-resilient asynchronous computations. In: Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, NY, USA, STOC ’93, p 91–100, DOI 10.1145/167088.167119,
URL https://doi.org/10.1145/167088.167119

[Bosilca et al.(2021)Bosilca, Bouteiller, Herault, Le Fèvre, Robert, and Dongarra] Bosilca
G, Bouteiller A, Herault T, Le Fèvre V, Robert Y, Dongarra J (2021) Revisiting
credit distribution algorithms for distributed termination detection. In: 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp 611–620, DOI 10.1109/IPDPSW52791.2021.00095

[Boyd et al.(2011)Boyd, Parikh, Chu, Peleato, and Eckstein] Boyd S, Parikh N, Chu E, Pe-
leato B, Eckstein J (2011) Distributed optimization and statistical learning via the al-
ternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122, DOI
10.1561/2200000016, URL https://doi.org/10.1561/2200000016

[Buntinas(2012)] Buntinas D (2012) Scalable distributed consensus to support mpi fault
tolerance. In: 2012 IEEE 26th International Parallel and Distributed Processing Sym-
posium, pp 1240–1249, DOI 10.1109/IPDPS.2012.113

[Cachin and Vukolić(2017)] Cachin C, Vukolić M (2017) Blockchain consensus protocols in
the wild. arXiv preprint arXiv:170701873

[Castro and Liskov(1999)] Castro M, Liskov B (1999) Practical byzantine fault tolerance.
In: Proceedings of the Third USENIX Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, pp 173–
186, URL https://dl.acm.org/citation.cfm?id=296824

[Chang et al.(2016)Chang, Hong, Liao, and Wang] Chang TH, Hong M, Liao WC, Wang X
(2016) Asynchronous distributed admm for large-scale optimization—part i: Algorithm
and convergence analysis. IEEE Transactions on Signal Processing 64(12):3118–3130,
DOI 10.1109/TSP.2016.2537271

[Costa et al.(2014)Costa, Park, Rosenburg, Cher, and Ryu] Costa CHA, Park Y, Rosen-
burg BS, Cher CY, Ryu KD (2014) A system software approach to proactive memory-
error avoidance. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE Press, SC ’14, p 707–718, DOI
10.1109/SC.2014.63, URL https://doi.org/10.1109/SC.2014.63

[Darius(2012)] Darius B (2012) Scalable distributed consensus to support mpi fault toler-
ance. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium,
IEEE, pp 1240–1249

[De Angelis(2018)] De Angelis S (2018) Assessing security and performances of consensus
algorithms for permissioned blockchains. arXiv preprint arXiv:180503490

[De Camargo and Duarte(2016)] De Camargo ET, Duarte EP (2016) Running resilient MPI
applications on a dynamic group of recommended processes. In: 2016 Seventh Latin-
American Symposium on Dependable Computing (LADC), pp 15–24, DOI 10.1109/
LADC.2016.14

[DNS Stuff(2021)] DNS Stuff (2021) Snmp monitoring tools. URL https://www.dnsstuff.

com/snmp-monitoring-tools, [Online; accessed 23-May-2021]

Title Suppressed Due to Excessive Length 21

[Driscoll et al.(2004)Driscoll, Hall, Paulitsch, Zumsteg, and Sivencrona] Driscoll K, Hall B,
Paulitsch M, Zumsteg P, Sivencrona H (2004) The real byzantine generals. In: The 23rd
Digital Avionics Systems Conference (IEEE Cat. No.04CH37576), vol 2, pp 6.D.4–61,
DOI 10.1109/DASC.2004.1390734

[Duan(2016)] Duan S (2016) Building reliable and practical byzantine fault tolerance PhD
dissertation, University of California Davis

[Dwork et al.(1988)Dwork, Lynch, and Stockmeyer] Dwork C, Lynch N, Stockmeyer L
(1988) Consensus in the presence of partial synchrony. J ACM 35(2):288–323, DOI
10.1145/42282.42283, URL https://doi.org/10.1145/42282.42283

[Dwork(1993)] Dwork M Cynthiaand Naor (1993) Pricing via processing or combatting junk
mail. In: Brickell EF (ed) Advances in Cryptology — CRYPTO’ 92, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 139–147

[El-Sayed and Schroeder(2013)] El-Sayed N, Schroeder B (2013) Reading between the lines
of failure logs: Understanding how hpc systems fail. In: 2013 43rd annual IEEE/IFIP
international conference on dependable systems and networks (DSN), IEEE, pp 1–12

[Fan and Chai(2018)] Fan X, Chai Q (2018) Roll-dpos: A randomized delegated proof of
stake scheme for scalable blockchain-based internet of things systems. In: Proceedings of
the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, ACM, New York, NY, USA, MobiQuitous ’18, pp 482–484,
DOI 10.1145/3286978.3287023, URL http://doi.acm.org/10.1145/3286978.3287023

[Ferreira et al.(2011a)Ferreira, Stearley, Laros, Oldfield, Pedretti, Brightwell, Riesen, Bridges, and Arnold]
Ferreira K, Stearley J, Laros JH, Oldfield R, Pedretti K, Brightwell R, Riesen R,
Bridges PG, Arnold D (2011a) Evaluating the viability of process replication relia-
bility for exascale systems. In: SC ’11: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, pp 1–12,
DOI 10.1145/2063384.2063443

[Ferreira et al.(2011b)Ferreira, Stearley, Laros, Oldfield, Pedretti, Brightwell, Riesen, Bridges, and Arnold]
Ferreira K, Stearley J, Laros JH, Oldfield R, Pedretti K, Brightwell R, Riesen R,
Bridges PG, Arnold D (2011b) Evaluating the viability of process replication reli-
ability for exascale systems. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, Association for
Computing Machinery, New York, NY, USA, SC ’11, DOI 10.1145/2063384.2063443,
URL https://doi.org/10.1145/2063384.2063443

[Forum(2015)] Forum MPI (2015) MPI: A Message-passing Interface Standard, Version 3.1
; June 4, 2015. High-Performance Computing Center Stuttgart, University of Stuttgart,
URL https://books.google.com/books?id=Fbv7jwEACAAJ

[Garćıa-Pérez et al.(2018)Garćıa-Pérez, Gotsman, Meshman, and Sergey] Garćıa-Pérez Á,
Gotsman A, Meshman Y, Sergey I (2018) Paxos consensus, deconstructed and ab-
stracted. In: Ahmed A (ed) Programming Languages and Systems, Springer Interna-
tional Publishing, Cham, pp 912–939

[Hassani et al.(2014)Hassani, Skjellum, and Brightwell] Hassani A, Skjellum A, Brightwell
R (2014) Design and evaluation of FA-MPI, a transactional resilience scheme for non-
blocking MPI. In: 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pp 750–755, DOI 10.1109/DSN.2014.78

[Hassani et al.(2015)Hassani, Skjellum, Bangalore, and Brightwell] Hassani A, Skjellum A,
Bangalore PV, Brightwell R (2015) Practical resilient cases for fa-mpi, a transactional
fault-tolerant mpi. In: Proceedings of the 3rd Workshop on Exascale MPI, Association
for Computing Machinery, New York, NY, USA, ExaMPI ’15, DOI 10.1145/2831129.
2831130, URL https://doi.org/10.1145/2831129.2831130

[Herault et al.(2015)Herault, Bouteiller, Bosilca, Gamell, Teranishi, Parashar, and Dongarra]
Herault T, Bouteiller A, Bosilca G, Gamell M, Teranishi K, Parashar M, Dongarra
J (2015) Practical scalable consensus for pseudo-synchronous distributed systems:
Formal proof. Tech. Rep. ICL-UT-15-01

[Huang(1989)] Huang ST (1989) Detecting termination of distributed computations by ex-
ternal agents. In: [1989] Proceedings. The 9th International Conference on Distributed
Computing Systems, pp 79–84, DOI 10.1109/ICDCS.1989.37933

[Hursey et al.(2011)Hursey, Naughton, Vallee, and Graham] Hursey J, Naughton T, Vallee
G, Graham RL (2011) A log-scaling fault tolerant agreement algorithm for a fault tol-

22 Grace Nansamba et al.

erant MPI. In: Cotronis Y, Danalis A, Nikolopoulos DS, Dongarra J (eds) Recent Ad-
vances in the Message Passing Interface, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 255–263

[Intel(????)] Intel (????) Poet 1.0 specification. https://sawtooth.hyperledger.org/docs/
core/releases/latest/architecture/poet.html, [Online, Accessed: Nov/19/2019]

[Katti et al.(2015)Katti, Di Fatta, Naughton, and Engelmann] Katti A, Di Fatta G,
Naughton T, Engelmann C (2015) Scalable and fault tolerant failure detection and
consensus. In: Proceedings of the 22nd European MPI Users’ Group Meeting, Asso-
ciation for Computing Machinery, New York, NY, USA, EuroMPI ’15, DOI 10.1145/
2802658.2802660, URL https://doi.org/10.1145/2802658.2802660

[King and Nadal(2012)] King S, Nadal S (2012) Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August 19

[Lamport(1983)] Lamport L (1983) The weak byzantine generals problem. J ACM
30(3):668–676, DOI 10.1145/2402.322398, URL https://doi.org/10.1145/2402.

322398
[Lamport(1998)] Lamport L (1998) The part-time parliament. ACM Trans Comput Syst

16(2):133–169, DOI 10.1145/279227.279229, URL https://doi.org/10.1145/279227.

279229
[Lamport et al.(1982)Lamport, Shostak, and Pease] Lamport L, Shostak RE, Pease MC

(1982) The byzantine generals problem. ACM Trans Program Lang Syst 4(3):382–401,
URL http://dblp.uni-trier.de/db/journals/toplas/toplas4.html#LamportSP82

[Leners et al.(2011)Leners, Wu, Hung, Aguilera, and Walfish] Leners J, Wu H, Hung WL,
Aguilera M, Walfish M (2011) Detecting failures in distributed systems with the falcon
spy network. pp 279–294, DOI 10.1145/2043556.2043583

[Losada et al.(2020)Losada, González, Mart́ın, Bosilca, Bouteiller, and Teranishi] Losada
N, González P, Mart́ın MJ, Bosilca G, Bouteiller A, Teranishi K (2020) Fault tolerance
of mpi applications in exascale systems: The ulfm solution. Future Generation Com-
puter Systems 106:467–481, DOI https://doi.org/10.1016/j.future.2020.01.026, URL
https://www.sciencedirect.com/science/article/pii/S0167739X1930860X

[Manage Engine(2021)] Manage Engine (2021) Ipmi monitoring. URL https://www.

manageengine.com/network-monitoring/ipmi-monitoring.html, [Online; accessed 23-
May-2021]

[Miguel Castro(2002)] Miguel Castro BL (2002) Practical byzantine fault tolerance and
proactive recovery. ACM Trans Comput Syst 20(4):398–461, DOI 10.1145/571637.
571640, URL https://doi.org/10.1145/571637.571640

[Moise(2011)] Moise I (2011) Efficient agreement protocols in asynchronous distributed sys-
tems. In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, IEEE, pp 2022–2025

[Moses and Raynal(2009)] Moses Y, Raynal M (2009) Revisiting simultaneous consensus
with crash failures. J Parallel Distrib Comput 69(4):400–409, DOI 10.1016/j.jpdc.2009.
01.001, URL https://doi.org/10.1016/j.jpdc.2009.01.001

[Ongaro and Ousterhout(2014)] Ongaro D, Ousterhout J (2014) In search of an understand-
able consensus algorithm. In: Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX Association, USA, USENIX ATC’14, p 305–320

[Popov(2016)] Popov S (2016) The tangle. cit on p 131
[Ranganathan et al.(2001)Ranganathan, George, Todd, and Chidester] Ranganathan S,

George A, Todd R, Chidester M (2001) Gossip-style failure detection and dis-
tributed consensus for scalable heterogeneous clusters. Cluster Computing 4:197–209,
DOI 10.1023/A:1011494323443

[Ropars et al.(2015)Ropars, Lefray, Kim, and Schiper] Ropars T, Lefray A, Kim D, Schiper
A (2015) Efficient process replication for MPI applications: Sharing work between repli-
cas. In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp
645–654, DOI 10.1109/IPDPS.2015.29

[Sankaran et al.(2005)Sankaran, Squyres, Barrett, Sahay, Lumsdaine, Duell, Hargrove, and Roman]
Sankaran S, Squyres JM, Barrett B, Sahay V, Lumsdaine A, Duell J, Hargrove P, Roman
E (2005) The lam/mpi checkpoint/restart framework: System-initiated checkpointing.
The International Journal of High Performance Computing Applications 19(4):479–493,
DOI 10.1177/1094342005056139, URL https://doi.org/10.1177/1094342005056139,
https://doi.org/10.1177/1094342005056139

Title Suppressed Due to Excessive Length 23

[Scargall(2020)] Scargall S (2020) Reliability, availability, and serviceability (ras). In: Pro-
gramming Persistent Memory, Springer, pp 333–346

[Schroeder and Gibson(2009)] Schroeder B, Gibson GA (2009) A large-scale study of fail-
ures in high-performance computing systems. IEEE transactions on Dependable and
Secure Computing 7(4):337–350

[Snir et al.(2014)Snir, Wisniewski, Abraham, Adve, Bagchi, Balaji, Belak, Bose, Cappello, Carlson, Chien, Coteus, Debardeleben, Diniz, Engelmann, Erez, Fazzari, Geist, Gupta, Johnson, Krishnamoorthy, Leyffer, Liberty, Mitra, Munson, Schreiber, Stearley, and Hensbergen]
Snir M, Wisniewski RW, Abraham JA, Adve SV, Bagchi S, Balaji P, Belak J, Bose P,
Cappello F, Carlson B, Chien AA, Coteus P, Debardeleben NA, Diniz PC, Engelmann
C, Erez M, Fazzari S, Geist A, Gupta R, Johnson F, Krishnamoorthy S, Leyffer S, Lib-
erty D, Mitra S, Munson T, Schreiber R, Stearley J, Hensbergen EV (2014) Addressing
failures in exascale computing. Int J High Perform Comput Appl 28(2):129–173

[Sultana et al.(2019)Sultana, Rüfenacht, Skjellum, Laguna, and Mohror] Sultana N,
Rüfenacht M, Skjellum A, Laguna I, Mohror K (2019) Failure recovery for bulk
synchronous applications with MPI Stages. Parallel Computing 84:1–14, DOI
https://doi.org/10.1016/j.parco.2019.02.007, URL https://www.sciencedirect.com/

science/article/pii/S0167819118303260

[Wikipedia contributors(2021a)] Wikipedia contributors (2021a) Chipkill — Wikipedia,
the free encyclopedia. URL https://en.wikipedia.org/w/index.php?title=Chipkill&

oldid=1020462792, [Online; accessed 18-May-2021]
[Wikipedia contributors(2021b)] Wikipedia contributors (2021b) Consensus (computer sci-

ence) — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?
title=Consensus_(computer_science)&oldid=1012661322, [Online; accessed 18-April-
2021]

[Wikipedia contributors(2021c)] Wikipedia contributors (2021c) Reliability, avail-
ability and serviceability — Wikipedia, the free encyclopedia. URL https:

//en.wikipedia.org/w/index.php?title=Reliability,_availability_and_

serviceability&oldid=1015057056, [Online; accessed 23-May-2021]
[Woo et al.(2011)Woo, Lang, Latham, Ross, and Thakur] Woo S, Lang S, Latham R, Ross

R, Thakur R (2011) Reliable MPI-IO through layout-aware replication
[Yin et al.(2019)Yin, Malkhi, Reiter, Gueta, and Abraham] Yin M, Malkhi D, Reiter MK,

Gueta GG, Abraham I (2019) Hotstuff: Bft consensus with linearity and responsiveness.
In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
ACM, pp 347–356

Noname manuscript No.
(will be inserted by the editor)

Accelerating OCaml programs on FPGA

Loïc Sylvestre · Emmanuel Chailloux ·
Jocelyn Sérot

Abstract This paper aims to exploit the massive parallelism of Field-Pro-
grammable Gate Arrays (FPGAs) by programming them in OCaml, a multi-
paradigm, statically-typed language. It presents O2B, an FPGA-based imple-
mentation of the OCaml virtual machine using a softcore processor, running
the entire OCaml language. It then introduces Macle, a language to express,
in ML-style, hardware-accelerated user-defined functions. Macle exposes fine-
grained parallelism available at the circuit level and enables to manipulate
data structures dynamically allocated by OCaml programs. This hybrid ap-
proach, mixing Macle and OCaml codes, allows to easily prototype FPGA
applications.

Keywords high-level programming, OCaml, virtual machine, FPGA, parallel
computing, hardware acceleration, compiling, finite state machines

Loïc Sylvestre and Emmanuel Chailloux
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
E-mail: Loic.Sylvestre@lip6.fr,Emmanuel.Chailloux@lip6.fr

Jocelyn Sérot
Institut Pascal, UMR 6602 UCA/CNRS/SIGMA
E-mail: jocelyn.serot@uca.fr

2 Loïc Sylvestre et al.

1 Introduction

Reconfigurable circuits, like Field-Programmable Gate Arrays (FPGAs), are
suited to design custom architectures exploiting the concurrent nature of hard-
ware structures [5]. The configuration of an FPGA is commonly produced by a
synthesis toolchain supporting a hardware description language (HDL) such as
VHDL or Verilog. Other examples of more expressive HDLs include Chisel [3]
which is embedded in Scala, Clash [2] in Haskell, MyHDL [8] in Python and
HardCaml1 in OCaml. Nevertheless, the Register Transfer Level (RTL) pro-
gramming model, on which HDLs are based, is characterized by a very low
level of abstraction. Hence, different approaches aim to hardware-accelerate
software applications using FPGAs.

– There have been some attempts to compile small applicative languages,
such as SHard [19], FLOH [22] and Basic SCI [11], directly to RTL [10].
A representative example is SAFL (Statically Allocated Parallel Functional
Language) [16], which is a first-order ML-like language limited to tail re-
cursion and static data structures.

– For more complex languages, custom processors or virtual machines can be
implemented in RTL to run high-level languages on FPGA. JAIP [23] is a
Java Virtual Machine (JVM) written in VHDL, calling a softcore proces-
sor2 to handle dynamic class-loading. JikesRVM [15] is a JVM implemented
on a CPU using an FPGA for accelerating automatic managing of dynamic
memory (garbage collection / GC).

– High-Level Synthesis (HLS) promotes the use of imperative languages to
design hardware [17]. Most of HLS tools, such as Catapult C or Handel-C,
support a subset of C annotated with pragmas to optimize the compilation
to RTL. LegUp [4] runs C programs on a softcore processor, or Pylog [12]
on a hardcore processor, while compiling functions to RTL, (that do not
use dynamic allocation and recursion).

– Other HLS tools3 use OpenCL to express parallel applications and target
heterogenous architectures involving Multicores, GPUs and FPGAs. Tor-
nadoVM [18], Aparapi [20] and GVM [9] implement the JVM in OpenCL.
TAPA [6] is framework for task parallelism targeting OpenCL. These imple-
mentations, however, do not sufficiently expose the fine-grained parallelism
available on the FPGA as well as their customization possibilities.

– FPGAs allows to implements parallel skeletons [7] and concurrency control
constructs [6]. For instance, Lime [1] is a task-based data-flow programming
language compiled to OpenCL or Verilog, and interacting with Java byte-
code running on a CPU. Kiwi [21] is a subset of C] compiled to RTL and
offering events, monitors and threads.

1 https://github.com/janestreet/hardcaml
2 A Softcore processor is processor implemented in the reconfigurable part of an FPGA.
3 Such as AMD Vivado HLS and Intel OpenCL SDK.

Accelerating OCaml programs on FPGA 3

These approaches highlight several needs:
– runtime systems for high-level programming on FPGA using a softcore

processor (like JAIP);
– partitioning between hardware accelerated code and a runtime (like Pylog);
– hardware acceleration of user-defined functions (like SAFL);
– parallel programming constructs (like Kiwi);
– uniformity between a host language and an embedded language used for

acceleration (like Lime).

To fulfill these needs, we have ported on a softcore processor the OCaml VM
and its runtime (including GC), to support the entire OCaml language. This
VM approach is combined with hardware acceleration of functions expressed
in an ML-like language extended with parallelism skeletons able to process
data structures dynamically allocated by the OCaml runtime. This allows to
take full advantage of the fine-grained parallelism of the FPGA, while pro-
gramming it in a high-level way, in OCaml, allowing quick prototyping, static
type-checking, simulation and debugging.

Our contributions are:
– O2B4 (OCaml On Board), a port of the OMicroB [24] implementation of

the OCaml Virtual Machine targeting the Nios II softcore processor imple-
mented on an FPGA. O2B enables to call custom hardware accelerators
from OCaml programs.

– Macle5 (ML accelerator), a language to program, in ML-style, computation
kernels to be accelerated (through a Macle to VHDL compiler). Such com-
putation kernels, called Macle circuits thereafter, are used by the OCaml
programs executed by O2B on FPGA. The interoperability layer between
OCaml and the Macle functions is automatically generated. It includes C
and OCaml code, VHDL descriptions and scripts to control the synthesis
workflow. Macle offers language constructs to manipulate OCaml values,
especially data structures (such as lists, arrays and matrices) allocated in
the OCaml VM heap. In particular, Macle provides parallelism skeletons
over OCaml arrays to expose fine-grained parallelism and optimize memory
transfers.

The remainder of this paper is organized as follows. Section 2 introduces
the O2B infrastructure to run OCaml programs on FPGA. Section 3 proposes
a hybrid approach to accelerate OCaml programs augmented with Macle func-
tions. Section 4 presents the compilation of Macle, using an intermediate lan-
guage (HSML, Hierarchical State Machine Language) to abstract the VHDL
target. Section 5 evaluates our approach on different benchmarks to measure
the speedup resulting from using hardware-acceleration in Macle. Section 6 de-
scribes a mechanism using parallelism skeletons to optimize memory transfers
when accessing the OCaml heap. Section 7 discusses the acceleration elements
and programming style obtained and then identifies future work.

4 https://github.com/jserot/O2B
5 https://github.com/lsylvestre/macle

4 Loïc Sylvestre et al.

2 Customizable OCaml programs on FPGAs

O2B (OCaml On Board) is a tool to run OCaml programs on FPGAs. It is
based on OMicroB [24], an implementation of the OCaml VM dedicated to
high-level programming of microcontrollers with scarce resources.

2.1 Compilation flow for OCaml to FPGAs

Figure 1 describes the configuration process used to run OCaml programs on
an Intel FPGA6 via O2B. The OCaml bytecode (generated by the OCaml com-
piler) is transformed into a static C array, then embedded in the C program
implementing the bytecode interpreter and the O2B runtime library (includ-
ing a GC). The OCaml heap and stack are C static arrays. This program is
associated with the functions of the Board Support Package (BSP lib) giving
access to the hardware resources of the target board. The resulting application
is compiled to binary code executable by the Nios II softcore processor.

Source
program

.ml

OMicroB
Bytecode

+ interpreter
+ runtime

.c

gcc-
nios

Binary
executable

.elf

QSysTM
FPGA
config

BSP lib

QuartusTM

synthetizer
.vhd

Bitstream
.sof

.c

NiosII
IO

FPGA

BOARD

F1

C1

Avalon bus

Cn
...

NiosII
config.

Fn
...

IO...

Fig. 1 Compilation flow targeting Intel FPGAs

The complete FPGA configuration includes the exact architecture of the
processor used as well as a set of external RTL descriptions F1 · · · Fn to be
implemented as custom components C1 · · · Cn. Technically, this configuration
step is carried out by the QSys tool of the Intel Quartus chain. It generates a
set of VHDL files which constitutes the description of the hardware platform.
This description includes the components C1 · · · Cn and the Nios II processor
to be synthesized through the Quartus chain to reconfigure the FPGA.

The OCaml heap and stack can be stored either in the on-chip memory of
the target FPGA (for small programs) or in external DRAM. In both cases,
access is provided by means of an interconnection bus7. This bus also supports
data transfers between the custom components and the binary code executed

6 This process is general and can be adapted to target other FPGA families.
7 Avalon bus for Intel platforms.

Accelerating OCaml programs on FPGA 5

by the processor. Both the softcore and the custom components can access the
physical IOs of the FPGA.

2.2 Calling accelerators from OCaml programs

The OCaml language offers an OCaml/C foreign function interface (FFI) to
call C functions from OCaml programs. These C functions, running on the
softcore, can in turn invoke custom components implemented on the FPGA.
It is thus possible to use custom components from OCaml programs compiled
to bytecode executed by O2B. The communication layer between O2B and a
custom component is done via a set of dedicated registers associated to the
component and manually mapped into the memory of the softcore processor.

Figure 2 shows the source code of an OCaml program designed to run
with O2B. It defines three implementations of the gcd (the greatest common
divisor) algorithm. The difference of two calls to Timer.get_us (before and
after a computation) in the OCaml function chrono gives the execution time
of the argument function call in microsecond.

OCaml code C code

external gcd_c : int -> int -> int ;;
external gcd_rtl : int -> int -> int ;;

let rec gcd_caml a b =
if a > b then gcd_caml (a-b) b else
if a < b then gcd_caml a (b-a) else a ;;

let chrono f a b =
let t1 = Timer.get_us () in
let res = f a b in
let t2 = Timer.get_us () in
print_int (t2-t1) ;;

let main() =
Timer.init () ;
let a = 5000 and b = 7000 in
chrono gcd_caml a b ;
chrono gcd_c a b ;
chrono gcd_rtl a b ;;

main ();;

value gcd_c(value m, value n){
int a, b;
a = Int_val(m);
b = Int_val(n);
while (a != b) {

if (a > b) a = a-b;
else b = b-a;

}
return Val_int(b);

}

value gcd_rtl(value m, value n){
int res;
GCD_ARG(0,Int_val(m));
GCD_ARG(1,Int_val(n));
GCD_START();

while (! GCD_RDY())
;

res = GCD_RESULT();
return Val_int(res);

}

Fig. 2 An OCaml program executable by O2B

The C function printf, and by extension, the OCaml functions print_int
and print_string use the Board Support Package of the FPGA target to
write on a console8. The gcd_c and gcd_rtl functions are defined as external
functions in the OCaml code using the standard FFI mechanism. Calling a

8 The FPGA board is connected to a host PC via an UART connection for printing and
debugging.

6 Loïc Sylvestre et al.

custom component from the gcd_rtl function involves sending the arguments
(resp. retrieving the result) to (resp. from) the corresponding dedicated reg-
isters of the custom component. In figure 2, the corresponding operations are
abstracted by the macros GCD_ARG, GCD_START, GCD_RDY and GCD_RESULT).
Moreover, describing the behavior of the component, in synthetizable VHDL,
is tedious. For the GCD example, describing this behavior and exchanging
the arguments and result respectively requires 50 and 100 lines of VHDL. Fi-
nally, this GCD component must be mapped into the global configuration of
the system implemented on the FPGA (called the System on Programmable
Chip, SoPC), either manually (using the QSys tool) or by scripting. With the
compilation flow introduced in the next section, RTL descriptions of custom
components as well as glue code between OCaml and these components (in-
cluding OCaml, C and VHDL files) will be automatically generated from a
high-level formulation in the Macle language.

3 A hybrid approach for high-level programming of FPGA

The O2B experiment described in the previous section enables to run OCaml
programs on FPGA via a softcore processor and call hardware accelerators
from them. The difficulty is still to program these accelerators and synthesize
them on the same FPGA as the softcore. In this section, we propose to express
these accelerators in an ML-like language compiled to RTL. This language,
called Macle (ML Accelerator), can inter-operate with the OCaml runtime of
O2B and therefore can be used to accelerate OCaml host programs on FPGA.

3.1 Compilation Flow

Figure 3 shows our compilation flow of OCaml to FPGA. It automatically
generates the configuration of an FPGA from an OCaml program extended
with hardware-accelerated functions defined in Macle. OCaml code is compiled
to bytecode to be executed by O2B targeting a softcore processor implemented
on the FPGA.

program

softcore

FPGA configuration

OCaml

Macle FFI C/OCaml

VHDL

bytecode + O2B
standard compilation

hardware acceleration

glue code generation

Fig. 3 An hybrid approach to run OCaml programs on FPGA via O2B and Macle

Accelerating OCaml programs on FPGA 7

Each Macle circuit is a function compiled to VHDL and then synthesized as
a custom hardware component usable from OCaml programs. The glue code is
generated from the inferred type of the Macle circuit. The FPGA configuration
is automatic and easily programmable without prior knowledge of hardware
description languages.

3.2 The Macle language

Macle is a ML-like language which includes:

– a functional-parallel Core language (called Macle Core) compiled to RTL;
– additional language constructs (implemented in RTL) to interact with the

OCaml runtime.

Figure 4 defines the syntax of Macle.
The left side of the figure defines Macle Core. This language is indepen-

dent of OCaml and can be used to program synchronous circuits and compose
them in parallel. We denote by −→o (or o1 · · · on) a non-empty sequence of
objects oi. Macle Core includes variables (taken from a set of name X), con-
stants, application of builtin operators and conditionals. It also offers local
mutually tail-recursive functions, function calls and let bindings. A simple let
binding let x = e in e′ first computes e, then e′. By extension, a multiple
let-binding let x1 = e1 and · · · xn = en in e′ first computes the expressions
e1 · · · en in parallel and synchronizes before computing “e′”. For instance, the
hardware implementation of (let x = factorial 10 and y = factorial 11 in x+ y)
instantiates twice the implementation of factorial function in order to enable
their parallel execution. Function call uses an implicit parallel let-binding to
compute the arguments passed to the function. Non-recursive functions can
take functions as arguments9.

Macle Core Interaction with OCaml
circuit ci ::= circuit f −→x = e

constant c ::= true | false | 〈integer〉 | ()
variable x, y, f ∈ X
operator1 	 ::= − | not | ··
operator2 ⊕ ::= + | < | ··
expression e ::= x | c | 	 e | e1 ⊕ e2

| if e then e1 else e2
| let x1 = e1 and
· · · xn = en in e′

| let
−−−−−→
f−→x = e in e

| let rec
−−−−−→
f−→x = e in e′

| f −→e
| ··

exception exn ::= Failure 〈string〉
pattern p ::= C | C(x1, · · · xn)
expression e ::= ··

| raise exn
| match e with

−−−−→
p→ e′

| ! e
| e := e′

| e.(e′)
| e.(e′)← e′′

| array_length e
| e ; e′
| for x = e to e′ do e′′

done

Fig. 4 Syntax of the Macle language

9 Each call of these functions are specialized and inlined at-compile time.

8 Loïc Sylvestre et al.

The right side of Figure 4 presents the Macle constructs used to interact
with the OCaml runtime :

– !e for accessing to the content of the reference e;
– e := e′ for setting the content of the reference e to the value of e′;
– e.(e′) for accessing to the index e′ of the array e;
– e.(e′)← e′′ for setting the value of e′′ at the index e′ of the array e.
– for raising a built-in exception parametrized by literal strings,
– for surface pattern matching on algebraic datatypes (ADT),

Note that Macle circuits cannot allocate data structures; they can only
manipulate values previously allocated in the OCaml heap by the VM.

Finally, the sequence e ; e′ is a syntactic sugar for let x = e in e′ where x
is a fresh name. For-loops are encoded with let-rec.

To preserve the semantics and the safety of the Macle code, multiple let-
bindings are sequentialized when they contain memory accesses or raise an
exception. General recursion is supported via a program transformation pro-
ducing code containing only tail-recursive calls and using an explicit stack.

Figure 5 shows three Macle circuits and an OCaml program calling a Macle
circuit. The circuit gcd_rtl expresses the Gcd algorithm in Macle Core. The
circuit rev reverses the order of the elements of an OCaml array. The circuit
collatz computes the stopping time of a Collatz [13] sequence (also called
Syracuse) starting from a given integer.

Computations in Macle
circuit gcd_rtl m n =

let rec gcd a b =
if a > b then gcd (a-b) b else
if a < b then gcd a (b-a) else a

in gcd m n ;;

circuit collatz n =
let rec next len u =

if u <= 1 then len else
if u mod 2 == 0
then next (len+1) (u/2)
else next (len+1) (3*u+1)

in next 0 n ;;

circuit rev a =
let n = array_length a in
for i = 0 to (n-1) / 2 do

let t = a.(i) in
a.(i) <- a.(n-1-i);
a.(n-1-i) <- t

done ;;

Mixing OCaml and Macle codes
type exp =
| Int of int
| Var of int
| Add of exp * exp ;;

circuit eval_exp env e =
let rec eval e =

match e with
| Int(n) -> n
| Var(k) -> env.(k)
| Add(e1,e2) ->

eval e1 + eval e2
in eval e ;;

let main() =
let env = [|100|] in
let e = Add(Int(1),Var(0)) in
try print_int (eval_exp env e)
with Failure s -> print_string s ;;

main();;

Fig. 5 Examples of Macle circuits and call from OCaml program

The circuit eval_exp evaluates an abstract syntax tree allocated in the
OCaml heap. It safely accesses the OCaml heap since the exception Failure is
(implicitly) raised in case of an out of bounds index or a non-exhaustive pattern
matching. This exception can then be caught in OCaml by the try · · · with

Accelerating OCaml programs on FPGA 9

construct. This program evaluates the expression Add(Int(1),Var(0)) recur-
sively and prints the result. Evaluate Var(0) fetches the value at the index 0
of the array env = [|100|]. Recursion in Macle uses an explicit call stack, as
described in section 5. Tail-recursion does not require a stack.

4 Compiling Macle

The global compilation flow from Macle to VHDL is depicted Figure 6. It
involves four passes. The first pass consists in normalizing the source code:

– renaming all bindings in the source code with unique names;
– rewriting the code in so-called Administrative Normal Form [14] (introduc-

ing let-bindings for each step of computation);
– inlining functions by recursively duplicating their body at each call site

(except recursive ones);
– transforming recursive functions which are not tail-recursive into tail-recur-

sive ones using an explicit stack.

The second pass compiles Macle into an intermediate language, called
HSML (Hierarchical State Machine Language), allowing to express parallel
composition of hierarchical finite state machines. The third pass flattens the
hierarchical structure of HSML. The fourth pass translates a flat HSML de-
scription into VHDL.

Macle HSML

OCaml VHDL

normalization
simulation

compilation
flattening

translation

Fig. 6 Compilation flow of Macle to VHDL

At each point of the compilation flow, an OCaml backend is provided for
simulation and debugging on a PC.

Due to space limitations, the rest of this section only describes the compi-
lation of Macle Core to HSML.

4.1 Targeting the register transfer level

Synchronous finite state machines (FSM) are commonly used to describe com-
putations at the register transfer level (RTL). A FSM is classically defined by
a set of states (names) and a set of transitions. Each transition connects a
source state to a destination state and can be associated to a set of guards
and a set of actions. Guards define when the transition is enabled. They can

10 Loïc Sylvestre et al.

depend on inputs and local variables. Actions are performed when the transi-
tion is enabled and can write outputs and local variables. Transitions are only
taken at the rising edge of a global clock. At each clock edge, if a transition
starting from the current state has all its guards validated, it is enabled, the
associated actions are performed (instantaneously) and the destination state
becomes the current state.

FSMs are classically encoded in VHDL as synchronous processes with asyn-
chronous reset. Inputs, outputs and local variables are implemented as VHDL
signals with a dedicated signal representing the current state. At each ris-
ing edge of the input clock, depending on the value of the current state and
some conditions involving inputs and local variables, the next state value is
selected and the value of outputs and local variables is updated. The FSM is
re-initialized, asynchronously, whenever the reset input signal becomes true.

Figure 7 gives a graphical representation of a FSM describing the compu-
tation of a gcd function and its encoding in VHDL.

Idle

Gcd
a > b

a← a− b
a < b

b← b− a

a = b
result← a

start
rdy← false
a← m
b← n

¬start
rdy← true

entity gcd_rtl is
port(signal clk, reset : in std_logic;

signal start : in std_logic;
signal rdy : out std_logic;
signal m, n : in signed(30 downto 0);
signal result : out signed(30 downto 0));

end entity;

architecture rtl of gcd_rtl is
type t_state is (Idle, Gcd);
signal STATE : t_state;
signal a, b : signed(30 downto 0);

begin process(reset,clk) begin
if reset = ’1’ then
STATE <= Idle;

elsif rising_edge(clk) then
case STATE is

when Idle =>
if start then

rdy <= false;
a <= m;
b <= n;
STATE <= Gcd;

else
rdy <= true;
STATE <= Idle;

end if;
when Gcd =>

if a > b then
a <= a - b;
STATE <= Gcd;

elsif a < b then
b <= b - a;
STATE <= Gcd;

else
result <= a;
STATE <= Idle;

end if;
end case;

end if
end process;

end architecture ;

Fig. 7 FSM and VHDL implementation of the Gcd algorithm (given in Macle Figure 5)

The start input and rdy output are used respectively to start and signal
the end of the computation. In the VHDL code, modifications of the state vari-
able STATE as well as the outputs and local variables are denoted using signal
assignments (<signal_name> <= <expression>). Assignments performed at
the same clock edge are performed concurrently, i.e. the expressions denoted

Accelerating OCaml programs on FPGA 11

by the right hand sides (RHSs) are all evaluated in parallel and then, and
only then, the signals designated by the left hand sides (LHSs) are updated
simultaneously. Note that in the code given Figure 7, arguments and result
are encoded as 31-bit signed integers. This is to have the same representation
of OCaml value than in the O2B runtime, in order to call this circuit from
OCaml programs.

By declaring separate processes, each encoding a given FSM, within the
same entity/architecture, it is easy to implement synchronous parallel com-
position of FSMs. Each FSM is triggered by the same global clock and has
access to the signals declared in the architecture. However, these signals can
only be shared for reading as a signal written by a process cannot be written
by another process.

4.2 HSML : a FSM-based intermediate language

We do not compile Macle circuits directly to VHDL. Instead, we use an inter-
mediate language, HSML (Hierarchical State Machine Language) for describ-
ing the behavior of FSMs and expressing their composition, and which can be
easily translated to VHDL.

Figure 8 defines the syntax of HSML A circuit is a parallel composition
of FSMs (A1 ‖ · · · An) depending on inputs, modifying outputs and using
local variables. A FSM is a set of mutually recursive transitions in the scope
of a body used to initialize it. A transition is a thunk f() = A associating a
name f to a FSM A. HSML offers a notion of hierarchy. For instance, a FSM
let rec t1 and · · · tm in (let rec t′1 and · · · t′n in f()) is a hierarchical formu-
lation of the FSM let rec t1 and · · · tm and t′1 and · · · t′n in f().

circuit φ ::= circuit f −→xin returns −−→xout = var −→x in P

parallel composition P ::= A1 ‖ · · · An
FSM A ::= let rec ts in Ainit

| if e then A1 else A2

| do x1 ← e1 and · · · xn ← en then A
| f()
| P in A

transitions ts ::= ε | f1() = A1 and · · · fn() = An

expression e ::= x | c | 	 e | e1 ⊕ e2
operator1 	 ::= ··
operator2 ⊕ ::= ·· | ∧ | ∨

Fig. 8 Syntax of HSML

A HSML expression e is a variable, a constant or the application of a built-
in operator. The construct (do x1 ← e1 and · · · xn ← en in A) evaluates the
expressions e1, · · · en, then assigns the results to the variables x1 · · · xn and
finally computes A.

12 Loïc Sylvestre et al.

Figure 9 shows an HSML circuit corresponding to the VHDL code given
Figure 7. This circuit was automatically generated from the Macle circuit
gcd_rtl defined Figure 5.

circuit gcd_rtl (start,m,n) returns (rdy,result) = var a, b in
let rec idle() =

if start then
(do rdy ← false and a ← m and b ← n then gcd())

else
(do rdy ← true then idle())

and gcd() =
if a > b then
(do a ← (a-b) then gcd())

else if a < b then
(do b ← (b-a) then gcd())

else
(do result ← a then idle())

in (do rdy ← true then idle())

Fig. 9 HSML circuit implementing the Gcd algorithm

HSML exposes the semantics of the RT level (described informally on the
VHDL code of Figure 7) while offering a notion of hierarchy which makes it
close to an expression language. In particular, some HSML constructs (like
let rec and conditional) are common with Macle. Thus, HSML constitutes a
useful intermediate language for compiling Macle to VHDL.

4.3 Compiling Macle Core

The compilation CJcircuit f−→x = eK of a Macle Core circuit is defined as the
compilation of the body e of the circuit, from which the inputs, outputs and
local variables are inferred.

CciJcircuit f −→x = eK = circuit f −→xin returns −−→xout = var −−−→xlocal in

s︷ ︸︸ ︷
CJeKstart,rdy,result

where

−→xin,
−−→xout and −−−→xlocal are inputs, outputs and local

variables declarations inferred from s

start, rdy, result are fresh names

The compilation CJeKstart,rdy,result of a Macle Core expression e is a hierarchical
FSM initialized in a special state idle. It waits for the input start to be set to
the value true to start the computation. This computation assigns a value to
the output result. The output rdy notifies when the computation is done. The
auxiliary function CeJeKresult,idle

ρ is defined next. The compilation environment
ρ maps functions names to the list of their formal arguments.

The compilation CeJeKresult,idle
ρ of a subexpression is inductively defined on

the syntax of the expressions. The compilation of a subexpression e which do
not contain control structures is defined as an affectation of e to a variable
result continuing with a tail-call to a destination.

CeJeKr,idle
ρ = do r ← e in idle()

if e is a variable, a constant or an application of operator

Accelerating OCaml programs on FPGA 13

The compilation of a Macle conditional is a HSML conditional, subexpres-
sions being inductively compiled.

CeJif x then e1 else e2Kr,idle
ρ = if x then CeJe1Kr,idle

ρ else CeJe2Kr,idle
ρ

Compiling a let rec globalizes function parameters. To achieve this, each
function name introduced by a let rec is bound to the list of its formal parame-
ters within the compilation environment ρ. The extension of ρ with a function
name f bound to its parameters x1 · · · xn is denoted by ρ[f/(x1, · · · xn)],
assuming that f is not in the domain of ρ. Alternatively, the compilation of
a function call (f x1 · · · xn) is an assignment of the values x1 · · · xn to the
formal parameters y1 · · · yn given by f(ρ), continuing with a call to f().

Ce
s

let rec f1 −→x1 = e1
and · · · fn −→xn = en in e

{r,idle

ρ

=
let rec f1 () = CeJe1Kr,idle

ρ′

and · · · fn () = CeJenKr,idle
ρ′ in CeJeKr,idle

ρ′
where ρ′ = ρ[f1/

−→x1] · · · [fn/−→xn]
CeJf x1 · · · xnKr,idle

ρ = do y1 ← x1 and · · · yn ← xn then f()
if ρ(f) = (y1, · · · yn)

The compilation CeJlet x = e in e′Kr,idle
ρ of a let with a single binding is

defined as the compilation of the subexpression e into the variable x continuing
with the compilation of the body e′.

CeJlet x = e in e′Kr,idle
ρ = let rec f() = CeJe′Kr,idle

ρ in CeJe′Kx,fρ
wheref is a fresh name

The compilation of a let with more than one binding is defined as a paral-
lel composition of FSMs followed by a synchronization barrier activating the
execution of the compiled body of the let.

Ce
s

let x1 = e1
and · · · xn = en in e

{r,idle

ρ

(if n > 1)

=

let rec f() =
do start1 ← false and · · · startn ← false then
(CJe1Kstart1,rdy1,x1‖ · · · CJenKstartn,rdyn,xn) in
if rdy1 ∧ · · · rdyn then CeJeKr,idle

ρ else f()
in do start1 ← true and · · · startn ← true then f()

where

{
i ∈ {1, · · · n}
f, starti, rdyi are fresh names

Since they expose parallelism, let-bindings provide the main possibilities
of acceleration of OCaml programs on FPGA as shown in the next section.

5 Examples and benchmarks

We now evaluate the speedup that can be achieved by running OCaml pro-
grams on FPGA via O2B and Macle, following our hybrid approach. These
programs are compared by taking as reference equivalent C code running on
the same softcore processor. We first consider programs written in Macle Core
(as described on the left side of figure 4), and then Macle circuits interacting
with the OCaml runtime (right side of figure 4).

14 Loïc Sylvestre et al.

5.1 Methodology

Experimental setup We use a Max10 Intel FPGA embedded on a Terasic
DE10-Lite board. This FPGA has limited resources: 50K logic elements
(LEs); 1,638 Kb of on-chip memory; a clock frequency of 50 MHz10. From a
given OCaml source program, O2B creates a C program containing the byte-
code generated by the OCaml compiler, the VM, its runtime library (including
a GC) and additional C code. The bytecode as well as the OCaml stack and
heap are both implemented with C static arrays, both stored in the on-chip
memory. The whole is compiled via the Nios II backend of gcc with optimiza-
tions enabled (-Os). All data structures manipulated by OCaml, C and Macle
code using the OCaml heap and the OCaml arrays bounds are dynamically
checked at each access.

Measuring elapsed time on a FPGA Macle circuits are called from a C block
running on the softcore. Indeed, as described in section 2.2, is necessary to
write arguments in the dedicated registers of the custom component imple-
menting the circuit, start the circuit and wait for the end of the computation
to read the result (again in the dedicated registers of the custom component).
We measure the execution time of each Macle circuit from the beginning to
the end of the corresponding C block.

5.2 Macle Core

We here assess the efficiency gains obtained both by rewriting a C function as
a Macle circuit and, possibly, replicating this circuit to parallelize the corre-
sponding computations.

Pure Computations Figure 10 shows the execution time of the gcd_rtl Macle
circuit (given Figure 5) and the gcd_c C function (given Figure 2) called by
an OCaml program. The observed Macle vs C speedup factor is 30.

0 20 40 60 80 100
0

20

40

60

n

ti
m
e
(s

ec
.)

C
Macle

(* test program *)
let main () =

let n = 40 in
let nb_it = n * (1000 * 1000) in

print_int (gcd_c nb_it 1);
print_int (gcd_rtl nb_it 1) ;;

main () ;;

Fig. 10 Execution time of a simple computation (gcd) in Macle and C

10 The DE10-Lite is also equiped with a 64 Mb external SDRAM but it is not used in
this series of experiments.

Accelerating OCaml programs on FPGA 15

A similar experiment with the Macle circuit collatz (given Figure 5) leads to
a ×60 speedup. The hardware implementation of gcd_rtl and collatz both
use approximately 360 logic elements (LEs), i.e. 0.75% of the total available
on the target FPGA used here.

Parallel computations Figure 11 gives a circuit sum_gcd2 calling twice a func-
tion gcd_rtl and combining results. The let · · · and · · · in · · · constructs is
implemented by a synchronization barrier involving a parallel composition of
two instances of the FSMs given Figure 7.

circuit sum_gcd2 a1 · · · an y =
let rec gcd n m =

if n > m then gcd (n-m) m else
if n < m then gcd n (m-n)

else n
in
let x1 = gcd a1 y and · · ·
and xn = gcd an y in
(x1 + · · · xn)

sum_gcdn size (LEs)
sum_gcd2 753
sum_gcd4 1,413
sum_gcd8 2,828
sum_gcd16 5,135
sum_gcd32 9,823

Fig. 11 Parallelization of a computation and impact on the size of the generated hardware

The global execution time of the barrier is the max of the execution times
of the expressions (gcd ai y), to which is added the execution time of the
rest of the computation (here instantaneous). For instance, calling the circuit
sum_gcd2 with equal arguments a1 and a2 doubles the previous ×30 speedup
observed in Macle vs C (Figure 10). Generalizing this example to circuits
sum_gcdn (computing n times gcd_rtl and summing results) gives a speedup
of 30 × n in Macle vs C (e.g., sum_gcd32 is 960 times faster in Macle than
in C). This gain is only possible because the gcd local function is inlined n
times, the generated hardware using more LEs as shown on the right side of
Figure 11.

5.3 Interacting with the OCaml runtime

Macle enables hardware acceleration for the functional-imperative fragment of
OCaml, accessing directly the OCaml heap (a shared memory allocated in the
RAM) using a bus.

Left side of Figure 12 shows the execution time of a Macle circuit product
multiplying two integer matrices of size n×n, vs a C version. The Macle version
is 27 times faster than the C one. The generated hardware uses 1602 LEs.

Right side of Figure 12 shows the execution time of the Macle circuit
eval_exp (given Figure 5) vs an OCaml version, recursively evaluating trees
of arithmetic expressions of various sizes (in number of constants and vari-
ables). Note that the realization of this Macle circuit uses 17,566 LEs because
it requires an explicit stack which is (here) implemented using LEs instead of
on-chip memory blocks. The resulting speedup is encouraging: the Macle cir-
cuit (using a recursive formulation) is 23 times faster than the C formulation.

16 Loïc Sylvestre et al.

From a programmer’s point of view, this speedup is simply obtained by
replacing a let keyword in the original OCaml formulation by “circuit”.

0 20 40
0

1

2

n

ti
m
e
(s

ec
.)

C
Macle

(a) product

0 500 1,000
0

10

20

size of the expression

ti
m
e
(m

ili
se

c.
)

C
Macle

(b) eval_exp

Fig. 12 Execution time of Macle circuits using imperative features (a) and recursion (b)

This preliminary evaluation shows that reformulating side-effect-free C
functions as Macle circuits can bring substantial speedups (eg., up to 30 for
the gcd_rtl of Figure 5). Replicating the hardware corresponding to these cir-
cuits, intrinsically resulting in their parallel execution, allows to further boosts
these speedups (e.g., up to 960 for the sum_gcd32 example given Figure 10).

Macle also offers computations on data structures dynamically allocated
in the VM heap and accessed in an imperative manner. But for large data
structures, such as arrays, the cost of accessing the corresponding memory
can quickly create a bottleneck, as discussed in the next section.

6 Optimised tranfers and parallelism skeletons

Allowing Macle circuits to manipulate values stored in the OCaml heap has
a cost. Because this heap is implemented in shared memory11, each access re-
quires a bus transaction. When manipulating large data structures, like arrays,
the corresponding overhead can quickly become prohitive. To overcome this
problem, Macle provides some dedicated constructs, called parallelism skele-
tons aiming at minimizing this overhead and offering higher-level parallelism.
These skeletons are listed Figure 13.

array_map〈n〉 : (α→ β)→ α array→ β array→ unit
array_reduce〈n〉 : (α→ β → α)→ α→ β array→ α
array_scan〈n〉 : (α→ β → α)→ α→ β array→ α array→ unit

Fig. 13 Simple parallelism skeletons available in Macle

11 On-chip memory in our experimental platform, but the problem would be worst if the
heap was allocated in external DRAM.

Accelerating OCaml programs on FPGA 17

Each skeleton is parameterized by an integer n, which statically specifies
the size of a buffer used internally to transfer slices of the source and destina-
tion arrays between the OCaml heap and the Macle circuits.

For instance, the expression (array_map〈64〉 f src dst) copies the 64 first
elements of the OCaml array src into a VHDL array, computes the function f
in parallel on each element of this array and writes back the 64 resulting values
in the OCaml array dst. Processing the whole OCaml array is carried out by
iterating this transfer-execution-transfer sequence.

Figure 14 is a simple OCaml program mixing imperative features, com-
putations and a parallelism skeleton array_map〈k〉 within a Macle circuit
filter_mulk. It implements the Eratosthene sieve: determining all the prime
numbers less than a natural number n, by filtering an OCaml array of size
n containing integer from 1 to n. The circuit filter_mulk removes array el-
ements that are multiple of a given integer y using the gcd algorithm. This
computation is performed in parallel by group of k elements of the array, en-
coding the removed elements by the integer zero. The current prime number
used to filter the rest of the array is determined by a loop traversing the array,
element by element, skipping zeros (i.e., elements already removed).

Macle code OCaml code

circuit filter_mulk y a =
let rec gcd n m =

if n > m then gcd (n-m) m else
if n < m then gcd n (m-n)

else n
in
let remove x =

if x <= 1 then 0 else
if x == y then x else
if gcd x y == 1 then x else 0

in

if y <= 1 then () else

array_map〈k〉 remove a a ;;

let interval n =
Array.init n (fun x -> x + 1) ;;

let print_if_not_zero x =
if x != 0 then print_int x ;;

let eratostenek a =
for i = 1 to Array.length a - 1 do
filter_mulk src.(i) a

done ;;

let main() =
let n = (32*100) in
let a = interval n in
eratostenek a;
Array.iter print_if_not_zero a ;;

main();;

Fig. 14 A Macle circuit with a parallelism skeleton computing the Eratosthene sieve

Figure 15 shows, according to k, the size (in LEs) of the filter_mulk
circuit and the execution time of filter_mulk with argument y being 2 and a
being (interval n). Results are compared to a sequential C version. Doubling
the degree of parallelism k almost doubles both the size of the circuit and the
speedup (taking into account the transfer time). For instance, filter_mul64
is 53 times faster than filter_mul1. Moreover, filter_mul1 is 28 times faster
than the C version, resulting in a cumulated speedup of 53× 28 = 1,484.

18 Loïc Sylvestre et al.

4,000 5,000 6,000
0

2

4

6

size n of the OCaml array

ti
m
e
(s

ec
.)

C
array_map〈1〉

4,000 5,000 6,000
0

100

200

size n of the OCaml array
ti
m
e
(m

ill
is

ec
.)

array_map〈1〉
array_map〈2〉
array_map〈4〉
array_map〈8〉
array_map〈16〉
array_map〈32〉
array_map〈64〉

k size (LEs)
1 1240
2 1655
4 2487
8 4182
16 7521
32 15107
64 29739

Fig. 15 space/time trade-off of the Macle circuits filter_mulk and comparison with C

7 Conclusion

In this paper, we proposed an hybrid approach for programming FPGAs using
the OCaml language This approach consists in:

– running OCaml programs by embedding their bytecode and the OCaml
VM in a C program running on a softcore processor;

– calling hardware accelerated functions, user-defined in the Macle language,
from OCaml.

Macle is a functional-imperative subset of OCaml supporting:

– parallel and sequential compositions of computations;
– mixing computations with sequential accesses to the OCaml heap (within

the dynamic memory of the softcore processor);
– use of parallelism skeletons on dynamic data structures with optimization

of memory transfers.

Macle, as well as the intermediate language HSML used by the Macle com-
piler, are statically typed and this feature provides much stronger guarantees
on the safety of the generated circuits than using classical HDLs.

We described an implementation of this approach based on the O2B plat-
form and a complete compilation flow fromMacle circuit descriptions to VHDL.
This compilation flow is fully automatized and easy to use. Moreover, it in-
cludes a simulation mode generating OCaml code from different points of the
compiler to test the applications on PC before loading them on FPGA.

Preliminary results, obtained on small benchmarks are very encouraging.
They show in particular that important speedups (up to the three orders
of magnitude, compared to C code running on the hosted softcore) can be
obtained by combining the ability to compile a function to hardware and
the possibility to replicate the corresponding hardware in order to use data
parallelism. Parametrizable parallelism skeletons both offer a way to tackle
the bottleneck occurring when exchanging data between the OCaml program
and the accelerated functions and also a very practical way to explore the
time vs. space trade-off, a classical issue when programming FPGAs (reducing
computing time by increasing the number of used logic elements).

Accelerating OCaml programs on FPGA 19

The work described here offers many interesting paths for future work.
First of all, scaling up for larger applications, both symbolic and numeri-

cal, is an important point to convince the OCaml community to use FPGAs,
but also the FPGA community to use high level languages. For this, a techni-
cal but critical issue is the ability to use larger, external memory chips, with
optimized transfers (using DMA facilities for example) to store large dynami-
cally allocated data structures. The ability to implement local stacks used by
circuits to realize non-tail recursion (such as evoked in section 5.3) in on-chip
memory (instead of LEs) is another key point to allow large and complex sym-
bolic computations to be implemented on moderately-sized FPGAs. From a
programmer’s point of view, the definition and implementation of new paral-
lelism skeletons, including, possibly, domain-specific skeletons, could also help.

Concerning the tool chain itself, we plan to switch to fully open source
design and synthesis tools, with the idea that using such tools would facilitate
the static analysis of the Macle circuits and the prediction of the space and
time characteristics of the generated hardware (LE usage and execution time).
These information could be used, for example, to decide which circuit should be
duplicated, and also to provide guarantees on applications interacting with the
outside world, including critical applications using synchronous programming
models (close to synchronous FSMs).

In a longer term, we could also explore other ways to accelerate both the
runtime (memory and exception management) and the VM interpreter by par-
tially implementing them as circuits, or even try to create applications using
different levels of parallelism by using multiple VMs sharing Macle circuits.
The latter could provide an interesting approach to exploit heterogeneous plat-
forms including multi-cores, GPUs and FPGAs for example.

References

[1] J. Auerbach, D. F. Bacon, P. Cheng, et al., “Lime: A java-compatible and synthesizable
language for heterogeneous architectures”, in ACM international conference on Object
oriented programming systems languages and applications, 2010, pp. 89–108.

[2] C. Baaij, M. Kooijman, J. Kuper, et al., “Clash: Structural descriptions of synchronous
hardware using haskell”, in 2010 13th Euromicro Conference on Digital System De-
sign: Architectures, Methods and Tools, IEEE, 2010, pp. 714–721.

[3] J. Bachrach, H. Vo, B. Richards, et al., “Chisel: constructing hardware in a Scala
embedded language”, in DAC Design Automation Conference 2012, IEEE, 2012,
pp. 1212–1221.

[4] A. Canis, J. Choi, M. Aldham, et al., “LegUp: high-level synthesis for FPGA-based
processor/accelerator systems”, in Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays (FPGA), 2011, pp. 33–36.

[5] J. M. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling for reconfigurable com-
puting: A survey”, ACM Computing Surveys (CSUR), vol. 42, no. 4, pp. 1–65, 2010.

[6] Y. Chi, L. Guo, J. Lau, et al., “Extending high-level synthesis for task-parallel pro-
grams”, in 2021 IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), IEEE, 2021, pp. 204–213.

[7] M. Danelutto, G. Mencagli, M. Torquati, et al., “Algorithmic skeletons and paral-
lel design patterns in mainstream parallel programming”, Int. J. Parallel Program.,
vol. 49, pp. 177–198, 2021.

20 Loïc Sylvestre et al.

[8] J. Decaluwe, “MyHDL: a Python-Based Hardware Description Language”, Linux jour-
nal, pp. 84–87, 2004.

[9] J. Fumero, A. Stratikopoulos, and C. Kotselidis, “Running parallel bytecode inter-
preters on heterogeneous hardware”, in 4th International Conference on Art, Science,
and Engineering of Programming, 2020, pp. 31–35.

[10] P. Gammie, “Synchronous digital circuits as functional programs”, ACM Computing
Surveys (CSUR), vol. 46, no. 2, pp. 1–27, 2013.

[11] D. R. Ghica, A. Smith, and S. Singh, “Geometry of synthesis iv: Compiling affine
recursion into static hardware”, in Proceedings of the 16th ACM SIGPLAN interna-
tional conference on Functional programming, 2011, pp. 221–233.

[12] S. Huang, K. Wu, H. Jeong, et al., “Pylog: An algorithm-centric python-based FPGA
programming and synthesis flow”, IEEE Transactions on Computers, vol. 70, no. 12,
pp. 2015–2028, 2021.

[13] Y. Ito and K. Nakano, “A hardware-software cooperative approach for the exhaustive
verification of the Collatz conjecture”, in 2009 IEEE International Symposium on
Parallel and Distributed Processing with Applications, IEEE, 2009, pp. 63–70.

[14] A. Kennedy, “Compiling with continuations, continued”, in 12th ACM SIGPLAN
International Conference on Functional programming, 2007, pp. 177–190.

[15] M. Maas, K. Asanović, and J. Kubiatowicz, “A hardware accelerator for tracing
garbage collection”, in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), IEEE, 2018, pp. 138–151.

[16] A. Mycroft and R. Sharp, “A Statically Allocated Parallel Functional Language”,
in International Colloquium on Automata, Languages, and Programming, Springer,
2000, pp. 37–48.

[17] R. Nane, V.-M. Sima, C. Pilato, et al., “A survey and evaluation of fpga high-level
synthesis tools”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 10, pp. 1591–1604, 2015.

[18] M. Papadimitriou, J. Fumero, A. Stratikopoulos, et al., “Transparent Compiler and
Runtime Specializations for Accelerating Managed Languages on FPGAs”, The Art,
Science, and Engineering of Programming, vol. 5, no. 2, pp. 8–1, 2020.

[19] X. Saint-Mleux, M. Feeley, and J.-P. David, “SHard: a Scheme to Hardware Compiler”,
in Workshop on Scheme and Functional Programming, 2006.

[20] O. Segal, M. Margala, S. R. Chalamalasetti, et al., “High level programming frame-
work for FPGAs in the data center”, in 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), IEEE, 2014, pp. 1–4.

[21] S. Singh and D. J. Greaves, “Kiwi: Synthesis of fpga circuits from parallel programs”, in
16th International Symposium on Field-Programmable Custom Computing Machines,
IEEE, 2008, pp. 3–12.

[22] R. Townsend, M. A. Kim, and S. A. Edwards, “From Functional Programs to Pipelined
Dataflow Circuits”, in Proceedings of the 26th International Conference on Compiler
Construction, 2017, pp. 76–86.

[23] C.-J. Tsai, H.-W. Kuo, Z. Lin, et al., “A Java processor IP design for embedded SoC”,
ACM Transactions on Embedded Computing Systems, vol. 14, no. 2, pp. 1–25, 2015.

[24] S. Varoumas, B. Vaugon, and E. Chailloux, “A Generic Virtual Machine Approach
for Programming Microcontrollers: the OMicroB Project”, in 9th European Congress
on Embedded Real Time Software and Systems (ERTS 2018), Jan. 2018.

Noname manuscript No.
(will be inserted by the editor)

Assessing Application Efficiency and Performance
Portability in Single-Source Programming for
Heterogeneous Parallel Systems

August Ernstsson · Dalvan Griebler ·
Christoph Kessler

Abstract We analyze the performance portability of the skeleton-based, single-
source multi-backend high-level programming framework SkePU across multi-
ple different CPU-GPU heterogeneous systems. Thereby, we provide a system-
atic application efficiency characterization of SkePU-generated code in com-
parison to equivalent hand-written code in more low-level parallel program-
ming models such as OpenMP and CUDA. For this purpose, we contribute
ports of the STREAM benchmark suite and of a part of the NAS Parallel
Benchmark suite to SkePU. We show that for STREAM and the EP bench-
mark, SkePU regularly scores efficiency values above 80% and in particular
for CPU systems, SkePU can outperform hand-written code.

Keywords algorithmic skeletons · parallel efficiency · performance portabil-
ity · heterogeneous parallel computing · high-level parallel programming

1 Introduction

High-level parallel programming aims to simplify programming of systems with
parallel (and possibly heterogeneous) hardware architectures. A high-level par-
allel programming model typically achieves this by abstracting away properties
such as load balancing, synchronization, data movement, and other practical
considerations, e.g., languages, compilers, and underlying APIs. Typically, the
goal is also to provide portability across a large number of different platforms

August Ernstsson · Christoph Kessler
PELAB, Dept. of Computer and Information Science
Linköping University, Linköping, Sweden
E-mail: <firstname>.<lastname>@liu.se

Dalvan Griebler
School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto
Alegre, Brazil
E-mail: <firstname>.<lastname>@pucrs.br

2 August Ernstsson et al.

and even types of platforms (sometimes called ”backends”). However, the ef-
ficiency of the resulting platform-specific code may vary considerably across
the different platforms. This can be a particular challenge for single-source
multi-backend high-level parallel programming models that need to generate,
from the same high-level source, code for architecturally very diverse target
platforms.

For high-level programming models, and in particular their concrete imple-
mentations in languages, libraries, and frameworks, it is therefore of interest
to measure performance portability in addition to absolute performance. Per-
formance portability is a property of a program and a set of specific target
platforms; it quantifies the program’s ability to run correctly and at decent
efficiency across the given set of platforms without requiring (significant) mod-
ification of the source code. In order to achieve a good understanding of the
overall performance portability, it is therefore important to find a representa-
tive platform set to gather experimental results from. The program(s) should
also be representative of the target application area of the high-level paral-
lel programming model, or alternatively, a general set of programs that can
be used for comparison between a range of high-level parallel programming
models or implementations.

A promising class of single-source high-level programming models are multi-
backend skeleton programming frameworks such as SkePU [19], MueSLi [18],
FastFlow [1], GrPPI [15] or SPar [21]. These frameworks provide a set of com-
posable generic programming constructs (known as algorithmic skeletons) that
implement certain parallelizable computation patterns, that can be parame-
terized in sequential, problem-specific code, and for which different platform-
specific implementations (backends) are available.

This work investigates the performance portability of the skeleton-based,
single-source multi-backend high-level data-parallel programming framework
SkePU [19] across multiple different CPU-GPU heterogeneous systems. We
provide a systematic application efficiency characterization of SkePU-generated
code in comparison to equivalent hand-written code in more low-level parallel
programming models such as OpenMP and CUDA. For this purpose, we con-
tribute new SkePU ports of the STREAM benchmark suite and of a part of
the NAS Parallel Benchmark suite.1

We show that for STREAM and the EP benchmark, SkePU regularly scores
efficiency values above 80% and in particular for CPU systems, SkePU can
outperform hand-written code.

The remainder of this paper is organized as follows: Section 2 presents back-
ground about high-level parallel programming, SkePU, performance portabil-
ity and relevant benchmarks, esp. STREAM and NAS benchmarks. Related
work is discussed in Section 3. Section 4 presents details about our experimen-
tal method. Results are listed and discussed in Section 5 and 6, respectively.
Section 7 presents conclusions and Section 8 proposes future work.

1 The SkePU implementations will be published as open source.

Assessing Application Efficiency and Performance Portability ... 3

2 Background

2.1 High-level parallel programming and SkePU

Parallel programming is widely considered being more difficult and error-prone
than sequential programming, because the parallel execution dimension intro-
duces new challenges, bug risks and potential performance issues that do not
exist in the sequential computing world, such as load imbalance, race condi-
tions, deadlocks and overheads for parallelism management, communication
and synchronization.

Simple low-level extensions of sequential programming models by multi-
threading, accelerator control or message passing constructs, such as Pthreads,
OpenCL or MPI respectively, leave the programmer alone with this additional
complexity exposed. High-level parallel programming models promise to re-
duce complexity by providing structured programming constructs that manage
parallelism, synchronization and communication for certain patterns of parallel
computation. In particular, skeleton programming [11,10] has been intensively
researched during the last three decades, and improvements in programmabil-
ity have been experimentally demonstrated [13,6,2,3]. The approach is based
on expressing computations in terms of pre-defined high-level constructs called
(algorithmic) skeletons such as map, reduce, scan or stencil, which capture a
specific, parallelizable computation pattern as a higher-order function that
can be parameterized in user-provided code to instantiate executable code.
All details of managing parallelism, communication and synchronization are
encapsulated in the skeleton implementation. In this way, skeleton programs
are, conceptually, no harder to write, read and maintain than well-structured
sequential code for the same problem.

The reduced programming effort is usually paid for with some efficiency
overheads compared to expert-written explicitly parallel code, and the skele-
ton approach is not applicable to computations that do not match any of the
supported computation patterns. Nevertheless, the approach has been success-
fully demonstrated in research projects such as FastFlow [1], SkePU [19], SPar
[21], and also been adopted in many modern parallel programming interfaces,
such as Intel TBB, Nvidia Thrust, Hadoop Mapreduce or Apache Spark.

Skeleton programming is particularly promising as a means to provide
better code portability through a high-level abstraction which can more eas-
ily map to different types of target architectures (e.g., multicore CPU, GPU
or cluster) in today’s heterogeneous parallel computer systems. Even perfor-
mance portability (see below) can benefit, as we shall see in this paper, as the
programming system (compiler, runtime library) can build its own internal
performance models for skeleton-based computations and is, in general, free
to automatically select the expected fastest backend for each skeleton call.

In this work, we consider SkePU2 [19] as a case study. SkePU is a domain-
specific skeleton programming language embedded into modern C++. It pro-

2 https://skepu.github.io/

4 August Ernstsson et al.

Fig. 1: Formula for computing the performance portability (PP) metric [26]

vides currently 7 data-parallel variadic skeletons as well as STL-like generic
abstractions for multidimensional operand data in memory and abstractions
for different data access patterns. For each skeleton, implementations (back-
ends) are provided for single-threaded and multi-threaded (OpenMP) CPU
execution, single- and multi-GPU execution in CUDA and OpenCL, hybrid
CPU-GPU execution, and cluster execution. The data abstractions for 1D,
2D, 3D and 4D generic array-based operands wrap array based data struc-
tures in main memory; they are referred to as ”smart” data-containers as
they transparently perform run-time optimizations such as coherent software
caching and lazy device memory allocation and copying [12] and data locality
optimizations [20]. SkePU is implemented by a light-weight source-to-source
precompiler and an include-only runtime library for the interfaces and imple-
mentations of skeletons and data abstractions which makes intensive use of
template metaprogramming in C++. SkePU is available as open-source with
a permissive modified BSD license. Recent examples for the use of SkePU in
HPC applications are described in [25].

2.2 Performance portability

Performance portability is commonly understood as the ability of an applica-
tion codebase, together with tools or layers of the hardware-software stack, to
automatically achieve decent performance across different target architectures
without significant changes. This is an intuitive quantity which is harder to
define formally. In this work, we define performance portability in terms of ap-
plication efficiency across platforms, which means the measured performance
as a fraction of the best observed performance on the specific platform (by
some other, ideally well optimized and tuned, code). This is contrasted with
architectural efficiency, which instead compares the measured performance to
the peak hardware throughput of the target system. Architectural efficiency is
by definition lower than application efficiency.

Pennycook et al. [26] recently proposed a concrete metric for performance
portability (PP) in terms of efficiency measurements on a given specific set
H of platforms, see Fig. 1. It is determined as the harmonic mean of the
(application or architectural) efficiencies across all platforms in H, or 0 if any

Assessing Application Efficiency and Performance Portability ... 5

of these platforms does not support the computation (i.e., the program crashes
or produces incorrect3 results).

Notably, this metric is dependent on the considered platform set H and
not an inherent property of an application. It makes sense to consider PP
for architecturally related subsets of H, e.g., for the subset of all GPUs of
interest, of all CPUs, as well as for all platforms together, because this will
show common performance problems with certain architectural properties, as
well as the sensitivity to product family variations (e.g., cache sizes). Taking
the harmonic mean has a similar effect as minimization over the efficiencies
for the different platforms, and also reflects the intuitive notion that adding
new platforms to H will generally reduce the PP score, while algorithmic
specialization (i.e., adding special code paths for some platforms) will generally
increase the PP score.

We use this PP metric in this work, and time will tell if it achieves broad
adoption in the scientific community.

2.3 Benchmarks

There is an ongoing effort to create SkePU implementations, and subsequently
evaluations, of many benchmark workloads across several benchmark suites.
Such suites include Rodinia [9], PARSEC [8] and its parallel derivate P3ARSEC
[13], PolyBench [30], and NAS Parallel Benchmarks [7,23,4]. The complexity
and effort required for benchmarking parallel programming models, interfaces,
and frameworks is well-known [28] and examples of ongoing efforts to simplify
and standardize parallel benchmark suites are many, including P3ARSEC and
Task Bench. These efforts are seemingly conducted mostly in parallel to the
work toward a widely accepted performance portability metric, and it remains
one of the scientific goals of high-level parallel programming to merge these
efforts into a methodology to evaluate programming models and frameworks
across both application domains and platforms in a holistic process.

2.3.1 STREAM benchmark suite

The STREAM benchmark suite by McCalpin [24] of University of Virginia is
primarily intended for measuring and comparing memory bandwidth of high-
performance computing architectures. Versions of STREAM for distributed
memory systems also exist, e.g. using MPI, but in this work we are working
with single-node systems. However, heterogeneous architectures equipped with
accelerators with separate memory spaces are also considered here.

3 The notion of ”correct” behavior is not always obvious: especially when using acceler-
ators or for more efficient parallelization, one might want to tolerate small differences in
the result values within some limits, e.g. with respect to round-off errors of floating-point
computations or the behavior of parallel pseudorandom number generation.

6 August Ernstsson et al.

2.3.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) was created and made available by the
NASA Advanced Supercomputing division for benchmarking parallel hardware
and software in the Computational Fluid Dynamics (CFD) application domain
[7]. The benchmark suite is composed of five kernels (named Embarrassingly
Parallel - EP, Multi Grid - MG, Conjugate Gradient - CG, Discrete 3D Fast
Fourier Transform - FT, and Integer Sort - IS) and three pseudo-applications
(named Block Tri-diagonal solver - BT, Scalar Penta-diagonal solver - SP, and
Lower-Upper Gauss–Seidel solver - LU). They are well-known in the research
community and represent recurrent linear algebra computations. The user can
execute these programs with predefined workloads (named classes S, W, A, B,
C, D, E, and F) that vary the computational problem’s size. The original ver-
sion was written in Fortran and the parallel implementations were in OpenMP
and MPI. In recent years, an effort was made to provide parallel versions for
C/C++ parallel programming frameworks on multi-core systems [22,23] as
well as heterogeneous parallel programming on GPUs [5,4,16].

3 Related Work

Deakin et al. [14] provide ports of the STREAM benchmark set to several
single-source parallel programming models: Kokkos, RAJA, OpenMP 4.x, Ope-
nACC, SYCL, OpenCL and CUDA. (The ”modern” version of SkePU that we
use in our work did not yet exist at that time.) They evaluate performance
portability for these programming models on a variety of GPU and CPU types
from different vendors, including Intel Xeon Phi (Knights Landing).

A number of papers such as [17] present and evaluate multi-platform im-
plementations of the NPB, including GPU implementations in OpenCL and
CUDA. A recent review and comparison of previous work on NPB paral-
lelizations is given by Löff et al. [23]. In the interest of brevity, we focus
here on work based on single-source high-level programming models. Xu et
al. [29] study the efficiency of the NAS Parallel Benchmarks rewritten in the
directive-based single-source programming model OpenACC on GPUs and
identify performance-critical GPU-specific optimizations such as array priva-
tization that need be addressed by an OpenACC compiler. Performance is
compared to hand-written OpenCL code for the NPB. A fundamental differ-
ence from our (NPB) implementations in SkePU is that SkePU is based on the
more high-level skeleton concept rather than annotated sequential loop-based
code as in OpenACC, so that SkePU’s skeleton backend implementations are
not constrained by the sequential code structure.

4 Method

We compare an implementation of the STREAM benchmark suite in SkePU to
the reference implementation across a set of 10 target platforms. Application

Assessing Application Efficiency and Performance Portability ... 7

efficiencies are calculated from the performance data, measured in terms of
throughput data-rate, and used as a basis for calculating the performance
portability metric. The four STREAM workloads are evaluated on single and
double precision floating-point data resulting in eight applications in total
across ten platforms. We also document the programming effort required to
implement the STREAM benchmarks in SkePU.

This work was conducted in three main steps: benchmark selection, plat-
form selection, and performance evaluation.

4.1 Benchmark selection and implementation

The first step of this work was to select a set of benchmarks used to eval-
uate performance portability of SkePU. As the metric used takes efficiency
data as input, a baseline requirement was to find data-parallel benchmark ap-
plications with independent reference-implementations available for all target
platforms used in the evaluation. The choice fell on the STREAM benchmark
suite as it is simple and well-known, facilitating the above requirement also
with consideration of the limited scope of this project. SkePU has also not
been evaluated on STREAM before, and a secondary aim is to further grow
the set of benchmarks targeted by SkePU as part of the project.

In addition to the lightweight STREAM workloads, we also considered
NPB as a means to select additional possible evaluation points, since these are
different computations and are considered standard benchmarks for HPC eval-
uation. Like STREAM, NPB has not been subject to SkePU parallelization be-
fore, and given the recent work on NPB implementations in both C++ parallel
CPU frameworks and CUDA for Nvidia GPUs [23,4], we have good reference
points for efficiency comparison against SkePU implementations. However,
SkePUizing the entirety of NPB will be a future work, because the experi-
ence from this initial effort will indicate the viability of such a project. We
therefore select two NPB kernels: EP and CG. EP shares similar properties
to the STREAM kernels, such as being memory-bound, while the computa-
tional pattern modeled is not only a single Map, like STREAM, but rather a
MapReduce, with a global reduction. One aspect that is also shared between
STREAM and EP is that, during the entire program runtime, synchronization
is only necessary at the start and end phases. In typical SkePU usage, we ex-
pect also to be able to handle multiple skeleton invocations in sequence in an
efficient manner. To evaluate this, CG provides an iterative workload with each
iteration also containing several global synchronization points. I.e., a SkePU
implementation will have to consist of a substantial sequence of skeleton calls.

While the STREAM reference implementation in C could be applied mostly
unchanged, manual implementation work was required for SkePU versions of
the workloads. Reference STREAM results for GPUs was based on open-source
third-party implementations, but those required more tweaks to provide com-
patibility and a fair evaluation methodology. Table 1 lists the four workloads
that make up STREAM: copy, scale, add, and triad.

8 August Ernstsson et al.

Table 1: Benchmark workloads in STREAM.

Benchmark Memory Memory Total mem Unique mem FLOPS
reads writes accesses accesses

copy 1 1 2 2 0
scale 1 1 2 2 1
add 2 1 3 3 1
triad 2 1 3 3 2

As NPB base-line to compare with, we use the CUDA implementations of
EP and CG described in [23] as these have been experimentally shown [23] to
perform on-par or better than other state-of-the art EP and CG implementa-
tions such as [17], see also Section 3.

4.2 Platform selection

The platform selection is primarily guided by availability, but with the goal
of having at least two physically distinct systems represented and also sev-
eral different types of computational units. In this work, we are using the
term platform in the sense of a compilation target + a physical host system,
e.g., ”sequential C++ processing on a server” or ”laptop GPU with OpenCL
runtime”.

The platforms are derived from three physical systems: laptop computer,
the local server Excess, and the supercomputer cluster Tetralith/Sigma4.

The laptop is equipped with a single 2 GHz quad-core Intel Core i5 with
Intel Iris Plus graphics and 16 GiB main memory and runs Mac OS. This
GPU notably does not support double-precision compute kernels and cannot
run CUDA programs.

Excess is a 12-core server (two six-core Intel Xeon E5-2630L CPUs with
two-way hardware multi-threading, thus 24 logical cores) with one Nvidia K20c
GPU and 64 GiB main memory. This system runs Ubuntu.

Tetralith and Sigma are large clusters with thousands and hundreds of
nodes, respectively. We only use one node at a time in this work, of various
configurations. Each Tetralith/Sigma node contains two Intel Xeon Gold 6130
CPUs for a total of 32 cores, with no hardware multi-threading. The mini-
mum amount of node memory is 96 GiB, with more available on GPU nodes.
Tetralith GPU nodes are equipped with one Nvidia Tesla T4 GPU with 16
GiB of GPU memory, and the Sigma GPU nodes contain 4 Nvidia Tesla V100
SXM2 with 32 GiB of memory each.

From these systems we derive and define 14 target platforms, using either
different computational units or backend interfaces. Sequential platforms are
targeted with C++ (OpenMP extensions disabled). For multi-core platforms

4 Tetralith and Sigma are sister clusters and share most of their hardware and software.
Each clusters offer special nodes equipped, for example, with different GPU accelerators.
We have used nodes from both clusters in this work.

Assessing Application Efficiency and Performance Portability ... 9

Table 2: Platforms used in the performance portability evaluation.

Platform name System Progr. model Note
excess-seq Excess C/C++
excess-omp-12 Excess OpenMP All physical cores
excess-omp-24 Excess OpenMP All logical cores
excess-cl Excess OpenCL
excess-cuda Excess CUDA
laptop-seq Laptop C/C++
laptop-omp-4 Laptop OpenMP All physical cores
laptop-omp-8 Laptop OpenMP All logical cores
laptop-cl-flush Laptop OpenCL
laptop-cl-noflush Laptop OpenCL
cluster Tetralith/Sigma C/C++
cluster-omp-32 Tetralith/Sigma OpenMP All physical cores
cluster-v100-cuda Sigma CUDA
cluster-t4-cuda Tetralith CUDA

we chose to run OpenMP with as many threads as there are physical and
logical cores, respectively, but no thread pinning or similar was utilized.

On Excess, the GPU is targeted with both OpenCL and CUDA as separate
platforms. The laptop GPU has a platform only for OpenCL, but for the sake
of investigation, we define one ”platform” as requiring a flush of GPU memory
buffers between each measurement sample run, and one that only requires
synchronizing with the GPU. This is purely a software differentiator but allows
some insights into GPU bandwidth bottlenecks.

4.3 Evaluation method

The STREAM and NPB benchmarks are compiled with GCC 10 and 11 in
C++ mode (even for the reference program) with -O3 optimization level and
no further optimization passes explicitly turned on. Evaluation is done using
the default STREAM parameters: array sizes of 10 million elements and 10
runs per data point; and the default NPB problem size classes, except the D
and E classes, as the time and memory requirements are impractically large.

Evaluation on STREAM benchmarks is repeated on single precision floating-
point numbers and double-precision floating-point numbers, resulting in a
memory load of 0.1 GB for the former and 0.2 GB for the latter.

5 Results

Results are reported in three evaluated categories: programming effort, per-
formance, and performance portability.

10 August Ernstsson et al.

Listing 1: Smart data-container model SkePU-STREAM.
1 skepu::Vector<STREAM_T> ske_a(&a[0], STREAM_ARRAY_SIZE+OFFSET, false);

skepu::Vector<STREAM_T> ske_b(&b[0], STREAM_ARRAY_SIZE+OFFSET, false);
skepu::Vector<STREAM_T> ske_c(&c[0], STREAM_ARRAY_SIZE+OFFSET, false);

5.1 Parallel implementation in STREAM

The baseline code-churn of adapting the reference STREAM benchmarks to
SkePU is very low. SkePU first needs one line minimum for its header inclusion:
#include <skepu>.

5.1.1 Data model

Next, the three arrays used in the workloads needs to be wrapped in SkePU
smart data-containers: SkePU cannot use raw arrays.

The smart data-container definitions in Listing 1 utilize a SkePU smart
data-container feature that claims ”ownership” of raw memory regions and
uses them internally for the lifetime of the data-container. This pointer is used
as the memory buffer for sequential CPU or multi-threaded OpenMP backends;
for GPUs additional device memory is allocated. The false argument passed
here indicates that SkePU shall not deallocate the pointer as the lifetime of
the container ends.5

Finally, the skeleton instances need to be actually invoked during the
benchmarking part of the program. Normally, we could replace the existing
for-loops which forms the reference implementations of each workload, but the
STREAM codebase provides

5.1.2 Benchmarking bookkeeping

SkePU skeleton invocations are not guaranteed to be synchronous. There are
explicit optimizations in the framework relying on the opposite: that invoca-
tions are lazily evaluated only when strictly necessary. In fact, since STREAM
is embarrassingly parallel, the iterated invocations are perfect targets for the
tiling optimization on such lazily-built invocation chains. Even when this fea-
ture is explicitly disabled, e.g. the GPU backend implementations are also
partly asynchronous, relying on internal GPU driver scheduling queues for
synchronization of computation and requests for memory transfers. SkePU’s
interface exposes a flush directive (and related ”skepu::external” constructs)
which guarantees a full synchronization to a completed skeleton invocation,
but it is arguably too strong, as this operation will also trigger deallocation of

5 In fact, STREAM allocates these arrays on the stack, so freeing the pointers is always
undefined behavior in C++.

Assessing Application Efficiency and Performance Portability ... 11

Listing 2: STREAM kernels as SkePU skeletons.
1 auto skel_copy = skepu::Map([](STREAM_T a)

{
return a;

});
5 auto skel_add = skepu::Map([](STREAM_T a, STREAM_T b)

{
return a + b;

});
auto skel_scale = skepu::Map<1>([](STREAM_T a, STREAM_T s)

10 {
return a * s;

});
auto skel_triad = skepu::Map<2>([](STREAM_T b, STREAM_T c, STREAM_T s)
{

15 return b + s * c;
});

GPU memory and possible memory transfers. The benchmarking code there-
fore uses an internal SkePU synchronization directive between each measure-
ment run to ensure as accurate results as possible.

Similarly, the result verification component of STREAM needs a full flush
directive before it can run its checking algorithm.

5.1.3 Computations

Next, the skeletons representing the workload need to be defined. Each bench-
mark workload is straightforward to model with a single Map skeleton instance,
and with a lambda expression this is done with a single statement/line-of-code
per benchmark. For readability reasons, especially when presented in this re-
port, it can be desirable to format the skeleton instances across multiple lines.

In Listing 2, STREAM_T is a preprocessor macro symbol from the STREAM
reference code defined to be either float or double at compile-time. While
SkePU sometimes struggles with macro-heavy code, this usage here is handled
properly by the precompiler.

Note that the element-wise arity declared within chevrons is optional for
copy and add, but mandatory for scale and triad as SkePU cannot otherwise
distinguish the scalar s as not being an element-wise parameter.

5.2 Parallel implementation of NPB-EP

The EP kernel requires relatively little effort to adapt for SkePU. A single
MapReduce models the entire kernel, but the reduction step is more involved
than the typical ”dot-product” MapReduce archetype which reduces only a sin-
gle value. EP computes global sums of sx, sy, and q values (see Listing 3),
where the latter is a static array. SkePU can model this multi-way reduction

12 August Ernstsson et al.

Listing 3: Excerpt from the EP reference implementation in OpenMP.
1 #pragma omp parallel

{
double t1, t2, t3, t4, x1, x2;
int kk, i, ik, l;

5 double qq[NQ]; /* private copy of q[0:NQ-1] */
double x[NK_PLUS];

for (i = 0; i < NQ; i++) qq[i] = 0.0;

10 #pragma omp for reduction(+:sx,sy)
for(k=1; k<=np; k++){

int thread_id = omp_get_thread_num();
/* ... business logic code omitted */

}
15

#pragma omp critical
{

for (i = 0; i <= NQ - 1; i++) q[i] += qq[i];
}

20 } /* end of parallel region */

pattern either by declaring a custom type and reducing on said type, or by us-
ing variadic tuple-return syntax introduced in SkePU 3 [19]. Notably, SkePU’s
internal reduction implementation for the OpenMP backend performs the final
summation of thread-partial sums sequentially, while the reference OpenMP
code uses a mix of OpenMP pragma directives and a shared critical section,
as shown in Listing 3.

5.3 Parallel implementation of NPB-CG

NPB’s CG kernel is considerably more complex than the other benchmark
workloads considered in this paper. This is exemplified by the fact that CG
cannot be implemented with just one SkePU skeleton call; rather twelve dis-
tinct skeleton instances are invoked in sequence for each CG iteration, totaling
hundreds of skeleton calls during an entire CG execution. SkePU conceptually
induces a global synchronization point between skeleton invocations, and while
this can result in performance bottlenecks especially for iterative workloads,
it is in most cases required by the CG algorithm as it contains global reduc-
tions and other non-local dependency structures. The skeleton structure of the
SkePU implementation is closely following the CUDA kernels of the reference
CUDA code6, which makes the GPU efficiency results of particular interest in
this work.

In the process of porting the CUDA CG kernel to SkePU, we noted two
limitations of the SkePU interface. Firstly, the current SkePU version does

6 This is, in our experience, a good approach for SkePUizing applications with GPU
implementations already available.

Assessing Application Efficiency and Performance Portability ... 13

Listing 4: Sparse matrix-vector multiplication in SkePU.
1 auto skepu_skel_three = skepu::Map([](

skepu::Index1D index,
skepu::Vec<int> colidx,
skepu::Vec<int> rowstr,

5 skepu::Vec<double> a,
skepu::Vec<double> p) -> double {

int begin = rowstr(index.i);
int end = rowstr(index.i + 1);
double sum = 0.0;

10 for (int k = begin; k < end; ++k) {
sum += a(k) * p(colidx(k));

}
return sum;

});
15

skepu_skel_three(q, colidx, rowstr, a, p);

not include a smart data-container abstraction for sparse matrices. A sparse
matrix can be modeled by a series of vector containers, but with additional
programmer effort. Secondly, we observe a limitation in matrix-vector multi-
plication patterns as modeled by Map and SkePU’s random-access container
interface (”container proxies”). The typical way of encoding such computations
in SkePU is shown in Listing 4.

Compared to the reference CUDA kernel in Listing 5, the SkePU variant
parallelizes strictly on the elements in the output vector. The CUDA kernel
allocates one block of threads for each output element, and can share the row
calculations among the threads in the block, which in the SkePU case has
to be managed by one thread. The reason for the discrepancy is that SkePU
user functions are completely independent with no observable side effects, and
as such the user functions executed within the same GPU block can neither
communicate, synchronize, or even access the block size.

With the exception of this parallelization scheme, all of the CUDA ker-
nels are straightforward to adapt into SkePU skeletons while simplifying and
reducing code size.

5.4 Performance evaluation

The benchmark performance results for STREAM are presented in Figures 2
and 3, visualizing the relative efficiency of the SkePU programs as compared to
reference STREAM results. Note that the single-precision results contain two
additional platforms: the laptop GPU is evaluated with and without explicit
memory flushes between test runs.

Similarly, the performance results for NPB, EP in Figure 4 and CG in
Figure 5, are presented as collected on the 12 platforms which can run double-
precision calculations.

14 August Ernstsson et al.

Listing 5: Sparse matrix-vector multiplication in CUDA.
1 __global__ void gpu_kernel_three(int colidx[],

int rowstr[],
double a[],
double p[],

5 double q[]) {
double* share_data = (double*)extern_share_data;
int j = (int) ((blockIdx.x*blockDim.x+threadIdx.x) / blockDim.x);
int local_id = threadIdx.x;
int begin = rowstr[j];

10 int end = rowstr[j+1];
double sum = 0.0;
for (int k=begin+local_id; k<end; k+=blockDim.x) {

sum = sum + a[k]*p[colidx[k]];
}

15 share_data[local_id] = sum;

__syncthreads();
for (int i=blockDim.x/2; i>0; i>>=1) {

if (local_id<i) { share_data[local_id]+=share_data[local_id+i]; }
20 __syncthreads();

}
if (local_id==0){q[j]=share_data[0];}

}

25 gpu_kernel_three<<<blocks_per_grid_on_kernel_three ,
threads_per_block_on_kernel_three ,
size_shared_data_on_kernel_three >>>(

colidx_device, rowstr_device,
a_device, p_device, q_device);

Fig. 2: Efficiency per platform on double-precision STREAM workloads.

5.5 Performance portability

We use efficiency cascade plots in Figure 6 as proposed in [27] to visualize per-
formance portability of the workloads when considering successively smaller
platform sets. The rightmost data point in each line shows the PP metric
for the entire set of platforms, and in each successive data point to the left,
the least efficient platform is removed from the set and the PP metric is

Assessing Application Efficiency and Performance Portability ... 15

Fig. 3: Efficiency per platform on single-precision STREAM workloads.

Fig. 4: Efficiency per platform and problem size class on NPB-EP.

Fig. 5: Efficiency per platform and problem size class on NPB-CG.

re-evaluated on the new subset. We use this method of visualization as the
singular PP number is heavily influenced by the least efficient platform in the
set. By computing the PP metric for the most interesting subsets of platforms,
more detailed information can be conveyed.

Note that the order of platform removals may be different across workloads,
so the different lines in each graph are not directly comparable.

16 August Ernstsson et al.

(a) Single-precision (b) Double-precision

Fig. 6: Efficiency cascade plots for STREAM kernels by kernel and precision.

This approach of visualization makes the different trade-offs between single-
and double-precision workloads apparent. We see that the single-precision PP
metrics are overall significantly lower, but the programs which depends on
double-precision suffers from incompatibility on two platforms and as such
the PP metric drops to zero on the rightmost platform subsets here.

The efficiency cascade plots clearly show that the SkePU implementation
of the copy workload exhibits worse performance portability than the other
three workloads, which cluster tightly together in the plot. This fact is not as
easy to discern in the traditional bar graphs.

6 Discussion

From the STREAM results, we observe that the SkePU programs with single-
precision workloads are less efficient than the corresponding double-precision
ones. The STREAM reference implementation is a set of microbenchmarks
in a tightly controlled environment: program parameters are all compile-time
configuration options, including array size. The arrays are allocated on the
program stack, so all program addresses are statically known, allowing for far-
reaching optimization opportunities by the compiler.In comparison, SkePU
skeleton code is generated behind layers of abstractions. SkePU smart data-
containers operate on pointers that are normally dynamic allocations of arbi-
trary size, and the backend selection is entirely a run-time decision. This means
that even though SkePU is embedded into the STREAM reference codebase

Assessing Application Efficiency and Performance Portability ... 17

(a) EP (b) CG

Fig. 7: Efficiency cascade plots for NPB kernels by problem size class.

with only minor alterations, the static information is unlikely to propagate
all the way down to the skeleton internals unless the backend compiler is ex-
tremely aggressive with global static analysis. Examples of optimization stages
that can be affected include inlining of SkePU user function calls, loop un-
rolling, loop fusion, auto-vectorization, and pointer de-aliasing.

The STREAM workloads are all memory-bound, so the hyper-threaded
platforms do not scale linearly in throughput from the baseline platforms with
thread counts matching the number of physical cores. However, the laptop still
benefits quite a bit from hyper-threading, while Excess is largely flat.

The application efficiency numbers presented in the paper could be made
more accurate if per-system-tuned reference implementations were used. Per-
formance efficiency properties differ a lot between the evaluated systems, even
for the same types of backend targets, and several times the efficiency is
recorded as over 100%. This indicates that the task of finding optimal refer-
ence implementations requires implementations with built-in platform-tuning
capabilities. In particular, the EP kernel frequently results in cases where the
SkePU version outperforms the reference code. For OpenMP, it is likely that
the synchronization approach by SkePU contributes to this, as discussed in
Section 5.2.

For the CG kernel, the efficiency results on GPU platforms are very low.
For smaller problem sizes, the skeleton invocation overhead is contributing to
these inefficiencies, but more importantly SkePU programs induce initializa-
tion delays due to environment set-up and lazy memory allocations on device,
and so on. These delays may still occur in hand-written implementations, but

18 August Ernstsson et al.

the abstractions in SkePU make it impossible to assure that initialization de-
lays happen outside of the critical timing regions, without considerable code
instrumentation. For larger problem sizes, such overhead is a smaller quota
of the total execution time. For large CG sizes, instead, the issue discussed
in Section 5.3 becomes important. The matrix-vector multiplication phase be-
comes dominating at large problem sizes, and the parallelization inefficiency
in the SkePU version becomes a performance bottleneck.

7 Conclusions

Of the three benchmarks evaluated in this work, we have shown that STREAM
benchmarks, specifically in their original double-precision form, and the EP
kernel in NPB result in high efficiency and performance portability when im-
plemented using the SkePU skeletons and smart data-containers. For the CG
benchmark, the results are not as consistent and SkePU’s efficiency is highly
platform-dependent. We have identified specific performance bottlenecks in
SkePU, in particular for GPU backends.

The results demonstrate that SkePU-parallelized programs can achieve
good application efficiency and even outperform hand-written parallel code
in some cases, even though SkePU code is single-source and often shorter than
any of the individual platform-specific programming models. Note also that
this work does not even take the auto-tuning functionality of SkePU into ac-
count, which does provide an advantage for SkePU compared to distinct and
unrelated parallel implementations.

8 Future work

For a future revision of the paper, we plan to extend the performance porta-
bility evaluation to also consider multi-node platform configurations on the
Tetralith/Sigma cluster. If possible, we would also like to evaluate multi-node
GPU platforms or hybrid CPU-GPU variants.

In the future, we intend to extend the pattern set of SkePU with a multi-
backend sorting skeleton. Such a construct would be useful for a convenient and
efficient implementation of the IS kernel in NPB. In the long term, we aim for
complete SkePU coverage of the NPB kernels. Further extending the available
SkePU implementations of benchmarks and other representative applications
remains a topic of interest.

A further direction for future work is to extend our performance porta-
bility analysis of SkePU by including other single-source high-level parallel
programming models, such as directive based models like OpenACC as well
as other single-source skeleton programming frameworks.

Assessing Application Efficiency and Performance Portability ... 19

Acknowledgments

This work has been partly funded by ELLIIT, project GPAI. We thank SNIC
and NSC for providing access to HPC resources Tetralith (SNIC 2021/22-971)
and Sigma (LiU-gpu-2021-1) that were used for this work.

References

1. Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Fastflow:
High-Level and Efficient Streaming on Multicore, chapter 13, pages 261–280. John
Wiley & Sons, Ltd, 2017.

2. Gabriella Andrade, Dalvan Griebler, Rodrigo Santos, Marco Danelutto, and Luiz G.
Fernandes. Assessing coding metrics for parallel programming of stream processing
programs on multi-cores. In 2021 47th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 291–295, 2021.

3. Gabriella Andrade, Dalvan Griebler, Rodrigo Santos, and Luiz G. Fernandes. A paral-
lel programming assessment for stream processing applications on multi-core systems.
Computer Standards & Interfaces, 2022.

4. Gabriell Araujo, Dalvan Griebler, Dinei A. Rockenbach, Marco Danelutto, and Luiz G.
Fernandes. NAS parallel benchmarks with cuda and beyond. Software: Practice and
Experience, n/a(n/a), 2021.

5. Gabriell Alves de Araujo, Dalvan Griebler, Marco Danelutto, and Luiz Gustavo Fer-
nandes. Efficient NAS parallel benchmark kernels with CUDA. In 2020 28th Euromi-
cro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), pages 9–16, 2020.

6. M. Arvanitou, A. Ampatzoglou, N. Nikolaidis, A. Tzintzira, A. Ampatzoglou, and
A. Chatzigeorgiou. Investigating trade offs between portability, performance and main-
tainability in exascale systems. In 46th Euromicro Conf. on Software Engineering and
Advanced Applications (SEAA), pages 59–63, 2020.

7. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga. The nas parallel benchmarks—summary and preliminary
results. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Super-
computing ’91, page 158–165, New York, NY, USA, 1991. Association for Computing
Machinery.

8. Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec bench-
mark suite: Characterization and architectural implications. In Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques, PACT
’08, page 72–81, New York, NY, USA, 2008. Association for Computing Machinery.

9. Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In
2009 IEEE International Symposium on Workload Characterization (IISWC), pages
44–54, 2009.

10. Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Computing, 30(3):389–406, 2004.

11. Murray I. Cole. Algorithmic skeletons: Structured management of parallel computation.
Pitman and MIT Press, Cambridge, Mass., 1989.

12. Usman Dastgeer and Christoph Kessler. Smart containers and skeleton programming
for GPU-based systems. International Journal of Parallel Programming, 44(3):506–530,
2016.

13. Daniele De Sensi, Tiziano De Matteis, Massimo Torquati, Gabriele Mencagli, and Marco
Danelutto. Bringing parallel patterns out of the corner: The p3arsec benchmark suite.
ACM Trans. Archit. Code Optim., 14(4), October 2017.

14. Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. Gpu-stream
v2.0: Benchmarking the achievable memory bandwidth of many-core processors across

20 August Ernstsson et al.

diverse parallel programming models. In Michela Taufer, Bernd Mohr, and Julian M.
Kunkel, editors, High Performance Computing, pages 489–507, Cham, 2016. Springer
International Publishing.

15. David del Rio Astorga, Manuel F. Dolz, Javier Fernández, and J. Daniel García. A
generic parallel pattern interface for stream and data processing. Concurrency and
Computation: Practice and Experience, 29(24):e4175, 2017.

16. Y. Do, H. Kim, P. Oh, D. Park, and J. Lee. SNU-NPB 2019: Parallelizing and optimizing
NPB in OpenCL and CUDA for modern GPUs. In 2019 IEEE International Symposium
on Workload Characterization (IISWC), pages 93–105. IEEE, 2019.

17. Youngdong Do, Hyungmo Kim, Pyeongseok Oh, Daeyoung Park, and Jaejin Lee. Snu-
npb 2019: Parallelizing and optimizing npb in opencl and cuda for modern gpus. In Int.
Symposium on Workload Characterization (IISWC), pages 93–105, 2019.

18. Steffen Ernsting and Herbert Kuchen. Algorithmic skeletons for multi-core, multi-gpu
systems and clusters. International Journal of High Performance Computing and Net-
working, 7(2):129–138, apr 2012.

19. August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph Kessler. SkePU
3: Portable high-level programming of heterogeneous systems and HPC clusters. Inter-
national Journal of Parallel Programming, 49:846–866, 2021.

20. August Ernstsson and Christoph Kessler. Extending smart containers for data locality-
aware skeleton programming. Concurrency and Computation: Practice and Experience,
31(5):e5003, 2019.

21. Dalvan Griebler, Marco Danelutto, Massimo Torquati, and Luiz Gustavo Fernandes.
SPar: A DSL for High-Level and Productive Stream Parallelism. Parallel Processing
Letters, 27(01):1740005, March 2017.

22. Dalvan Griebler, Junior Löff, Gabriele Mencagli, Marco Danelutto, and Luis Gustavo
Fernandes. Efficient NAS benchmark kernels with C++ parallel programming. In
26th Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP), pages 733–740, 2018.

23. Júnior Löff, Dalvan Griebler, Gabriele Mencagli, Gabriell Araujo, Massimo Torquati,
Marco Danelutto, and Luiz Gustavo Fernandes. The NAS parallel benchmarks for
evaluating C++ parallel programming frameworks on shared-memory architectures.
Future Generation Computer Systems, 125:743–757, 2021.

24. J. D. McCalpin. STREAM benchmark, 1995.
25. Lazaros Papadopoulos, Dimitrios Soudris, Christoph Kessler, August Ernstsson, Johan

Ahlqvist, Nikos Vasilas, Athanasios I. Papadopoulos, Panos Seferlis, Charles Prouveur,
Matthieu Haefele, Samuel Thibault, Athanasios Salamanis, Theodoros Ioakimidis, and
Dionysios Kehagias. Exa2pro: A framework for high development productivity on het-
erogeneous computing systems. IEEE Transactions on Parallel and Distributed Sys-
tems, 33(4):792–804, 2022.

26. S.J. Pennycook, J.D. Sewall, and V.W. Lee. Implications of a metric for performance
portability. Future Generation Computer Systems, 92:947–958, 2019.

27. Jason Sewall, S. John Pennycook, Douglas Jacobsen, Tom Deakin, and Simon McIntosh-
Smith. Interpreting and visualizing performance portability metrics. In IEEE/ACM
Int. Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages
14–24, 2020.

28. Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, Nicolai Garcia, Wilhem
Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao, George Bosilca, Seema Mirchandaney,
Wonchan Leek, Sean Treichlerk, Patrick McCormick, and Alex Aiken. Task bench:
A parameterized benchmark for evaluating parallel runtime performance. In SC20:
International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–15, 2020.

29. Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, Yuonghong Yuan, and Barbara
Chapman. NAS parallel benchmarks for GPGPUs using a directive-based programming
model. In Proc. LCPC 2014, LNCS 8967, pages 67–81. Springer, 2015.

30. Tomofumi Yuki and Louis-Noël Pouchet. Polybench 4.0, 2015.

Noname manuscript No.
(will be inserted by the editor)

Declarative Data Flow in a Graph-Based Distributed
Memory Runtime System

Fabian Knorr · Peter Thoman ·
Thomas Fahringer

Received: date / Accepted: date

Abstract Runtime systems can significantly reduce the cognitive complexity
of scientific applications, narrowing the gap between systems engineering and
domain science in HPC. One of the most important angles in this is automating
data distribution in a cluster. Traditional approaches require the application
developer to model communication explicitly, for example through MPI prim-
itives. Celerity, a runtime system for accelerator clusters heavily inspired by
the SYCL programming model, instead provides a purely declarative approach
focused around access patterns. In addition to eliminating the need for explicit
data transfer operations, it provides a basis for efficient and dynamic schedul-
ing at runtime. However, it is currently only suitable for accessing array-like
data from runtime-controlled tasks, while real programs often need to interact
with opaque data local to each host, such as handles or database connections,
and also need a defined way of transporting data into and out of the virtualised
buffers of the runtime. In this paper, we introduce a graph-based model and
a declarative API to express side-effect dependencies between tasks and move
data from the runtime context to the application space.

Keywords Runtime System · DAG · Accelerator · Data Flow · API

1 Introduction

Modern scientific and High Performance Computing (HPC) is a challenging
environment for software engineering. In order to increase compute throughput
despite the ever tighter constraints on power efficiency, modern supercomputer
hardware embraces heterogeneous processor architectures, deep memory hier-
archies with non-uniform access characteristics and specialized network topolo-
gies. Most of the increasing complexity is directly passed onto the application

Fabian Knorr, Peter Thoman, Thomas Fahringer
University of Innsbruck, Austria
E-mail: {fabian,petert,tf}@dps.uibk.ac.at

2 Fabian Knorr et al.

developer in the form of intricate APIs—and in some cases entirely disjoint
programming models—allowing optimal utilization of the available technolo-
gies in every use case. While the resulting increase in up-front development
cost can be acceptable for large-scale applications such as general-purpose sim-
ulation toolkits, specialized single-use codes for novel discovery will have not
the development budget required to test a research hypothesis that might turn
out to be a dead-end.

Distributed Memory Runtime Systems are an established concept for eas-
ing select aspects of the complexity in these heterogeneous systems, such as
performance portability, optimizing execution schedules with unbalanced loads
or automatic data migration between computation steps. They typically in-
cur a trade-off between expressiveness, correctness guarantees, and the level
of permitted user control.

The mission statement of Celerity[15], a task-based distributed memory
runtime system for accelerator clusters, is to make programming heteroge-
neous HPC systems more accessible and time-efficient by facilitating low-effort
porting of single-node SYCL[1] accelerator programs. The Celerity model de-
composes a problem into compute tasks and their data dependencies, using
subdivision of the computational index spaces to transparently distribute work
onto a cluster. Celerity exposes a declarative data flow API operating on vir-
tualized buffers to infer dependencies and necessary data transfers in the dis-
tributed program, relieving the programmer of manual scheduling decisions
and data relocation.

Celerity’s APIs allow it to statically guard against unmanaged buffer ac-
cesses and race conditions between tasks, greatly reducing the potential for
programming errors. The runtime implementation benefits from an information-
dense API that supports the generation of efficient execution schedules, while
the user is assured of their code’s correctness by an expressive programming
paradigm, allowing them to focus on core algorithm development instead.

A notable use of Celerity is the Cluster-accelerated magnetohydrodynam-
ics simulation CRONOS [10], which demonstrates the viability of the Celerity
model for real-world applications. It is also sufficiently generic to serve as
the basis for further abstractions like the Celerity High-level API [16], a pro-
gramming model exposing data transformations using composable functional
operator pipelines similar to the C++20 ranges library.

While domain-specific problems can be fully described by compute tasks
and data dependencies between them, real codes need additional features to
perform I/O operations with side effects. Incremental porting from single-node
SYCL applications, an important development goal of Celerity, further requires
data movement between the legacy host application and runtime-controlled
virtual buffers.

In this paper, we present an approach to augmenting the Celerity exe-
cution model with declarative mechanisms for tracking I/O side effects and
safely moving data out of the managed context on pre-existing synchroniza-
tion points.

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 3

using mat = buffer<float, 2>;
const range<2> size{256, 256};

void diag(handler& cgh, mat& M, float d) {
accessor m{M, cgh, access::one_to_one{}, write_only, no_init};
cgh.parallel_for(size, [=](item<2> i) {

m[i] = i[0] == i[1] ? d : 0;
});

}

void mul(handler& cgh, mat& A, mat& B, mat& C) {
accessor a{A, cgh, access::slice<2>{1}, read_only};
accessor b{B, cgh, access::slice<2>{0}, read_only};
accessor c{C, cgh, access::one_to_one{}, write_only, no_init};
cgh.parallel_for(size, [=](item<2> i) {

c[i] = 0;
for(size_t k = 0; k < i.get_range(0); ++k) {

c[i] += a[i[0]][k] * b[k][i[1]];
}

});
}

void is_diag(handler& cgh, mat& C, float d, buffer<bool>& ok_buf) {
accessor c{C, cgh, access::one_to_one{}, read_only};
auto ok_r = reduction(ok_buf, cgh, sycl::logical_and<bool>{},

property::reduction::initialize_to_identity{});
cgh.parallel_for(size, ok_r, [=](item<2> i, auto &ok) {

ok.combine(c[i] == (i[0] == i[1] ? d : 0));
});

}

int main() {
distr_queue q;
mat A{size}, B{size}, C{size};
q.submit([=](handler& cgh) { diag(cgh, A, 2); });
q.submit([=](handler& cgh) { diag(cgh, B, 3); });
q.submit([=](handler& cgh) { mul(cgh, A, B, C); });
buffer<bool> ok{1};
q.submit([=](handler& cgh) { is_diag(cgh, C, 6, ok); });
return /* ok[0] is true */ ? EXIT_SUCCESS : EXIT_FAILURE;

}

Listing 1: Simple Celerity program computing the product of two diagonal matrices and
verifying the result.

2 The Celerity Runtime System

Celerity is a high-level C++ API and runtime system bringing the SYCL [1]
accelerator programming model to distributed-memory clusters. Using an en-
hanced declarative description of data requirements, it transparently distributes
compute kernels onto the nodes of a cluster while maintaining an API very
close to its single-node ancestor. Celerity has evolved significantly beyond what
has previously been published [14][15], so we give a broad overview of the in-
terface and execution model.

4 Fabian Knorr et al.

Listing 1 exemplifies the source code of a typical Celerity application. The
main function allocates three two-dimensional buffers for square matrices and
instantiates a distributed queue. It then launches a sequence of kernels that
initialize A and B as diagonal matrices (diag function) and compute the
naïve matrix product C := A ·B (mul function). Finally, the result is verified
by launching a fourth kernel that computes the expected value of each cij and
combines the results using a distributed reduction over the && operator.

Work is submitted to the asynchronous distributed queue in the form of
command group functions, which are implemented as lambdas receiving a
command group handler called cgh in the example. A command group de-
clares a set of buffer requirements and specifies the work to be executed.

Buffer access is guarded by accessors, which bind buffers to the command
group handler and inform Celerity of the mode of access and the access ranges
through range mappers (here one_to_one and slice). Captured inside the
kernel function that is passed on to parallel_for, these accessors facilitate
reading and writing of the actual buffer contents.

All submissions to the distributed queue happen asynchronously and in-
struct Celerity to build an internal representation of data requirements and
execution ranges. The actual scheduling, distribution and execution of the
submitted kernels within the cluster is transparently managed by the runtime.
The completion of all submitted command groups is finally awaited implicitly
by the ~distr_queue() destructor.

As indicated by the comment in the last line of main, Celerity does not have
a designated mechanism for transporting data managed by the runtime back
to the host application. Closing this gap is non-trivial and a core contribution
of this work, for which workarounds need to be inserted currently.

2.1 Celerity’s Graph-Based Execution Model

Execution of a Celerity program is distributed unto nodes, where a desig-
nated master node creates the execution schedule for the entire cluster and
determines how data and computational load is distributed. This centralized
approach has the potential to incorporate dynamic scheduling decisions such
as load balancing at runtime without requiring costly synchronization be-
tween equal nodes in a distributed scheduling setting. By relying on fully
asynchronous work assignment, Celerity is able to avoid the scalability prob-
lems that a more traditional lock-step implementation of centralized scheduling
would be certain to encounter.

As command groups are submitted from the application thread of a Celer-
ity program, a coarse-grained, directed acyclic graph (DAG) called the task
graph is constructed. Each command group creates a corresponding task node,
and data dependencies between command groups manifest as true- or anti-
dependencies as if the entire program was executed on a single node.

On the master node, the scheduler then constructs a fine-grained command
graph that models the distributed executions and all data transfers that arise

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 5

Tasks

diag
write A

diag
write B

mul
read A
read B
write C

is_diag
read C
write ok

Commands (Node 0) Commands (Node 1)

exec diag [0..128, ∗]
write A [0..128, ∗]

exec diag [128..256, ∗]
write A [128..256, ∗]

exec diag [0..128, ∗]
write B [0..128, ∗]

exec diag [128..256, ∗]
write B [128..256, ∗]

push to 1
read B [0..128, ∗]

push to 0
read B [128..256, ∗]

await push from 1
write B [128..256, ∗]

await push from 0
write B [0..128, ∗]

exec mul [0..128, ∗]
read A [0..128, ∗]

read B [∗, ∗]
write C [0..128, ∗]

exec mul [128..256, ∗]
read A [128..256, ∗]

read B [∗, ∗]
write C [128..256, ∗]

exec is_diag [0..128, ∗]
read C [0..128, ∗]

writer ok [∗]

exec is_diag [128..256, ∗]
read C [128..256, ∗]

writer ok [∗]

true dependency data transfer

Fig. 1: Task graph (left) and command graph (right) arising from Listing 1 for two nodes in
stable Celerity. Kernel execution commands show the 2-dimensional iteration sub-range and
the resulting data requirements as assigned by the scheduler. In each dimension, the interval
a..b includes a but excludes b, and ∗ denotes the entire range. The necessary inter-node data
exchange generates auxiliary push / await push command pairs.

with it. Commands are always bound to a particular node, but the precise
projection of tasks onto commands varies with the task type. For example,
device execution tasks, which are generated from command groups invoking
handler::parallel_for, may be split such that each worker node receives
one part of the total execution range.

Figure 1 shows possible task and command graphs for the program in
Listing 1. While the task graph reflects the high-level dependency structure
visible in the source code, the command graph contains only dependencies
induced by the execution subranges on each node.

Within task and command graph, dependencies are assigned based on the
access modes of buffer accesses and the submission order. For example, a com-
mand group with write access followed by a command group with read access
to the same buffer region will generate a true dependency, while the inverse
order will generate an anti-dependency.

A unique concept in Celerity, and one of the major points where its API
differs from SYCL, are range mappers. These projections, required on each
accessor, inform the runtime which portions of each buffer an arbitrary sub-
division of the execution space will access.

6 Fabian Knorr et al.

The stream of serialized commands is forwarded to the respective worker
nodes, which place them into their executor queue. The executor of each worker
node will then make its own local scheduling decisions to best allocate its
resources to the pending commands. While all nodes construct identical task
graphs in parallel, the command graph structure only exists on the master node
in its full form. Pure worker nodes only reconstruct the relevant dependency
graph locally from the serialized commands.

3 Modeling Node-Local Side Effects

SYCL and Celerity share the concept of host tasks that asynchronously sched-
ule the execution of arbitrary code on the host, avoiding host-device synchro-
nization and scheduler stalls. Similar to the common device tasks, host tasks
can read and write buffers through the accessor mechanism. Additionally, they
are able interact with operating system APIs such as file I/O and reference
objects allocated in the main thread, since they operate in the same address
space. Once more than one host task references the resource, the resulting
synchronization or ordering constraints need to be enforced during execution.

The only synchronization primitive offered by Celerity are cluster-wide bar-
riers that can be inserted between command groups through the aptly-named
distr_queue::slow_full_sync() API. These barriers additionally serialize
the execution on each node and synchronize between the main and executor
threads of the runtime.

In order to avoid race conditions around node-local state, the application
developer must currently insert a barrier in any place where an invisible node-
local dependency exists between them. This “sledgehammer synchronization’;
is not only error-prone, but also detrimental to application performance due to
the barrier operation and subsequent stalling of any further work submission.

In the following, we want to explore how to establish ordering on node-
local state while conserving as much scheduling freedom as possible through
an in-graph mechanism.

3.1 SYCL Precedent: Explicit Control-Flow Dependencies

SYCL supports specifying explicit control-flow dependencies between com-
mand groups through the depends_on() API, as shown in Listing 2. This
interface is primarily motivated by Unified Shared Memory (USM), an alter-
native memory management API introduced with SYCL 2020 operating on
raw pointers, which lacks the implicit tracking of buffers and accessors.

Since Celerity relies on precise knowledge of buffer access patterns through
access modes and range mappers to create efficient schedules, the USM model
relying on hardware support for implicit data transfers cannot be implemented
with reasonable efficiency. Invisible dependencies thus only arise between host
tasks, so by designing an interface more closely geared towards side effects, we
can retain Celerity’s strong focus on declarative data flow.

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 7

int main() {
sycl::queue q;
auto event = q.submit([](sycl::handler& cgh) {

cgh.host_task(...);
});
q.submit([&](sycl::handler& cgh) {

cgh.depends_on(event);
cgh.host_task(...);

});
}

Listing 2: SYCL allows introducing explicit command-group dependencies

3.2 Dataflow-Centric: Host Objects and Side Effects

As a novel data-flow centric API, we introduce the concept of host objects
and side effects as shown in Listing 3. Similar to how buffers and accessors
manage distributed data, they provide an expressive and safe interface for
creating data-flow dependencies between command groups.

A host object is a wrapper to a reference or value type with semantics
that are entirely user-defined, but for which access is guarded by the runtime.
Any host object is guaranteed to outlive its last observing host task, so no
dangling reference problems arise from deferred kernel execution.

A side effect, when defined in a command group, grants the host task ac-
cess to a host object and communicates the resulting local ordering constraints
to the runtime. The host object–side effect duality is deliberately similar to
the one between buffers and accessors, both in SYCL and Celerity.

The example in Listing 4 shows how a file handle is wrapped in a host
object to capture it in a host task. Thereafter, accessing the handle itself is
only possible by constructing a side effect. This statically guarantees that the
object state can only be observed inside host tasks and resulting ordering
constraints are always known to the runtime.

To guard against the accidental observation of non-managed state, we as-
sert at compile time that a command group function does not capture by
reference1 unless it is passed with the allow_by_ref tag. Since buffers and
host objects have shared-pointer semantics internally, by-value captures are
almost always sufficient.

3.3 Accurate Scheduling Constraints Through Side Effect Orders

By default, side effects as proposed above will always serialize execution be-
tween host tasks observing the same object. Since host objects are opaque and
the precise semantics of interactions within the host task cannot be further

1 In C++, references and types transitively containing references are not consid-
ered standard layout types, so this property can be conservatively verified using
std::is_standard_layout_v<>.

8 Fabian Knorr et al.

template <typename T>
class host_object {

using object_type = T;
host_object(T&& obj);

};

template <typename T>
class host_object<T&> {

using object_type = T;
host_object(std::reference_wrapper<T> obj);

};

template <>
class host_object<void> {

using object_type = void;
host_object();

};

enum class side_effect_order { relaxed, exclusive, sequential };

template<side_effect_order> struct /* exposition only */ order_tag {};
inline constexpr order_tag<side_effect_order::relaxed> relaxed_order;
inline constexpr order_tag<side_effect_order::exclusive> exclusive_order;
inline constexpr order_tag<side_effect_order::sequential> sequential_order;

template <typename T, side_effect_order Order = sequential>
class side_effect {

using object_type = typename host_object<T>::object_type;
side_effect(const host_object<T>& object, handler& cgh,

order_tag<Order> = {} /* for class template argument deduction */);
object_type& operator*() const; // when T is not void
object_type* operator->() const; // when T is not void

};

Listing 3: Host Object and Side Effect API

int main() {
distr_queue q;
host_object<std::ofstream> ofs("file.txt");
q.submit([=](handler& cgh) {

side_effect e{ofs, cgh, /* sequential by default */ };
cgh.host_task(on_master_node, [=] { *e << "Hello "; });

});
q.submit([=](handler& cgh) {

side_effect e{ofs, cgh, sequential_order /* deduction tag */ };
cgh.host_task(on_master_node, [=] { *e << "world!"; });

});
}

Listing 4: Using side effects to serialize writes to a shared file handle

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 9

inspected by the runtime, this can be overly restrictive. For example, incre-
menting an atomic counter from multiple host tasks does not need to introduce
any scheduling or synchronization constraints, but the user should still be able
to rely on the runtime for the liveness guarantees on the host object.

Choosing between different scheduling guarantees for side effects is remi-
niscent of access modes on buffer access. However, the read–write dichotomy
itself is not a good fit for this new use case: First of all, whether two “writ-
ing” side effects can be scheduled concurrently or not depends on the level of
synchronization employed by the object itself, which is outside of Celerity’s
control. Also, for buffers, the access modes are instructive of implicit data
movement by the runtime, which does not apply to host objects either.

We therefore propose three distinct side effect orders that can optionally
be specified when a side effect is declared:

– sequential order : The task cannot be re-ordered against or executed con-
currently with any other task affecting the same host object.

– exclusive order : The task may be re-ordered, but not executed concurrently
with any other task affecting the same host object.

– relaxed order : The task may be executed concurrently with and freely re-
ordered against other tasks affecting the same host object.

Relaxed-order side effects are sufficient if the contained object provides
synchronization internally, or if the task only performs inherently thread-safe
non-mutating accesses while any mutating operations in other tasks occur in
the context of a sequential-order side effect.

An exclusive-order side effect is indicated when execution order is irrel-
evant, but concurrent accesses would violate synchronization requirements.
This is superior to a relaxed-order side effect combined with manual locking if
the lock would have to be held for any significant amount of time. Instead of
stalling executor threads, each worker node is able to generate efficient local
schedules around the resulting constraints ahead of time.

A sequential-order side effect must be used when re-ordering would change
the semantics of the node-local state in a way that invalidates results, or
concurrency on execution would violate synchronization requirements. This is
the strongest guarantee and also the default behavior.

Note that between a pair of tasks affecting the same host object, the more
restrictive side effect order decides the level of freedom with respect to re-
ordering and concurrency. As a consequence, relaxed side effects give a stronger
guarantee than an unmanaged reference-capture of the raw object would, since
they are guaranteed to not be re-ordered against sequential effects.

To implement re-ordering constraints, we augment the task and command
graph structures to track undirected conflict edges between tasks in addi-
tion to the existing directed dependency edges. Conflict edges indicate mutual
exclusion between tasks, a strictly weaker requirement than the serializing
dependencies impose. Task and command graphs thus become mixed graphs
as seen in Figure 2. Algorithm 1 shows how dependencies and conflicts are
derived from side effects.

10 Fabian Knorr et al.

task 1
sequential H

task 2
exclusive H task 3

relaxed H

task 4
relaxed H task 5

exclusive H

task 6
sequential H

true dependency
conflict

Fig. 2: Mixed task graph origi-
nating from side effects with dif-
ferent orders on a single host ob-
ject H. Sequential-order side ef-
fects serialize against other tasks
using temporal dependencies,
whereas exclusive-order side ef-
fects introduce conflict edges to
otherwise concurrent tasks. No
edge arises between the two re-
laxed tasks 3 and 4, so this
pair remains concurrent. The as-
sociated command graph (not
shown here) will have an equiv-
alent structure.

procedure AddSideEffect(t, h)
if sh exists ∧ (r(t, h) ̸= sequential ∨ Ah = ∅) then

D ← D ∪ {(t→ sh)}
end if
if r(t, h) = sequential then

D ← D ∪ {(t→ t′) | t′ ∈ Ah}
Ah ← ∅
sh ← t

else
C ← C ∪ {(t↔ t′) | t′ ∈ Ah

: r(t, h) = exclusive ∨ r(t′, h) = exclusive}
Ah ← Ah ∪ {t}

end if
end procedure

Legend

t task
h host object
sh last task with sequen-

tial side effect on h

r(t, h) side effect order of
task t on host object h

Ah active conflict set of
tasks on h

D set of dependencies
(directed edges)

C set of conflicts (undi-
rected edges)

Algorithm 1: Generating dependency and conflict edges for side effects on the task graph.
This algorithm also applies to the command graph, where states (D,C,A, s) are tracked
separately per worker instead.

3.4 Opportunistic Scheduling of Mixed Command Graphs

The output of the existing Celerity scheduler is a stream of commands per node
consisting of kernel execution ranges, metadata, and an list of prior command
identifiers that it depends on. These commands are serialized to worker nodes
in a topological order of the directed dependency graph. Executors do not need
to reconstruct the command graph from this stream, but can instead maintain
a set of eligible commands which contains all those that have no remaining
unmet dependencies. The executor can then perform local scheduling on the
eligible set to dynamically optimize resource utilization.

With the addition of conflict edges to the command graph, we extend the
local scheduler to handle mutual exclusions between commands. The theory
behind efficient scheduling around conflict graphs has been studied in the
context of scheduling tasks with known completion times on a fixed number of
general-purpose processors [4]. For certain classes of graphs, optimal solutions
can be found efficiently [7].

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 11

Because Celerity has no a priori knowledge of kernel execution times and
aims to minimize latencies by intentionally leaving low-level allocation of re-
sources like GPU cycles to the operating system scheduler, the scheduling
target is to maximize the number of active concurrent tasks.

A correct but sub-optimal implementation would execute all eligible con-
flicting commands in receiving order without allowing concurrency This how-
ever misses potential concurrency between tasks, and to properly harness the
increased scheduler freedom, we instead find the largest conflict-free set of
eligible commands.

As a classic NP-hard graph theory problem, the Maximum Independent
Set can be found in exponential time through backtracking [9], although other,
more efficient algorithms exist [13][17]. Since we expect the eligible set to be
rather small most of the time, we implement a simple backtracking solution
that will yield sufficient performance in the common case. Independent of the
algorithm, the exponential growth of run time can thwart potential efficiency
gains of the scheduler, so we stop backtracking early after rejecting 100 can-
didate solutions to limit evaluation time to a constant on degenerate graphs.

This method is opportunistic as the full set of eligible commands may not
be known at the time a scheduling decision is made. Commands should begin
execution as soon as they arrive to maximize throughput, so waiting for a
certain filling degree is infeasible. However, since we expect most commands
to have an execution time that greatly exceeds that of command generation,
executors will have a well-filled command queue—and thus the full set of
eligible commands for one earlier time step—most of the time.

4 Data Extraction from Runtime-Managed Structures

Although the Celerity runtime mostly concerns itself with distributing work
while keeping actively managed buffer data coherent between nodes, real-world
applications must be able to convert existing in-memory data into Celerity
data structures on startup and extract buffer contents and host object state
once execution has completed.

The former is already available in Celerity today: like in SYCL, buffers can
be initialized from a pointer to host memory on construction, assuming that
all nodes pass identical initialization data. In the same fashion, host objects
can be constructed from arbitrary values.

There is however no native way for the application thread to observe buffer
data or host object state in the application thread after construction. Instead,
host tasks must be used to export data through the file system.

SYCL solves this issue using the host_accessor guard type that instructs
necessary data transfers and locks buffer contents for synchronous access by
the host application until the end of its scope. Constructing such a guard in-
terrupts the asynchronous flow of command group submissions like an explicit
barrier. This will negatively impact performance by stalling the SYCL sched-

12 Fabian Knorr et al.

int main() {
bool host_ok;
{

distr_queue q;
// ...
buffer<bool> ok{1};
q.submit([=](handler& cgh) { is_diag(cgh, C, ok); });

q.submit(allow_by_ref, [=, &host_ok](handler& cgh) {
accessor passed_acc{ok, cgh, access::all{}, read_only_host_task};
cgh.host_task(on_master_node, [=, &host_ok] {

host_ok = passed_acc[0];
});

});
} // await implicit synchronization shutdown from ~distr_queue()
return host_ok ? EXIT_SUCCESS : EXIT_FAILURE;

}

Listing 5: Reference-capture workaround for retrieving buffer data. Necessary data transfers
are requested through a host task accessor and awaited in the queue destructor.

uler and the compute device by not submitting any new work as long as the
host_accessor is live.

Such stalls induce much greater latencies in a distributed setting than it
does in single-node applications (see Section 5). However, Celerity already has
explicit synchronization points where this performance impact is anticipated:
The non-recurring implicit shutdown on queue destruction, where each node
awaits all currently pending commands, and explicit barriers issued through
distr_queue::slow_full_sync().

Both of these synchronization points currently serve as a workaround to
manually extract managed data using a host task. Listing 5 shows how the
verification result from Listing 1 can be observed from the application thread
by reference-capturing a result value and relying on the implicit shutdown as
a synchronization point.

While functionally correct, this method is non-obvious, requires signifi-
cant boilerplate, and can easily lead to undefined behavior if the application
developer does not ensure that the reference-captured object outlives the syn-
chronization point. In the following, we present a programming model allowing
the extraction of arbitrary managed data data by-value and without the afore-
mentioned hazards using existing synchronization points.

4.1 Attaching Data Requirements to Synchronization Points with Epochs

In stable Celerity, barrier synchronization and convergence on runtime shut-
down and is orchestrated using ad-hoc control commands which are sent to
workers like regular commands, but are not part of the command graph.

While this enables a less involved implementation, it is not compatible with
Celerity’s graph-based mechanisms of orchestrating and tracking the necessary

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 13

task 1
. . .

task 2
write A

task 3
r/w A

barrier

task 4
. . .

task 5
read A

shutdown

epoch init

task 1
. . .

task 2
write A

task 3
r/w A

epoch barrier

task 4
. . .

task 5
read A

epoch shutdown

data-flow
dependency

backward
serialization
dependency

forward
serialization
dependency

Fig. 3: Ad-hoc synchronization with broadcast commands (left, implied) and in-graph syn-
chronization with epoch tasks (right). The barrier epoch becomes the effective producer of
A, so task 5 receives a data-flow dependency on it. Serialization dependencies are inserted
whenever no other transitive dependencies exist to the preceding or succeeding epoch to
enforce correct temporal ordering.

data migrations ahead of any synchronization point that wants to extract
buffer data. The first step is therefore to integrate these synchronization points
into the task and command graphs.

To that end, we introduce the concept of epoch tasks and commands that
fully serialize execution on each node by placing appropriate dependencies in
the graphs. In this model, each task or command (except for the first epoch)
has exactly one preceding epoch, and no task or command can ever depend
on an ancestor of its preceding epoch.

Figure 3 illustrates the approach. We begin by inserting an epoch task in
to the task graph, from which the scheduler generates exactly one epoch com-
mand per node. To ensure correct temporal ordering, each epoch graph node
receives a forward serialization true-dependency on the entire previous exe-
cution front, and all nodes without other true-dependencies (pure producers)
receive a backward serialization true-dependency on the preceding epoch.

On each worker node, all synchronizing API calls block the application
thread until the local executor reaches the epoch command.

Since dependency information from before an epoch is irrelevant for gen-
erating future command dependencies, as an optimization, all commands pre-
ceding an epoch can be eliminated from the graph once the epoch command
has been issued to executors and the epoch can be regarded as the producer
of any value currently available on that node.

14 Fabian Knorr et al.

template <typename T, int Dims>
class buffer_data {

decltype(auto) operator[](size_t idx);
};

template <typename T, int Dims>
class capture<buffer<T, Dims>> {

using value_type = buffer_data<T, Dims>;
explicit capture(buffer<T, Dims> buf);

};

template <typename T>
class capture<host_object<T>> {

using value_type = T;
explicit capture(host_object<T> ho);

};

class distr_queue {
template <typename T> typename capture<T>::value_type

slow_full_sync(const capture<T>& cap);
template <typename... Ts> std::tuple<typename capture<Ts>::value_type...>

slow_full_sync(const std::tuple<capture<Ts>...>& caps);

template <typename T> typename capture<T>::value_type
drain(const capture<T>& cap);

template <typename... Ts> std::tuple<typename capture<Ts>::value_type...>
drain(const std::tuple<capture<Ts>...>& caps);

};

Listing 6: Capture API around celerity::distr_queue (excerpt)

4.2 Extracting Buffer Data and Host Object State with the Captures API

With epoch-based synchronization in place, the runtime can attach data de-
pendencies onto synchronization commands and thus automatically generate
data migrations for reading up-to-date buffer contents on every node.

To safely inspect buffer contents and host objects without introducing un-
necessary additional submission stalls, we propose captures, a declarative API
for attaching data requirements to shutdown and barrier epochs, which will
be returned to the caller as snapshots by value.

Listing 6 shows how the distr_queue class is extended to allow data ex-
traction at existing synchronization points. The existing slow_full_sync()
barrier primitive gains additional optional parameters, and shutdown conver-
gence can be triggered explicitly using the drain() function. Both functions
either accept a single capture or a tuple of captures and returns a single value
or tuple of values as a result.

Each capture adds the necessary dependencies and data transfers to the
generated epoch nodes and creates a snapshot of the data once the epoch has
executed. As Celerity requires all MPI processes to perform the same sequence
of API calls in order to allow centralized scheduling without worker-to-master
communication, all nodes must currently request identical captures.

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 15

int main() {
// ...
buffer<bool> ok{1};
q.submit([=](handler& cgh) { is_diag(cgh, C, ok); });
return q.drain(capture{ok})[0] ? EXIT_SUCCESS : EXIT_FAILURE;

}

Listing 7: Data retrieval through the high-level capture construct. Data transfers are
generated and awaited inside the drain() function.

Tasks

epoch init

diag
write A

diag
write B

· · ·

is_diag
read C
write ok

epoch shutdown
read ok

Commands (Node 0) Commands (Node 1)

epoch init epoch init

exec diag [0..128, ∗]
write A [0..128, ∗]

exec diag [128..256, ∗]
write A [128..256, ∗]

exec diag [0..128, ∗]
write B [0..128, ∗]

exec diag [128..256, ∗]
write B [128..256, ∗]

· · · · · ·

exec is_diag [0..128, ∗]
read C [0..128, ∗]

writer ok [∗]

exec is_diag [128..256, ∗]
read C [128..256, ∗]

writer ok [∗]

push →1
readr ok [∗]

push →0
readr ok [∗]

await push ←1
writer ok [∗]

await push ←0
writer ok [∗]

reduction
readr write ok [∗]

reduction
readr write ok [∗]

epoch shutdown
read ok [∗]

epoch shutdown
read ok [∗]

Fig. 4: The updated task and command graph, first seen in Fig. 1, after the introduction
of epochs and capture-based data extraction following Listing 7. The reduction operation in
verify() places the ok buffer in pending reduction state indicated by the subscript in readr
and writer. A reduction command is generated as the result of the data requirement in the
shutdown epoch and reverts the buffer back to distributed state.

Listing 7 shows how the verification result from Listing 1 can be inspected
in the application thread on the shutdown convergence explicitly triggered by
distr_queue::drain().

Figure 4 shows the DAGs resulting from the capture-augmented List-
ing 7. With the switch to epoch-based synchronization, the task and command
graphs first shown in Figure 1 will now explicitly include the data requirement
on the verification result buffer ok.

16 Fabian Knorr et al.

5 Evaluation

While work focuses primarily on API expressiveness and programmability, the
introduction of declarative side effects promises a performance improvement.
Conversely, the introduction of epoch-based synchronization increases internal
complexity, so the proposed changes demand further assessment.

We evaluated Celerity’s performance on the Marconi 100 supercomputer in
Bologna, Italy, which holds rank 18 of the TOP500 list as of November 20212.
Each node is powered by dual-socket IBM POWER9 AC922s and 256 GB
of RAM, while inter-node communication is handled by dual-channel Infini-
band EDR with a unidirectional bandwidth of 12.5 Gbit/s.

Although this system is GPU-accelerated and Celerity is built around accel-
erator computation, no device kernels are executed as part of the benchmarks.
Celerity unconditionally depends on a SYCL implementation for type defini-
tions such as sycl::range, but results are expected to be independent of the
backend choice. For the following evaluation, we compiled against the most
recent development version of hipSYCL3 on with Clang 12.0.1 as the host
compiler and IBM Spectrum MPI 10.4.0 as recommended on Marconi 100.

For all multi-process benchmarks, we allocated 4 Celerity processes per
cluster node through SLURM except for the 1- and 2-process case, where all
processes were mapped to a single node. Since Celerity currently requires one
process per compute device, this matches the typical configuration on a system
with 4 GPUs per node. Each measurement was repeated 10 times.

Figure 5 compares the latency of Celerity’s slow_full_sync synchroniza-
tion primitive against a synchronous MPI_Barrier. The latency of the Celerity
implementation is elevated compared to the explicit MPI call as the broadcast-
synchronization command or epoch command has to be sent to each worker
before they can initiate their own MPI_barriers,. The epoch-based version is
additionally delayed by graph generation overhead by a polynomial factor.

Figure 6 compares the overhead of serializing host tasks through barrier
synchronization (the necessary workaround in stable Celerity) to the novel,
local method using side effects. The benchmark measures a chain of 10 empty
host tasks, serialized either through calls to slow_full_sync or side effects on
a common host object. The local method, which only requires the introduction
of scheduling dependencies, has much lower latency than the global barrier
method, which introduces unnecessary synchronization between nodes.

Figure 7 shows the performance implications of introducing shutdown epochs
on graph generation in the master node. We measured the time required to
construct task and command graphs for 4 dependency topologies: chain, an
artificial chain of command groups that require all-to-all communication be-
tween worker nodes; soup, an artificial, loose collection of disconnected tasks;
jacobi, the task chain resulting from a 2D Jacobian solver; and wave_sim, the
graph of a wave propagation stencil.

2 https://www.top500.org/lists/top500/list/2021/11
3 https://github.com/illuhad/hipSYCL/commit/1046a787

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 17

1 2 4 8 16 32 64
processes

10 7

10 6

10 5

10 4

10 3

10 2

tim
e

[s
]

epoch-based slow_full_sync
broadcast slow_full_sync
MPI_Barrier

Fig. 5: Latency of barrier
synchronization primitives
(95% confidence intervals).
slow_full_sync (blue and
orange curves) has additional
communication cost com-
pared to the MPI baseline
(green curve). Epoch-based
synchronization (blue curve)
further adds a constant over-
head for graph generation
that is amortized for higher
node counts.

1 2 4 8 16 32 64
processes

10 5

10 4

10 3

10 2

10 1

tim
e

[s
]

global, with slow_full_sync
local, with side effects
slow_full_sync

Fig. 6: Efficiency gains
from replacing global barrier
synchronization (blue curve)
with side-effect dependencies
(orange curve) to serialize
a chain of 10 host tasks
(95% confidence intervals).
The local method does not
require communication be-
tween worker nodes. Timings
are measured using a single
slow_full_sync barrier per
run, which is included as a
baseline (green curve).

While adding the extra work of generating a shutdown epoch will increase
runtime unconditionally, this is especially pronounced for graphs with a large
execution front, such as the artificial and degenerate soup topology. As ex-
pected, generating a forward serialization dependency from each task in the
execution front and subsequently updating tracking structures has a mea-
surable overhead. Graphs that more closely resemble real-world applications,
which typically manifest as a chain of time steps, have a much smaller execu-
tion front and are therefore affected to a much smaller degree. As the number
of nodes increases, scheduling is dominated by satisfying data dependencies
instead. For adverse patterns such as the all-to-all communication required by
the chain topology, this increase can be superlinear.

To summarize, the introduction of declarative side effects has a net-positive
performance impact, which will help overall system performance as we expect
their use to arise repeatedly during application life cycle. As data extraction
from runtime-managed structures is usually only relevant on shutdown, we
argue that the demonstrated increase in synchronization latency has minimal
impact on overall runtime and is justified by the improved programmability.

18 Fabian Knorr et al.

chain soup jacobi wave_sim
0.0

0.5

1.0

1.5

2.0

tim
e

[m
s]

task graph

chain soup jacobi wave_sim
0.0

0.5

1.0

1.5

2.0

tim
e

[m
s]

command graph for 1 node

chain soup jacobi wave_sim
0

5

10

15

20

tim
e

[m
s]

command graph for 4 nodes

baseline with shutdown epoch

chain soup jacobi wave_sim
0

100

200

300

400

500

tim
e

[m
s]

command graph for 16 nodes

Fig. 7: Isolated time measurements for task and command graph generation on the master
node (95% confidence intervals). Introducing a shutdown epoch requires forward serializa-
tion dependencies which cause measurable overhead if the execution front is large. This is
pronounced for the artificial and degenerate soup topology of a set of disconnected tasks.

6 Related Work

SYCL[1] is an industry standard for a single-source programming model for
parallel software targeting hardware accelerators. A multitude of implemen-
tations exist, with backends for GPUs [2], multi-core CPUs and application-
specific FPGAs [12]. SYCL’s 2020 revision introduces HPC-relevant features
such as reductions and (per-work-group) parallel scans which the widely-
implemented earlier 1.2.1 revision lacks. SYCL is the primary influence on the
API of Celerity, which aims to ease porting from single-node SYCL programs
to distributed-memory applications.

StarPU [3] is a well-established runtime system and research platform for
heterogeneous computing. Its task-based execution model is supported by
semi-automatic DAG generation, where dependencies can both be inferred
from data accesses on buffers and also specified manually. Unlike in Celerity,
task partitioning and data migration between cluster nodes also remains the
user’s responsibility. The latter can be handled through StarPU’s MPI Sup-
port library, which adds the explicit operations of the classic MPI model to the
StarPU API. Focusing explicitly on heterogeneity, the user is required user to
specify kernel implementations for the targeted backends manually, whereas
Celerity and SYCL will generate them from inline C++ code.

Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 19

Legion [6] is a runtime system for distributed heterogeneous architectures.
It dynamically extracts parallelism from programs consisting of hierarchical
tasks, achieving high efficiency on irregular loads through a work-stealing
scheduler. This model requires the user to specify mappers assigning work
to target hardware, and manual decomposition of tasks. Compared to Celer-
ity, this has the potential to improve system performance and target a wider
range of applications at the expense of increased development cost and a high
barrier to entry for non-experts users. Dependencies on cluster-global state
such as files in a parallel file system can be embedded into Legion through the
Iris [11] programming model.

Legate [5] is a high-level application of the Legion concept and a numerical
toolkit acting as drop-in replacement for the popular NumPy library for array-
based computation. Instead of user-defined kernels targeted by bare Legion and
also Celerity, it delegates the efficient execution of NumPy array operations
on arbitrary-scale hardware to the runtime system.

PaRSEC [8] is a task-based, dataflow-driven runtime system utilizing dy-
namic scheduling to maximize resource utilization on heterogeneous systems.
It features different programming models, where the user either specifies tasks
and data flow explicitly though a domain-specific language, or this informa-
tion is automatically extracted from canonical sequential code by a specialized
compiler frontend. This is in contrast to the Celerity approach, where data flow
and kernels of coarse-granular tasks are expressed in a single-source format and
transparent scheduling decisions automatically assign work to cluster nodes.

7 Conclusion

In this work, we have investigated how a graph-based distributed-memory run-
time system can be extended with safe, declarative APIs to track dependencies
on opaque node-local objects and transfer runtime-managed data back to the
application thread to ease porting of legacy applications.

Specifically, we add the concept of host objects and side effects to the
Celerity runtime system, a declarative mechanism for guarding access to and
generating scheduling constraints around arbitrary node-local objects.

We further introduce the captures mechanism that allows observing snap-
shots of Celerity-managed data from to the application thread without in-
troducing unnecessary stalls in the asynchronous execution flow. In order to
model the required data movements, existing synchronization points are in-
stead fully integrated into the task and command graphs as epochs, which
allow the expression of captured ranges as ordinary dependencies.

Experimentally, we confirmed that declarative node-local side effects are
much more efficient than the previously necessary workaround employing bar-
rier synchronization. While the epoch-based execution model required for data
extraction can incur measurable overhead for command generation, this time
is quickly amortized in a highly parallel setting.

20 Fabian Knorr et al.

Acknowledgement

This research is supported by the European High-Performance Computing
Joint Undertaking (JU) project LIGATE under grant agreement No 956137.

References

1. SYCL™ 2020 Specification (revision 4). https://www.khronos.org/registry/SYCL/
specs/sycl-2020/html/sycl-2020.html (2021)

2. Alpay, A., Heuveline, V.: SYCL beyond OpenCL: The architecture, current state and
future direction of hipSYCL. In: International Workshop on OpenCL, pp. 1–1 (2020)

3. Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-aware task scheduling
on multi-accelerator based platforms. In: 2010 IEEE 16th International Conference on
Parallel and Distributed Systems, pp. 291–298. IEEE (2010)

4. Baker, B.S., Coffman Jr, E.G.: Mutual exclusion scheduling. Theoretical Computer
Science 162(2), 225–243 (1996)

5. Bauer, M., Garland, M.: Legate numpy: Accelerated and distributed array comput-
ing. In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’19. Association for Computing Ma-
chinery, New York, NY, USA (2019). DOI 10.1145/3295500.3356175. URL https:
//doi.org/10.1145/3295500.3356175

6. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and inde-
pendence with logical regions. In: SC’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. IEEE (2012)

7. Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs with
unit-times. In: International Symposium on Mathematical Foundations of Computer
Science, pp. 291–300. Springer (1993)

8. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.J.: PaR-
SEC: A programming paradigm exploiting heterogeneity for enhancing scalability. Com-
puting in Science and Engineering 15, 36–45 (2013)

9. Golomb, S.W., Baumert, L.D.: Backtrack programming. Journal of the ACM (JACM)
12(4), 516–524 (1965)

10. Gschwandtner, P., Kissmann, R., Huber, D., Salzmann, P., Knorr, F., Thoman, P.,
Fahringer, T.: Porting Real-World Applications to GPU Clusters: A Celerity and Cronos
Case Study. In: 2021 IEEE 17th International Conference on eScience (eScience), pp.
90–98. IEEE (2021)

11. Jia, Z., Treichler, S., Shipman, G., Bauer, M., Watkins, N., Maltzahn, C., McCormick,
P., Aiken, A.: Integrating external resources with a task-based programming model. In:
2017 IEEE 24th International Conference on High Performance Computing (HiPC), pp.
307–316 (2017). DOI 10.1109/HiPC.2017.00043

12. Keryell, R., Yu, L.Y.: Early experiments using SYCL single-source modern C++ on
Xilinx FPGA: Extended abstract of technical presentation. In: Proceedings of the In-
ternational Workshop on OpenCL, pp. 1–8 (2018)

13. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7(3),
425–440 (1986)

14. Thoman, P., Jordan, H., Gschwandtner, P., Fahringer, T., Cosenza, B., Juurlink, B.:
CELERITY: Towards an Effective Programming Interface for GPU Clusters. In: Eu-
romicro International Conference on Parallel, Distributed, and Network-Based Process-
ing (PDP), pp. 18–28 (2018)

15. Thoman, P., Salzmann, P., Cosenza, B., Fahringer, T.: Celerity: High-Level C++ for
Accelerator Clusters. In: European Conference on Parallel Processing, pp. 291–303.
Springer (2019)

16. Thoman, P., Tischler, F., Salzmann, P., Fahringer, T.: The Celerity High-level API:
C++20 for Accelerator Clusters. International Journal of Parallel Programming (ac-
cepted, to appear in 2022)

17. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Information
and Computation 255, 126–146 (2017)

Noname manuscript No.
(will be inserted by the editor)

Distributed Calculations with Algorithmic Skeletons
for Heterogeneous Computing Environments

Nina Herrmann · Herbert Kuchen

Received: date / Accepted: date

Abstract Programmers without expertise in parallel programming are often
limited in their ability to execute their programs on clusters efficiently. Espe-
cially for intense calculation programs such as in natural sciences, this can be
a limiting factor, as calculations are either programmed by the researcher with
poor parallelization or additional packages are used, which only speed up sub-
sets of the calculations, e. g. packages for Matrix Algebra might miss reduce
steps. Moreover, those packages are often provided for languages which are
easier to program but slower in their execution time, mainly Python. Lastly,
the frameworks and libraries often leave programmers with choices that signif-
icantly impact the performance of the program, e. g. the number of threads.
Therefore, it is essential to procure a framework where the user might have the
additional effort to learn another programming language but, in contrast, can
be guaranteed to exploit the hardware available on all levels, namely multiple
nodes, CPUs, GPUs, and other accelerators. For using multiple nodes, each
having multiple cores and accelerators, skills in combining frameworks such as
MPI, OpenMP, and CUDA are required. One way to abstract from details of
parallel programming is to use algorithmic skeletons. This work evaluates the
implementation of multi-node, multi-CPU and multi-GPU implementation of
Map, Reduce and Zip. The main contribution of this paper is a discussion of
the efficiency of using multiple parallelization levels and the consideration of
which fine-tune settings should be offered to the user.

Keywords Parallel Programming · Skeleton Programming · Heterogeneous
Computing Environments · High-Level Frameworks · Usability

N. Herrmann, H. Kuchen,
University of Münster, Leonardo-Campus 3, 48149 Münster, Germany
Tel.: +49 251 83-38216
E-mail: {nina.herrmann,kuchen}@uni-muenster.de

2 Nina Herrmann, Herbert Kuchen

1 Introduction

The field of High Performance Computing (HPC) is growing, using multiple
nodes, central processing units (CPUs) and graphics processing units (GPUs)
to speed up computations. This field becomes increasingly important for natu-
ral sciences and companies to evaluate the extensive data collected. Program-
mers have to deal with multiple low-level frameworks to exploit those levels
of hardware where expertise for the single frameworks and the combination
of those frameworks is required. Examples for those frameworks are Message
Passing Interface (MPI) (9), OpenMP (12), and CUDA (4).

Constructing a program with those frameworks without compilation errors
is already a time-consuming task, as e. g. out of memory errors, and invalid
memory accesses are troublesome to identify. Even if a functioning program
was constructed, the lack of knowledge leads to poor design decisions such as
not using different memory spaces, the distribution of workload to computa-
tional units, or the number of threads. Inferential, most programmers have no
other option than relying on high-level concepts or requiring massive compu-
tation time. Most high-level concepts have multiple benefits as portable code
for different hardware architectures and requiring less maintenance for the
end-user as the framework is updated.

Cole introduced algorithmic skeletons as one of the major high-level ap-
proaches to abstract from low-level details (3). Algorithmic skeletons enclose
reoccurring parallel and distributed computing patterns, such as Reduce. This
concept is wide-spread and beside others implemented as libraries (2; 6; 7),
Domain-specific languages (DSLs) (16), and general frameworks (1; 8). Those
approaches rarely support all three levels of parallelization, namely multiple
nodes and simultaneously executing code on CPUs and accelerators.

In this work, we will firstly discuss related high-level frameworks contribut-
ing to the parallelization on multiple hard-ware levels 2. Section 3 describes the
design of our chosen high-level approach, Muenster Skeleton Library (Muesli)
and section 4 describes the implementation of the added features. The run-
times of exemplary programs are presented and discussed in Section 5. Finally,
possible extensions and the conclusion of the work are described in section 6
and 7.

2 Related Work

Most importantly for skeleton approaches,Ernstsson et al. propose SkePU3
in combination with StarPU to calculate on heterogeneous clusters. However,
their work misses an evaluation of distributing the calculation on all possible
levels. Either the program is executed on one node with multiple CPUs and
GPUs (11) or the programs are executed on multiple nodes with single back-
ends (either GPU (OpenCL) or CPU (OpenMP)) (8). SkePU support one,
two, three, and four-dimensional data stuctures. Other skeleton frameworks
which are in continuous development do not consider all three layers of paral-

Multi-Node 3

lelization (e.g. FastFlow (1), SkelCL (15), Musket (13)). Hybrid execution of
programs on CPUs and accelerators has been topic in multiple publications
such as SkePU (11), Marrow (14) and Qilin (10). SkePU and Marrow distribute
the load statically between the CPU threads and the GPUs, while Qilin dy-
namically distributes the working packages. Findings regarding the optimal
partition are often hardware and problem-dependent and rarely comparable.
Noteworthy, skeletal programming is also used for commercial products such
as Intel TBB for multicore CPU parallelism.

This work enriches all previous approaches by discussing the distribution
of calculation on multiple nodes, CPUs and GPUs. It aims to set the starting
point to automatically distribute workload between different computational
units relieving the programmer from estimating suitable partition ratios. To
the best of our knowledge, other approaches either distributed the workload
dynamically, which produces communication overhead, or left the choice to
the programmer who might not have the expertise to decide on a reasonable
split.

3 Muenster Skeleton Library

Originally, skeletal parallel programming was mainly implemented in func-
tional languages since it derives from functional programming (3). Today, the
majority of skeleton frameworks are based on C/C++ (e.g. 1; 2; 5; 8), since the
language is known for good performance and interoperability with low-level
parallel frameworks such as CUDA, OpenMP, and MPI. Although Python has
become popular in many natural science applications, as packages can be easily
written and integrated, this does not apply to calculation intense applications
as the language entails a major slowdown. Therefore, especially in the HPC
context, C/C++ is still the first choice.

The C++ library used for this work is called Muesli (7). Muesli pro-
vides task- and data-parallel skeletons such as Fold, multiple versions of Map,
Gather, and multiple versions of Zip. Those operations can be used to write
programs for clusters of multiple nodes, multicore processors, and GPUs based
on MPI, OpenMP, and CUDA. Other low-level frameworks such as OpenACC
and OpenCL have been considered. Muesli relieves the programmer from tasks
which require expertise in parallel programming, such as the number of threads
started and copying data to the correct memory spaces and helps to avoid
common errors in parallel programming such as concurrent access to data
structures. Although the additional abstraction causes some extra steps, it
does not increase the execution time significantly. The contrast to previous
versions Muesli now supports not only distributed arrays (DA) and matrices
(DM) but also distributed cubes (DC) as data structures. Especially in the sci-
entific context, e.g. computational fluid dynamics cubes are essential to model
3D objects. A distinctive feature of Muesli is that for Map and Zip, there are
in-place variants and variants where the index is used for calculations. Addi-

4 Nina Herrmann, Herbert Kuchen

tionally, the MapStencil skeleton allows using all data structure elements in a
defined pattern.

Listing 1 shows a simple program for calculating the scalar product for the
distributed array a and b (in a slightly simplified syntax).

1 class Sum : public Functor2 <int , int , int >{

2 public: MSL_USERFUNC int operator () (int x, int y)

3 const {return x+y;}};

4 Sum sum;

5 auto product = [] (int i, int j) {return i*j;};

6 DA<int > a(3 ,2); // delivers: {2 ,2 ,2}

7 DA<int > b = a.mapIndex(sum); // delivers: {2 ,3 ,4}

8 a.zipInPlace(b,product); // delivers: {4 ,6 ,8}

9 int scalarproduct = a.fold(sum); // delivers: 18

Listing 1: Scalar product in Muesli.

4 Data distribution and data structures in heterogeneous
computing environments

Previous work in Muesli discussing Stencil computations already provided the
foundation for distributing matrices between computational nodes. This ap-
proach is not also used for Map, Zip, Fold and variants of those. This section
introduces the data distribution mechanism and the metrics which are used to
determine the workload allocated to the computational nodes.

4.1 Distributed cubes

The added data structure type cube is similarly designed to previous data
structures in muesli which makes the syntax easy for programmers. For con-
structing a distributed cube, at least three arguments have to be passed to
define the cube’s dimensions. Optionally, a default value can be passed to
be filled in all elements of the cube. A user function which should be ap-
plied to the cube can be either a C++ function or a C++ functor. They use
the concept of currying, where arguments can be supplied one by one rather
than all simultaneously. When, e.g. a MapIndex skeleton is used, the library
completes the index parameters. Listing 2 creates two distributed cubes a

and b, one without default value one with 2 as default value. The other one
uses a mapIndexInPlace Skeleton, which adds for each element the row-index,
column-index, and the index of the third dimension. Afterwards, the two cubes’
values are added together for each element.

Multi-Node 5

1 class Sum : public Functor2 <int , int , int >{

2 public: MSL_USERFUNC int operator () (int x, int y)

3 const {return x+y;}};

4 class Sum4 : public Functor4 <int , int , int , int , int >{

5 public: MSL_USERFUNC int operator () (int i, int j, int x, int y)

6 const {return i+j+x+y;}};

7 Sum sum;

8 Sum4 sum4;

9 DC<int > a(3,3,3);

10 DC<int > b(3,3,3,2);

11 a.mapIndexInPlace(sum4);

12 a.zipInPlace(b,sum);

Listing 2: Exemplary cube computation in Muesli.

4.2 Segmentation of data structures

A simplified version of the approach chosen for the mapStencil Skeleton can
be seen in Figure 1. Each node is responsible for multiple rows of the data
structure, and within each node, the data structure is again split between the
available CPUs and GPUs in a row-wise manner.

In the context of stencil calculations, it was reasonable to distribute com-
plete rows or rectangles of data to minimize the required data transfers for com-
municating border values. Therefore, always complete rows were distributed.
Skeletons where the calculation does not depend on other data structure val-
ues, such as Map and Zip, are easier to distribute as incomplete rows do
not decelerate execution time. Data transfers are rarely needed; therefore, it
is assumed that distributing complete rows is less important than equally
splitting the workload. Figure 2 and 3 demonstrate how incomplete rows are
distributed and how the concept is transferred to a cube. This presentation
also portions the amount of work (elements calculated) unequally for the two

v0,0 v0,m

...

...

...

...

...

...

...

vn,0 vn,m

Node 0

Node ...

Node y

CPU

GPU 1

GPU ...

CPU

GPU 1

GPU ...

CPU

GPU 1

GPU ...

In
te
r
N
o
d
e
D
is
tr
ib
u
ti
o
n

In
tra

N
o
d
e
D
istrib

u
tio

n

Fig. 1: Data Distribution

6 Nina Herrmann, Herbert Kuchen

t0 t3

... t7

... tm

Node 0

CPU

GPU

GPU

Fig. 2: Intra-node distribution using
multiple accelerators.

Node 0

CPU

GPU

GPU

Fig. 3: Intra-node distribution of a
Cube

GPUs. Prospectively, Muesli automatically calculates suitable workload splits
to relieve the programmer from the fine-tune parameter of splitting work.

4.3 Work Load Partitioning

The current implementation uses the number of cores of the used GPU to allo-
cate more elements to GPUs, which can start more threads concurrently. This
is extremely important to relieve the user from low-level details and exploit
the available hardware. More precisely, CUDA provides DeviceProperties

which, amongst others, states the number of multiprocessors available. To cal-
culate the number of cores the function ConvertSMVer2Cores(props.major,

props.minor) * props.multiProcessorCount; has to be used as the num-
ber of multiprocessors is dependent on the version of the GPU. However, a
good approximation of the maximum possible parallelism can be calculated
with this reference number. In the future, this number might also be depen-
dent on the version of the GPU to prefer newer GPUs. Besides splitting the
workload between multiple GPUs the fraction which is calculated by the CPU
has to be automatically chosen by the library. The experimental results sec-
tion evaluates which partition is reasonable for different skeletons, determining
good default values for different calculation patterns.

5 Experimental Results

We have tested varying distribution possibilities with the distributed cubes
for the skeletons Map, MapInPlace, MapIndex, MapIndexInPlace, Fold, Zip,
ZipIndex, ZipInPlace and ZipIndexInPlace. The distributions include multi-
node multi-GPU set-ups and different fractions of calculations which are out-
sourced to the CPU. The runtimes of all experiments are the result of calling
skeletons multiple times. For the experiments, the HPC machine Palma II1

and a local computer were used. With Palma we used the GeForce RTX 2080
Ti GPUs partition equipped with 2 nodes with each 4 GPUs and an Zen3
(EPYC 7513) CPU. Each node has 24 CPU cores. To provide generalizable
results, each skeleton was tested on a stand-alone basis. For this purpose,
we used multiple sizes and CPU-fractions. For the sequential version of the

1 https://confluence.uni-muenster.de/display/HPC/GPU+Nodes

Multi-Node 7

HPC the broadwell partition was used equipped with a Broadwell (E5-2683
v4) CPU. We let each skeleton run 25 times (without data transfers between
them) to produce meaningful run times for the calculations. The local com-
puter was used to have a comparison for the discussion of a suitable CPU-
fraction. GPUs with fewer streaming multiprocessors can start fewer threads
concurrently, making the use of the CPU more reasonable. The local com-
puter is equipped with one Quadro K620, one GeForce GTX 750 Ti, and eight
Intel(R) Core(TM) i7-4790 CPUs with 3.60GHz. The sequential version only
used one of the available CPUs.

5.1 CPU Usage on a Local Computer

Allocating a fraction of the work to the CPU did not speed up the Map Sten-
cil skeleton as Map Stencil has communication overhead for transferring the
padding between different computational units after each skeleton call. Hence
it is reasonable to test CPU-fractions for skeletons which require less commu-
nication. Map and Zip are suitable examples as calculations only depend on
the current element. Figure 4 displays a subsection of the results of running
Map and Zip locally. As can be seen with increasing data size, all skeletons
are optimal at a CPU-fraction of 2%. CPU-fractions greater than 16% are not
displayed as their runtime is increasing as expected. Interestingly, at a data
size of 503, all runtimes are nearly equivalent and, from that point on, show
clearly a difference. In Table 2 exemplary speedups for the mixed usage of the
CPUs and the GPU are listed. Our results aim to automatically identify those
changing points for the end-user to adjust the generated code to the system. In
this context, it is especially noteworthy that the number of CPUs available on
the laptop is relatively high. Still, the fraction allocated to the CPU is small.
Hence hardware with less CPU should, by default, not use the CPU for Map
and Zip.

In contrast to Map and Zip, creating a new data structure and the Fold
skeleton are less calculation intense. Hence it was expected that CPU variants
would be faster. Figure 5 displays both. Creating a data structure does not re-
quire a lot of time. It can be seen that for smaller sizes, the sequential and only
CPU version are faster as no GPU memory needs to be allocated. However, for
growing data sizes, they are similar. All CPU and GPU mixed programs show
no significant difference in their runtimes. As they are in milliseconds done,
this aspect of the program will not determine the runtime and is therefore not
of primary importance. In contrast, the Fold skeleton requires a lot of time
(around 12-17 s for parallel programs). In contrast to the previous skeletons,
Fold performs best for 20% CPU-fraction. For 803 elements, 20% achieves a
speedup of 1,2 in contrast to the only GPU version.

8 Nina Herrmann, Herbert Kuchen

Fig. 4: Runtimes (in s) for different CPU-fractions calculated by the CPU for
Map- and Zipvariants on a local computer.

Fig. 5: Run-times (in s) for different CPU-fractions calculated by the CPU.

Runtime Speedup
size3 Seq. OpenMP GPU Opt. Mix Opt. Mix Seq. OpenMP GPU

50 13,09 7,47 1,09 0,94 0,12 13,98 7,98 1,16
60 22,6 12,87 1,64 0,75 0,04 30,12 17,15 2,19
70 35,88 20,38 2,47 0,83 0,04 43,42 24,66 2,99
80 53,65 30,71 3,44 0,76 0,02 70,14 40,15 4,5

Table 1: Run-times (in s) and speedups on a single node using different CPU-
fractions for MapInPlace on a local computer.

Multi-Node 9

Fig. 6: Run-times (in s) for different CPU-fractions calculated by the CPU for
Map- and Zipvariants on the HPC Palma.

5.2 CPU Usage on a HPC

In contrast to the local computer, Palma has a relatively strong GPUs and
weak CPUs. A GeForce RTX 2080 Ti can start up to 69632 threads in parallel,
while the aforementioned GPUs can start 6144 and 10240 threads in parallel.
Hence, using the CPU is expected to be less beneficial. In contrast to the local
computer skeletons were called up to 10.000 times as otherwise the runtime
would have been to short. Figure 9 depicts the runtimes for the MapIndex,
ZipIndex, MapIndexInPlace, and ZipIndexInPlace skeleton. Two major ob-
servation can be made. Firstly, for InPlace variants, no speedup is achieved
when using the CPU. This underlines that with extremely powerful GPUs
the CPU should not be used for calculations. Secondly, Index variants show a
rather mixed behaviour, having only a slight improvement for different CPU-
fractions. In contrast to the previous experiment, the size of the cube was in-
creased to make use of all threads which can be started (max 2903=24.389.000
elements). Index Skeletons require to create a new data structure where the
results are stored. As the skeletons beside using one or two data structures use
the same user-function the effect must be produced by creating and writing
to a different data structure. The effect of having longer runtimes for Index
skeletons could also be observed for the local variant which required double
the amount of time for running Index variants instead of InPlace variants.

For the Fold skeleton the ideal CPU fraction is hard to determine. Figure 7
shows that all GPU programs perform only as good as the OpenMP program.
Conclusively outsourcing calculation to the CPU produces similar runtimes.
However, allocating 40-50% of the calculation to the CPU is the best fit in
most cases.

10 Nina Herrmann, Herbert Kuchen

Fig. 7: Run-times (in s) for different CPU-fractions calculated by the CPU for
the Fold skeleton on the HPC Palma.

5.3 Multi-Node and Multi-GPU on a local computer

As the local computer has eight CPUs and only two GPUs measuring the
speedup of the program was limited in the available hardware. For this purpose
we measure the performance of starting one MPI process with one GPU, one
MPI process with two GPUs, and two MPI processes with each one GPUs. For
the depiction, the optimal CPU fraction has been taken, which varied between
0.02% and 0.04%. Minor runtime decreases are caused by data sizes closer to
a multiple of the maximum number of threads that can run in parallel. In this
case, fewer threads idle. Again at the breaking point of 503 elements, it is ben-
eficial to use multiple GPUs or multiple nodes. Using two MPI processes with
each one GPU is better than using two GPU with one process. Again it can be
seen that Index skeletons require more time caused by the additional creation
of a data structure. This work showed that in specific hardware settings, using
the CPU can speed up the program. This is especially relevant for Map and
Zip Skeletons as they do not require communication between CPU and GPU
in contrast to the Fold Skeleton and the creation of data structures. This work
also showed that for strong GPUs, it is often more efficient to let the GPU do
all calculations.

For the Fold skeleton, only a minor speedup could be achieved on the local
computer. At 253 the multi-node and multi-GPU variants become faster than
the single GPU variant. However, both variants are only slightly faster than
the single GPU program. Creating distributed cubes is faster for one GPU.
Multi-node and multi GPU programs have the disadvantage of having multiple
calls to allocate memory, which creates some overhead.

1 Node 2 Nodes
size3 Seq. OpenMP 1 Node 1 GPU 2 GPUs 2 GPUs Opt. Speedup

45 9,24 5,5 0,11 0,12 0,1 0,1 93,94
55 16,88 10,02 0,63 0,36 0,33 0,33 51,89
65 27,96 16,55 0,67 0,67 0,34 0,34 82,75

Table 2: Run-times (in s) and speedups on for multiple nodes and GPUs for
ZipInPlace on a local computer.

Multi-Node 11

Fig. 8: Run-times (in s) for multiple nodes and GPUs for Map- and Zipvariants
on a local computer.

Fig. 9: Run-times (in s) for multiple nodes and GPUs for Map- and Zipvariants
on a local computer.

5.4 Multi-Node and Multi-GPU on a HPC

On Palma setups with up to four GPUs per node can be tested. Although ini-
tializing additional GPUs produced overhead calculations can be distributed
on more computational power. Results for different skeletons can be seen in
Figure 10. For Index variants, there is nearly no visible speedup between the
different GPU versions. The creation of new data structures is dependent on
the CPU; hence using multiple GPUs on one node does not speed up the
runtime for skeletons which require the creation of new data structures. In
contrast for InPlace skeletons the four GPU variant shows a significant ad-
vantage to the one GPU variant. However, we can not reason why the two
GPU variant is not faster than the program using one GPU. Although calling
a skeleton produces some overhead, this should not outweigh the calculation
time. Therefore, more investigation in this area is required.

12 Nina Herrmann, Herbert Kuchen

Fig. 10: Run-times (in s) for multiple GPUs for Map- and Zipvariants on the
HPC Palma.

Fig. 11: Run-times (in s) for multiple GPUs for the Fold skeleton on the HPC
Palma.

Interestingly, for the Fold skeleton the single GPU program and the four
GPU program have approximately the same runtime. This findings can be
used to be default fold only on one GPU with the best found CPU-fraction.

6 Discussion and Outlook

As could be seen, different hardware requires different distribution of data and
calculations. Therefore, we aim to fine-tune Muesli to the specific hardware.
Besides using macros and hardware details available at the runtime, this could
include a precompiler. SkePU is using a precompiler, and they mentioned the
usefulness of using static code analysis from the precompiler to autotune a
program (11). However, this has not been implemented yet to the best of our
knowledge. Especially interesting would be the workload of user functions as
communication intense functions work well for CPUs and small calculations

Multi-Node 13

are suitable for GPUs. Extending the work on autotuning automatic detection
of skeletons which could use InPlace variants instead of creating a new data
structure, would facilitate the usage of muesli for inexperienced programmers.

7 Conclusions

This work showed that in specific hardware settings, using the CPU can speed
up the program. This is especially relevant for Map and Zip Skeletons as they
do not require communication between CPU and GPU in contrast to the Fold
Skeleton and the creation of data structures. This work also showed that for
strong GPUs, it is often more efficient to let the GPU do all calculations.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-
level and efficient streaming on multi-core. Programming multi-core and
many-core computing systems, parallel and distributed computing (2017)

2. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible skeletal program-
ming with eskel. In: European Conference on Parallel Processing, pp.
761–770. Springer (2005)

3. Cole, M.I.: Algorithmic skeletons: structured management of parallel com-
putation. Pitman London (1989)

4. Corporation, N.: Cuda. https://developer.nvidia.com/cuda-zone

(2021). Accessed: 10.05.2021
5. Emoto, K., Fischer, S., Hu, Z.: Generate, test, and aggregate. In: H. Seidl

(ed.) Programming Languages and Systems, pp. 254–273. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

6. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-gpu
systems and clusters. International Journal of High Performance Comput-
ing and Networking 7(2), 129–138 (2012)

7. Ernsting, S., Kuchen, H.: Data parallel algorithmic skeletons with acceler-
ator support. International Journal of Parallel Programming 45(2), 283–
299 (2017)

8. Ernstsson, A., Ahlqvist, J., Zouzoula, S., Kessler, C.: Skepu 3: Portable
high-level programming of heterogeneous systems and hpc clusters. Inter-
national Journal of Parallel Programming 49(6), 846–866 (2021)

9. Forum, M.: Mpi standard. https://www.mpi-forum.org/docs/ (2021).
Accessed: 10.05.2021

10. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on hetero-
geneous multiprocessors with adaptive mapping. In: 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 45–55. IEEE (2009)

11. Öhberg, T., Ernstsson, A., Kessler, C.: Hybrid cpu–gpu execution support
in the skeleton programming framework skepu. The Journal of Supercom-
puting 76(7), 5038–5056 (2020)

14 Nina Herrmann, Herbert Kuchen

12. OpenMP: Openmp the openmp api specification for parallel programming.
https://www.openmp.org/ (2021). Accessed: 10.05.2021

13. Rieger, C., Wrede, F., Kuchen, H.: Musket: a domain-specific language for
high-level parallel programming with algorithmic skeletons. In: Proceed-
ings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp.
1534–1543 (2019)

14. Soldado, F., Alexandre, F., Paulino, H.: Towards the transparent execution
of compound opencl computations in multi-cpu/multi-gpu environments.
In: European Conference on Parallel Processing, pp. 177–188. Springer
(2014)

15. Steuwer, M., Gorlatch, S.: Skelcl: a high-level extension of opencl for multi-
gpu systems. The Journal of Supercomputing 69(1), 25–33 (2014)

16. Wrede, F., Rieger, C., Kuchen, H.: Generation of high-performance code
based on a domain-specific language for algorithmic skeletons. The Journal
of Supercomputing 76(7), 5098–5116 (2020)

Noname manuscript No.
(will be inserted by the editor)

Distributed-memory FastFlow Building Blocks

Nicolò Tonci · Massimo Torquati ·
Gabriele Mencagli · Marco Danelutto

Received: date / Accepted: date

Abstract We present the new distributed-memory run-time system (RTS)
of the C++-based open-source structured parallel programming library Fast-
Flow . The new RTS enables the execution of FastFlow shared-memory appli-
cations written using its Building Blocks (BBs) on distributed systems with
minimal changes to the original program. The changes required are all high-
level and deal with introducing distributed groups, i.e., logical partitions of the
BBs composing the application streaming graph. A distributed group, which
in turn is implemented using FastFlow ’s BBs, can be deployed and executed on
a remote machine and communicate with other groups according to the orig-
inal shared-memory FastFlow streaming graph semantics. We present how to
define the distributed groups and how we faced the problem of data serializa-
tion and communication performance tuning through transparent messages’
batching and their scheduling. Finally, we present a preliminary study of the
overhead introduced by the distributed groups when executing a small set of
FastFlow shared-memory benchmarks on a sixteen-node cluster.

Keywords High-Level Parallel Programming · Distributed Programming ·
Parallel Building Blocks · Parallel Patterns · Skeleton Programming

1 Introduction

High-end computing servers show a clear trend toward using multiple hard-
ware accelerators to provide application programmers with thousands of com-
puting cores. However, many challenging applications demand more resources
than those offered by a single yet powerful computing node. In these cases,
application developers have to deal with different nested levels and kinds of
parallelism to squeeze the full potential of the platform at hand.

N. Tonci, M. Torquati, G. Mencagli, M. Danelutto
Computer Science Department, University of Pisa, Largo B. Pontecorvo, 56122, Italy
E-mail: nicolo.tonci@phd.unipi.it E-mail: {torquati,mencagli,marcod}@di.unipi.it

2 Nicolò Tonci et al.

In this scenario, the C++-based FastFlow parallel programming library [1],
initially targeting multi/many-core architectures, aspires to define a single
programming model for shared- and distributed-memory systems leveraging a
streaming data-flow programming approach and a reduced set of structured
parallel components called Building Blocks (BBs). FastFlow ’s BBs provide
the programmer with efficient and reusable implementations of essential paral-
lel components that can be assembled following a LEGO-style model to build
and orchestrate more complex parallel structures (including well-known algo-
rithmic skeletons and parallel patterns) [2]. With BBs, the structured parallel
programming methodology percolates to a lower-lever of abstraction [3].

In this paper, we present the new distributed-memory run-time system
(RTS) introduced in the BBs software layer of the FastFlow library aiming
to target both scale-up and scale-out platforms preserving the programming
model. It enables the execution of FastFlow applications written using BBs

on distributed systems. Already written applications require minimal modi-
fications to the original shared-memory program. New FastFlow applications
can be first developed and debugged on a single node, then straightforwardly
ported to multiple nodes. The motivations that have led us to work at the BB
level of the FastFlow library are twofold: a) provide the programmer with
a quick and easy porting methodology of already written FastFlow data-
streaming applications to distributed systems by hiding all low-level pitfalls
related to distributed communications; b) prepare a set of mechanisms (e.g.,
specialized RTS BBs, class wrappers, serialization features, message batching)
that can be used as the basis for implementing high-level ready-to-use parallel
and distributed exploitation patterns (e.g., Map-Reduce, D&C).

We present the idea of FastFlow ’s distributed groups and its associated
API as well as some experimental results that validate functional correctness
and provide preliminary performance assessments of our work.

The outline of the paper is as follows. Section 2 presents an overview of
the FastFlow library and its BBs. Section 3 introduces the distributed group
concept and semantics. Section 4 presents the experimental evaluation con-
ducted. Section 5 provides a discussion of related works and Section 6 draws
the conclusions of this paper.

2 FastFlow Overview and Background

The FastFlow library is the result of a research effort started in 2010 with
the aim of providing application designers with key features for parallel pro-
gramming via suitable parallel programming abstractions (e.g., ordered farm,
pipeline, divide&conquer, parallel-for, macro data-flow, map+reduce, etc.) and
a carefully designed RTS [1]. The structured parallel programming methodol-
ogy [4] was the fertile ground that has allowed the development of the initial
idea and then guided the FastFlow library implementation.

The latest FastFlow version (v. 3.x) has been released in 2019 where the
lower-level software layers have been redesigned, and the concept of Building-

Distributed-memory FastFlow Building Blocks 3

Fig. 1 Left):FastFlow software stack. Right):The set of FastFlow ’s Building Blocks.

Block introduced to support the development of new patterns and domain-
specific libraries [2]. In addition to the farm and pipeline core components
present in the previous releases, two new BBs have been added, namely all-to-
all and node combiner. Furthermore, a new software layer called Concurrency
graph transformer is now part of the FastFlow software stack. Such a layer
is in charge of providing functions for the concurrency graph refactoring to
introduce optimizations (e.g., fusing parallel BBs) and enhancing the perfor-
mance portability of the applications. FastFlow ’s software layers are sketched
in the left-hand side of Fig. 1.

Building Blocks

Building Blocks (BBs) [2,3] are recurrent data-flow compositions of concurrent
activities working in a streaming fashion, which are used as the basic abstrac-
tion layer for building FastFlow parallel patterns and, more generally FastFlow
streaming topologies. The Data-flow streaming model and the BBs are the two
fundamental ingredients of the FastFlow library. Following the same principles
of the structured parallel programming methodology, a parallel application (or
one of its components) is conceived by selecting and adequately assembling a
small set of well-defined BBs modeling both data and control flows. Differently
from “pure” algorithmic skeleton-based approaches, where highly specialized,
reusable, and efficient monolithic implementations of each skeleton are defined
for a given architecture, the BB-based approach provides the programmer with
efficient and reusable implementations of lower-level basic parallel components
that can be assembled following a LEGO-style methodology to build and or-
chestrate more complex parallel structures [2]. They can be combined and
nested in different ways forming either acyclic or cyclic concurrency graphs,
where graph nodes are FastFlow concurrent entities and edges are commu-
nication channels. A communication channel is implemented as a lock-free

4 Nicolò Tonci et al.

Single-Producer Single-Consumer (SPSC) FIFO queue carrying pointers to
heap-allocated data [5]. Collective communications involving multiple produc-
ers and/or consumers are realized through broker nodes employing multiple
SPSC queues. More specifically, we consider Sequantial Building Blocks (SBBs)
and Parallel Building Blocks (PBBs). SBBs are: the sequenatial node (in three
versions) and the nodes combiner. PBBs are: the pipeline, the farm (in two
versions), and the all-to-all. The right-hand side of Fig. 1 shows the graphical
notation of all BBs. A description of each BB follows.

node . It defines the unit of sequential execution in the FastFlow library. A
node encapsulates either user’s code (i.e. business logic) or RTS code. Based
on the number of input/output channels it is possible to distinguish three
different kinds of sequential nodes: standard node with one input and one
output channel, multi-input node with many inputs and one output channel,
and multi-output node with one input and many outputs. A node performs a
loop that: i) gets a data item (through a memory reference) from one of its
input queues; ii) executes a functional code working on the input data item
and possibly on a state maintained by the node itself by calling its service
method (svc()); iii) puts a memory reference to the resulting item(s) into one
or multiple output queues selected according to a predefined (i.e., on-demand,
round-robin) or user-defined policy (e.g., by-key, random, broadcast, etc.).

node combiner . It enables to combine two SBBs into one single sequential
node. Conceptually, the combining operation is similar to the composition of
two functions. In this case, the functions are the service functions of the two
nodes (i.e., the svc() methods). This SBB promotes code reuse through fusion
of already implemented nodes and it is also used to automatically reduce the
number of threads implementing the concurrent graph when possible.

pipeline . The pipeline is the topology builder. It connects BBs in a linear

chain (or in a toroidal way if the last stage is connected to the first one with
a feedback channel). Also, it is used as a container of BBs for grouping them
in a single parallel component. At execution time, the pipeline models the
data-flow execution of its BBs on data elements flowing in streaming.

farm . It models functional replication of BBs coordinated by a sequential
master BB called Emitter. The default skeleton is composed of two computing
entities executed in parallel (this version is called master-worker): a multi-
output Emitter, and a pool BBs called Workers. The Emitter node schedules
data elements received in input to the Workers using either a default policy
(i.e., round-robin or on-demand) or according to the algorithm implemented
in the business code defined in its service method. Optional feedback channels
connect Workers back at the Emitter. A second version of the farm, comprises
also a multi-input BB called Collector in charge of gathering results coming
from Workers (the results can be gathered either respecting farm input order-
ing or without any specific ordering). Also in this version, optional feedback
channels may connect both Workers as well as Collector back to the Emitter.

all-to-all . The all-to-all (briefly a2a) defines two distinct sets of Workers
connected according to the shuffle communication pattern. Therefore, each

Distributed-memory FastFlow Building Blocks 5

Worker in the first set (called L-Worker set) is connected to all Workers in the
second set (called R-Worker set). The user may implement any custom distri-
bution policy in the L-Worker set (e.g., sending each data item to a specific
Worker of the R-Worker set, broadcasting data elements, executing a by-key
routing, etc). The default distribution policy is round-robin. Optional feed-
back channels may connect R-Worker with L-Worker sets, thus implementing
an all-to-all communication pattern.

BBs can be composed and nested, like LEGO bricks, to build concurrent
streaming networks of nodes executed according to the data-flow model. The
rules for connecting BBs and generating valid topologies are as follows:

1. Two SBBs can be connected into a pipeline container regardless of their
number of input/output channels.

2. A PBBs can be connected to SBBs (and vice versa) into a pipeline container
by using multi-input (multi-output) sequential nodes;

3. Two PBBs can be connected into a pipeline container either if they have
the same number of nodes, or through multi-input multi-output sequential
nodes if they have different number of nodes at the edges.

In several cases, to help the developer when possible, the RTS automatically
enforces the above rules transforming the edge nodes of two connecting BBs

by using proper node wrappers or adding helper nodes via the combiner BB.
For example, in the farm BB, the sequential node implementing the Emitter is
automatically transformed in a multi-output node. Additionally, if an all-to-
all BB is connected to a farm, then the Emitter is automatically transformed
in a combiner node where the left-hand side node and the right-hand side
node are multi-input and multi-output, respectively. The Concurrency graph
transformer software layer (see Fig. 1) provides a set of functions to aid the
expert programmer statically change (parts of) the FastFlow data-flow graphs
by refactoring and fusing BBs to optimize the shape of the concurrency graph.

All high-level parallel patterns provided by the FastFlow upper layer (e.g.,
ParallelFor, ParalleForReduce, Ordered Farm, Macro Data-Flow, etc.) were
implemented with the sequential and parallel BBs presented [2].

BBs usage example

A simple usage example of a subset of FastFlow BBs is presented in Fig. 2.
In the top-left part of the figure, we defined three sequential nodes: Reader,
Worker, and Writer. The Reader node takes in input a comma-separated list
of directory names and produces in output a stream of file t data elements each
associated to a file contained in one of the input directories (the ff send out

call at line 7 is used to produce multiple outputs for a single activation of
the service method svc()); in the end, the Reader produces the special value
End-Of-Stream (EOS at line 8) to start the pipeline termination of the next
BBs. The Worker node executes a given search function on each input file, and
then it produces in output only non-empty matching (the special value GO ON

at line 15 is not inserted into the output channel and is meant to keep the node

6 Nicolò Tonci et al.

1 #include <ff/ff.h>

2 using namespace ff;

3 struct Reader:ff_node_t<file_t> {

4 Reader(const char dir[]):dir(dir){}

5 file_t *svc(file_t*) {

6 for(auto file: dir_iterator(dir))

7 ff_send_out(new file_t(file));

8 return EOS; /* end-of-stream */

9 }

10 const char[] dir;

11 };

12 struct Worker:ff_node_t<file_t,

result_t> {

13 result_t *svc(file_t *in){

14 auto r=search(in,"Hello");

15 return (r ? r : GO_ON);

16 }

17 };

18 struct Writer:ff_minode_t<result_t> {

19 result_t *svc(result_t*in){

20 R.push_back(in);

21 return GO_ON; /* keep-going */

22 }

23 void svc_end() {print_result(R);}

24 std::vector<result_t*> R;

25 };

26 // ----- (Version 1) -------------

27 int main() {

28 ff_pipeline pipe;

29 pipe.add_stage(new Reader(

30 "dir1,dir2,dir3,dir4"));

31 pipe.add_stage(new Worker());

32 pipe.add_stage(new Writer());

33 return pipe.run_and_wait_end();

34 }

26 // ----- (Version 2) -------------

27 int main() {

28 ff_a2a a2a;

29 a2a.add_firstset<Reader>(

30 {new Reader("dir1,dir2"),

31 new Reader("dir3,dir4")});

32 a2a.add_secondset<Worker>(

33 {new Worker(),

34 new Worker(),

35 new Worker()});

36 ff_pipeline pipe;

37 pipe.add_stage(&a2a);

38 pipe.add_stage(new Writer());

39 return pipe.run_and_wait_end();

40 }

Fig. 2 Simple usage example of the FastFlow BBs implementing two different parallel skele-
tons of the same program. Top): (Version 1) three-stage pipeline of SBBs, and (Version 2)
two-stage pipeline where the first stage replicates two times the Reader node and three times
the Writer node by using the all-to-all PBB. Bottom): Graphical schema of the two versions
and their skeleton trees showing the nesting levels of BBs.

alive and ready to receive the next input). Finally, the Writer node collects all
results, one at a time, and then writes the final result on the standard output
by using the function print result in the svc end() method. Such method
is called once by the FastFlow RTS when the node receives (all) the EOS(s)
from the input channel(s) and before terminating.

In the top-right part of Fig. 2 the three sequential nodes defined are in-
stantiated and combined in two different concurrent streaming networks: the

Distributed-memory FastFlow Building Blocks 7

Version 1) is a standard 3-stage pipeline; the Version 2) is a 3-stage pipeline in
which the first stage is an a2a BB replicating two and three times the Reader
and Worker nodes, respectively. They will be automatically transformed into
multi-output and multi-input nodes.

Finally, at the bottom of the figure are sketched the schemas of the two
versions and their skeleton trees showing the levels and nesting of BBs. The
leaves of the tree are implemented as POSIX threads in the FastFlow RTS.

Previous FastFlow distributed RTS

The first versions of the FastFlow library (before v. 3.x) provided the pro-
grammer with the possibility to execute FastFlow programs on a distributed
system [6]. Based on the ZeroMQ communication library, the distributed RTS
was developed in 2012 by Massimo Torquati. Later a tiny message-passing
layer atop InfiniBand RDMA was also implemented as a ZeroMQ alterna-
tive [7]. To support inter-process communications, the old FastFlow node was
extended with an additional “external channel” (either in input or in output).
The extended node was called dnode. Edge nodes of the FastFlow data-flow
graph, once transformed into dnodes, could communicate with dnodes of oth-
ers FastFlow applications running on different machines, through a pre-defined
set of communication collectives (i.e., unicast, onDemand, Scatter, Broadcast,
fromAll, fromAny). The programmer had to annotate each dnode with the
proper collective endpoint to make them exchange messages according to the
selected communication pattern.

There are many differences between the previous (old) version and the
new one presented in this paper. We report here only the most relevant points
wholly redesigned in the new version. In the old version, the programmer
should explicitly modify the edge nodes of a FastFlow program to add the
dnode wrapper with the selected communication pattern. It also had to define
two non-trivial auxiliary methods for data serialization. Moreover, the old ver-
sion exposed two distinct programming models to the programmer, one for the
local node (i.e., streaming data-flow) and one for the distributed version (i.e.,
Multiple-Programs, Multiple-Data with collectives). Finally, the old version
did not provide the FastFlow ’s system programmer with any basic distributed
mechanisms to define new high-level distributed patterns.

3 From shared-memory to distributed-memory FastFlow
applications

This section presents the FastFlow library extensions to execute applications
in a distributed-memory environment. By introducing a small number of mod-
ifications to programs already written using FastFlow ’s BBs, the programmer
may port its shared-memory parallel application to a hybrid implementation
(shared-memory plus distributed-memory) in which parts of the concurrency
graph will be executed in parallel on different machines according to the well-
known SPMD model. The resulting distributed application will adhere to the

8 Nicolò Tonci et al.

1 auto G1 = pipe.createGroup("G1");

2 auto G2 = pipe.createGroup("G2");

3 G1 << S0 << S1;

4 G2 << S2;

Fig. 3 Pipe example 1: creating two dgroups from a three-stage FastFlow pipeline.

same data-flow streaming semantics of the original shared-memory implemen-
tation. The modifications consist of identifying disjoint groups of BBs, called
distributed groups (or simply dgroups), according to a small set of rules de-
scribed in the following. Then mapping such distributed groups to the available
machines through a JSON-format configuration file.

Each dgroup represents a logical partition of FastFlow ’s BBs implementing
a portion of the FastFlow streaming concurrency graph. It is implemented as
a process that runs alone or together with other dgroups on a remote node.
Furthermore, to exploit the full potential of a single node, a dgroup is in-
ternally realized as a shared-memory FastFlow application properly enriched
with customized sequential BBs and node wrappers to transparently realize
the communications among dgroups according to the original data-flow graph.
The API to define the distributed groups comprises two functions: the dgroup
creator, createGroup function and the dgroup inclusion implemented through
the C++ operator ’<<’. A dgroup can be created from any level 0 or level 1 BB

in the FastFlow skeleton tree. The createGroup function takes as an argument
a unique string that uniquely identifies the distributed group. The inclusion
operator is helpful when the programmer wants to create multiple dgroups
from a single BB, and only a subset of its nested BBs need to be included in a
given dgroup.

In Fig. 3, a generic application structured as a pipeline of three, possibly
parallel, BBs is organized in two distributed groups. The first dgroup, G1, is
composed of the first two stages while the second dgroup contains the last
stage. In this example S0, S1 and S2 can be any valid nesting of the available
library BBs. As can be seen from the code in the same figure, the two groups
are created from the same pipeline (pipe) at line 1 and 2, and then the direct
children BBs (i.e., those at level 1 of the skeleton tree) are included in the
correct dgroup (lines 3 and 4). A dgroup created from a pipeline must have all
included BBs contiguous to respect the pipeline order. For instance, it is not
possible to place S0 and S2 in dgroup “G0”, without including also S1.

The BBs that can be added to a distributed group by using the ’<<’ operator
are the direct children of the BB from which the group has been created.
This constraint has two reasons: 1) to keep the implementation simple and
manageable; 2) to not reduce too much the granularity of the single groups
in order to have a coarse enough concurrency graph to be efficiently executed
in a single multi-core node and thus capable of exploiting the available local
parallelism. However, such constraint might be relaxed in future releases of
the FastFlow library.

Distributed-memory FastFlow Building Blocks 9

1 S0.createGroup("G1");

2 S1.createGroup("G2");

3 S2.createGroup("G3");

Fig. 4 Pipe example 2: creating dgroups from each stage of a pipeline.

1 auto G1 = a2a.createGroup("G1");

2 auto G2 = a2a.createGroup("G2");

3 auto G3 = a2a.createGroup("G3");

4 auto G4 = a2a.createGroup("G4");

5 G1 << L1 << L2;

6 G2 << L3;

7 G3 << R1 << R2;

8 G4 << R3 << R4;

1 { "groups" : [{
2 "name" : "G1",

3 "endpoint": "node1:8080"

4 },{"name" : "G2",

5 "endpoint": "node2:8080"

6 },{"name" : "G3",

7 "endpoint": "node3:8080"

8 },{"name" : "G4",

9 "endpoint": "node4:8080"

10 }]}

Fig. 5 A2A example 1: creating four dgroups from a FastFlow a2a by aggregating some
L-Worker and some R-Worker BBs without intersections between the two sets. In the bottom-
right part, the JSON configuration file specifies the dgroups’ mapping to nodes.

From a sequential node and a farm BBs it is possible to create only one
dgroup 1, whereas from the pipeline and all-to-all BBs it is possible to
create multiple dgroups. Finally, a BB can be included only in a single dgroup.

Another possibility to create n distributed groups from an n-stage pipeline
is to create them directly from the stages, as shown in Fig. 4. Indeed, when we
create a dgroup from a BB at level 1 of the skeleton tree, we might be implicitly
expressing the willingness to put the whole BB inside the dgroup. If this is the
case, then there is no need to include all the nested BBs manually as the RTS
automatically includes them all.

Distributed groups from a single a2a BB can be derived in different ways,
either by cutting the a2a graph horizontally or vertically or in both directions
(i.e., oblique cuts). Vertical and non-inter-sets horizontal cuts produce only
distributed communications between L-Worker and R-Worker BBs. Differently,
in horizontal inter-sets cuts, some dgroups contain both L-Worker and R-
Worker BBs of the a2a. Therefore, some communications will happen in the

1 For the farm, this is a limitation of the current release that will be relaxed in the future
releases of the FastFlow library.

10 Nicolò Tonci et al.

1 auto G1 = a2a.createGroup("G1");

2 auto G2 = a2a.createGroup("G2");

3 auto G3 = a2a.createGroup("G3");

4 G1 << L1 << L2 << R1 << R2;

5 G2 << L3;

6 G3 << R3 << R4;

1 { "groups" : [{
2 "name" : "G1",

3 "endpoint": "node1:8080"

4 },{
5 "name" : "G2",

6 "endpoint": "node2:8080"

7 },{
8 "name" : "G3",

9 "endpoint": "node3:8080"

10 }]}

Fig. 6 A2A example 2: creating three dgroups from a FastFlow a2a performing one inter-
sets horizontal cut, and one vertical cut. In the bottom-right part, the JSON configuration
file specifies the dgroups’ mapping to hosts.

shared-memory domain, while others will happen in the distributed-memory
domain (i.e., inter-node communications). When applicable, for example, for
the on-demand and round-robin data distribution policies, the distributed RTS
will privilege local communications vs. distributed communications.

An example of four groups produced as a result of a vertical and two non-
inter-sets horizontal cuts for an a2a BB is sketched in Fig. 5. In this example,
some L-Worker BBs are grouped together in a single group (as a result of
non-inter-set cuts). The same for some R-Worker BBs.

In Fig. 6, the same a2a BB presented in Fig. 5 is split into three dgroups
by making two cuts, one horizontal producing the group G1 that aggregates
BBs coming from the two Worker sets (as a result of the horizontal inter-
sets cut), and one vertical cut producing two distinct dgroups, G2 and G3.
With such a division, communications between L1, L2 and R1, R2 BBs are
local through SPSC shared-memory channels. In contrast, all the other pairs
of communications among L-Worker and R-Worker sets are inter-nodes. The
different kinds of communications are handled transparently by the FastFlow
RTS. Notably, for remote communications, data-types must be serialized. In
Fig. 5 and Fig. 6 we also show the JSON configuration files containing the
mapping < group− host : port > (for the default TCP/IP message transport
protocol). It also contains addition attributes that can be specified either for
the entire application or just for a single group. We will discuss some of these
attributes in the following.

So far, we have introduced the basic grouping rules through simple generic
examples showing the small extra coding needed to introduce distributed
groups in a FastFlow program. In the next example, we give a complete
overview of a still straightforward but complete distributed FastFlow BB-based

Distributed-memory FastFlow Building Blocks 11

1 #include <ff/dff.hpp>

2 #include <nodesDef.hpp>

3 using namespace ff;

4 int main(int argc, char *argv[]){

5 // distributed RTS init ------

6 DFF_Init(argc,argv);

7

8 // ---- FastFlow graph -------

9 SourceNode Sc;

10 LeftNode L1, L2;

11 RightNode R1,R2,R3,R4;

12 SinkNode Sk;

13 ff_pipeline pipe;

14 ff_a2a a2a;

15 a2a.add_firstset<LeftNode>(

16 {&L1, &L2});

17 a2a.add_secondset<RightNode>(

18 {&R1,&R2,&R3,&R4});

19 pipe.add_stage(&Sc);

20 pipe.add_stage(&a2a);

21 pipe.add_stage(&Sk);

22

23 // --- distributed groups ----

24 auto G1 = Sc.createGroup("G1");

25 auto G2 = a2a.createGroup("G2");

26 G2 << &L1 << &R1 << &R2;

27 auto G3 = a2a.createGroup("G3");

28 G3 << &L2 << &R3 << &R4;

29 auto G4 = Sk.createGroup("G4");

30 // -- distributed execution --

31 return pipe.run_and_wait_end();

32 }

1 {"protocol" : "MPI",

2 "groups" : [{
3 "batchSize": 10,

4 "name" : "G1",

5 "messageOTF": 64,

6 "endpoint":"node1"

7 },{
8 "name" : "G2",

9 "batchSize": 20,

10 "threadMapping" : "0,2,4,6,8",

11 "endpoint":"node2"

12 }, {
13 "batchSize": 20,

14 "name" : "G3",

15 "endpoint":"node3"

16 },{
17 "name" : "G4",

18 "endpoint":"node4"

19 }]}

Fig. 7 A complete application example composed of a 3-stage pipeline: multi-output node,
a2a, multi-input node. The distributed version comprises four dgroups, two coming from
the a2a BB. The definition of Sk,Sc,Li, and Ri nodes, is not shown.

application. This application, sketched in Fig 7, is made of a 3-stage pipeline
in which the first and last stages are sequential BBs, and the middle one is a
2× 4 a2a BB. The distributed version comprises four groups: “G1” containing
the source node, “G2” containing the top half of the a2a, “G3” containing
the bottom half part of the a2a, and “G4” containing the sink node. In this
example, all the dgroups are created directly from the level 1 BB, whereas the
inclusion operator is used to assign the a2a’s Worker BBs to the desired group.
The definition of the dgroups is listed from line 24 to line 29 in the code
listing on the left-hand side of Fig 7. The changes compared to the shared-
memory version are as follows: 1) at line 1 the include file dff.hpp enabling
a set of distributed RTS features; 2) the DFF Init function at line 6 needed
to identify the dgroup name to execute and to collect all needed informa-
tion provided by the launcher (e.g., location of the JSON configuration file);
3) the previously discussed annotations needed to create dgroups (from line
24 to 29). The configuration file, on the right-hand side of Fig. 7, is richer

12 Nicolò Tonci et al.

1: function CreateGroup(bb, groupName)
2: if ∃G | name(G) = groupName then error()

3: if type(bb) ∈ {seq, comb, farm} ∧ ∃G | parent(G) = bb then error()

4: if level(bb) > 1 then error()

5: if level(bb) = 0 ∧ ∃G | level(parent(G)) = 1 then error()

6: Groups← Groups ∪ {GgroupName}
7: function addToGroup(bb, g)
8: if bb /∈ parent(g) then error()

9: if ∃g′ | bb ∈ g′ then error()

10: g ← g ∪ {bb}
11: function RunGroup(g)
12: if type(parent(g)) = pipe then checkP ipe(g, prent(g))

13: parseJSON()
14: ffg ← buildFFnetwork(g)
15: run(ffg)

name(g) returns the unique name of the group g
parent(g) returns the BB from which the group g has been created
type(bb) returns the type ∈ {seq, comb, farm, pipe, a2a} of the BB bb
checkPipe(g, p) checks whether the subset of stages of the pipe p in g are contiguous

level(bb) returns the nesting level of the BB bb in the skeleton tree

parseJSON() parses the configuration file
buildFFnetwork(g) generates the FastFlow concurrent graph for the group g
run(g) executes the FastFlow graph implementing the group g

Fig. 8 Pseudo-code of the rules used by the FastFlow RTS for creating valid distributed
groups (creatGroup and addToGroup). The runGroup reports the pseudo-code to build the
distributed group and run it as FastFlow application.

than the one in previous examples. In line 1 we specify to use MPI instead of
the default TPC/IP transport protocol. In line 3 we specify that the dgroup
“G1” will send out messages in batches of 10 per destination, and in lines 9
and 13, in the same way, we specify that the dgroups “G2” and “G3” will
send results to “G4” in batches of 20 messages. The batching of messages
is completely transparent to the application and it is particularly helpful for
small-size messages to optimize the network link bandwidth. In addition, the
JSON configuration file may contain other non-functional attributes to regu-
late some low-level knobs of the FastFlow RTS, for example the thread-to-core
affinity mapping for each dgroup (threadMapping), or to set the size of the
logical output queues representing the distributed channels through the at-
tributes messageOTF/internalMessageOTF, which set the maximum number
of “on-the-fly” messages for a channel. All these attributes, have default values.

For the sake of completeness, the pseudo-code of Fig. 8 gives a com-
plete overview of the semantics checks of the two functions provided by the
distributed-memory FastFlow RTS, namely creatGroup and addToGroup, the
latter mapped onto the inclusion operator ’<<’. We also included the runGroup
function, which the programmer does not directly call since it is automatically
invoked by RTS passing the proper group name. It builds the FastFlow graph
implementing the given dgroup and runs it.

Distributed-memory FastFlow Building Blocks 13

1 struct data_t {

2 std::string key;

3 uint64_t id, ts;

4

5 template<class Archive>

6 void serialize(Archive & ar){

7 ar(key,id,ts);

8 }

9 };

1 struct data_t {

2 char key[MAXWORD];

3 uint64_t id, ts;

4 };

5

6 template<class Pair> // <ptr,size>

7 void serialize(Pair &p, data_t *d){

8 p={(char*)d, sizeof(rdata_t)};

9 }

10 template<class Pair> // <ptr,size>

11 void deserialize(const Pair &p,data_t *&d){

12 d = new (p.ptr) data_t;

13 }

Fig. 9 Data serialization methods in the FastFlow library. Left): Cereal-based serialization
function of the data t type. Right): custom serialization of a memory-contiguous version of
the data t type that enables zero-copy transfers.

Data serialization

Data serialization/deserialization (briefly data serialization from now on) is a
fundamental feature of any distributed RTS. It is the process of transform-
ing a possibly non-contiguous memory data structure into a format suitable
to be transmitted over a network and later reconstructed, possibly in a com-
pletely different computing environment, preserving the original data. In the
distributed FastFlow RTS, data serialization can be carried out in two differ-
ent ways. The programmer may select the best approach, between the two,
for each data type flowing into the inter-group channels (i.e., the data types
produced/received by the edge nodes of a dgroup).

The first approach employs the Cereal serialization library [8]. It can auto-
matically serialize base C++ types as well as compositions of C++ standard-
library types; for instance, a std::pair containing a std::string and a
std::array<int> objects can be serialized without writing any extra line
of code. Cereal requests a serialization function only for user-defined data
types. A user-defined data type containing an explicit (yet straightforward)
serialization function is sketched on the left-hand side of Fig. 9.

The second approach allows the user to fully specify its serialization and
deserialization function pair. This might be useful, when feasible, to avoid any
extra copies needed by the serialization process itself. This method is beneficial
when the data types are contiguous in memory (i.e., trivial types in C++),
thus a zero-copy sending protocol can be employed. An example of this custom
approach is shown on the right-hand side of Fig. 9.

Distributed group implementation and program launching

A dgroup is implemented through the FastFlow ’s farm BB. The Emitter is the
Receiver, and the Collector is the Sender. The farm’s Workers are the BBs

of the original application graph included in that particular dgroup (either
implicitly or explicitly). The BBs that communicate with the Sender and/or

14 Nicolò Tonci et al.

Fig. 10 Logical schema of the launching of a FastFlow distributed application with dff run

using the TCP/IP protocol.

Receiver via shared-memory FastFlow channels, are automatically wrapped
by the RTS with class wrappers that transparently perform serialization ac-
tivities on the input/output data-types of the BBs. Such activities happen in
parallel with data communications. Horizontal inter-sets cuts in an a2a are
implemented using customized BBs in the L-Worker and R-Worker sets.

Concerning FastFlow program launching, we have designed a software mod-
ule called dff run. It takes care of launching the application processes, each
one with the appropriate parameters (e.g., dgroup name), following the map-
ping host-group described in the JSON configuration file. For applications us-
ing the MPI library as a communication layer, the dff run is just a wrapper of
the well-known mpi run launcher. It produces a suitable hostfile which will
be passed to the mpi run command. A simplified overview of the launching
phase when using the TCP/IP protocol as a communication layer is sketched
in Fig. 10. For an application composed of X groups where one group is ex-
ecuted locally on node0, the dff run launcher creates X-1 ssh connections
towards each remote node and launch the executable with the correct param-
eters. If the user wishes to receive the standard output of each process; in that
case, the dff run gathers each output stream from each ssh connection and
combines them into a single annotated stream where the annotation is the
group name from which the output comes. The current version of the dff run

launcher does not deploy the FastFlow executable and the configuration file
on the remote hosts. This limitation will be addressed in the next releases.

4 Experimental Evaluation

Experiments was conducted on the openhpc2 cluster hosted by the Green Data
Center of the University of Pisa. It is composed by 16 nodes interconnected at
1Gbit/s. Each node has two Intel Silver Xeon 4114 CPUs running at 3.0GHz
for a total of 20 physical cores (and 40 hardware threads) and 128GB of RAM.

The first test evaluates the throughput attainable using different message
sizes as well as the impact of varying the batchSize attribute in the JSON con-
figuration file without modifying the program. This test considers two nodes

Distributed-memory FastFlow Building Blocks 15

 0

 30

 60

 90

 120

32 64 128 256 512 1K 2K 4K

M
B

/s

bytes

Throughput

ideal
no batch
batch 4
batch 8
batch 16
batch 32
batch 64
batch 128

 1

 10

 100

 1000

 10000

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K

M
B

/s
 (

lo
g
sc

a
le

)

bytes

Throughput

Cereal
Manual

Fig. 11 Point-to-point throughput as a function of the message size between twp dgroups.
Left): Measured throughput between two cluster nodes. Right): Measured throughput on
a single cluster node by using Cereal-based vs. Manual serialization.

of the cluster. The results are shown in Fig. 11 (left-hand side). The ideal
throughput has been measured using the netcat network utility program.
As expected, the transparent batching feature, is particularly useful for small
messages and becomes less relevant for messages bigger than 512B. A batch
size of 8-32 messages is enough to reach the maximum throughput attainable.

The second test evaluates the cost of the automatic serialization using the
Cereal library. We compared Cereal-based serialization (the default) to manual
serialization of a memory-contiguous data type that allows the RTS to per-
form a zero-copy message transfer. In this case, to avoid potential bottlenecks
introduced by the network, both sender and receiver dgroups are executed on
the same node on different CPUs through the threadMapping configuration file
attribute. The right-hand side of Fig. 11 shows the results. The two serializa-
tion approaches behave the same for messages smaller than 8KB, while above
that threshold, manual serialization has less overhead, as expected. However,
significant variances in performance are located above 1.2GB/s. Therefore, we
could expect almost no differences for applications running on clusters whose
interconnection is up to 10 Gbit/s.

The third test mimics a Master-Worker parallel pattern implementation
(i.e., a farm skeleton without the Collector) using FastFlow BBs. The starting
point is a FastFlow shared-memory micro-benchmark using a a2a BB, in which
a single multi-output sequential BB in the L-Worker set implements the Mas-
ter, and a set of sequential multi-input BBs in the R-Worker set implement
the Workers. The Master generates 100K tasks at full speed. Each task is a
message whose payload is 128B. For each input task, the Workers execute a
controlled synthetic CPU-bound computation corresponding to a predefined
time (we considered values in the range 0.1−5 milliseconds). The task schedul-
ing policy between L- and R-Worker sets is on-demand. The distributed version
is derived from the shared-memory benchmark by cutting the a2a BB graph
both horizontally and vertically. The horizontal inter-set dgroup aggregates the
Master and 20 Workers of the R-Worker set. The vertical dgroups aggregate

16 Nicolò Tonci et al.

 2

 4

 6

 8

 10

 12

 14

 16

100us 500us 1ms 2ms 5ms

sp
e
e
d
u
p

task granularity

Speedup (16 nodes, 320 cores, 10K tasks)

measured
ideal

Task
Grain
(ms)

Ideal time (S)
1 node

20 Workers

Exec Time (S)
16 nodes

320 Workers
Speedup

0.1 0.5 0.464 1.08
0.5 2.5 0.915 2.73
1 5 1.02 4.90
2 10 1.075 9.30
5 25 1.583 15.79

Task
Grain
(ms)

N. of tasks assigned to Workers
in Master
dgroup

in other dgroups
Average StdDev

0.1 89011 732.1 10.1
0.5 36048 4263.5 12.9
1 20339 5309.2 8.2
2 10680 5952.9 3.5
5 6239 6250.1 15.1

Fig. 12 Master-Worker experiment. Left): Speedup varying the task’s computation gran-
ularity. Right-Top): Execution time (in seconds) and speedup for each task grain (in mil-
liseconds). Right-Bottom): tasks computed by the Master dgroup and by all others dgroups.

the remaining Workers of the R-Worker set (20 Workers for each dgroup to
fill in all physical cores of a node). Distinct dgroups are deployed to different
cluster nodes. The logical schema is that of Fig. 6 with 1Li and 20Ri BBs
for each dgroup. The tables on the right-hand side of Fig. 12 summarize the
results obtained using all physical cores of the openhpc2 cluster (i.e., 320 cores
in total). All tests have been executed using a transparent batching of 32 mes-
sages and 1 as the maximum number of messages on-the-fly. The baseline is
the ideal time on a single node considering the task granularity (e.g., for tasks
of 100us, the ideal execution time is 500ms). We also measured the number of
tasks received by the local Workers in the Master dgroup and by all remote
Workers in the other dgroups (see the right-bottom table in Fig. 12). The
speedup increases with computational granularity, and the number of tasks
computed by local Workers in the Master group is inversely proportional to
the task granularity. This is what we can expect from the on-demand task
scheduling policy that privileges local dgroup Workers: the coarser the grain
of tasks, the higher the number of tasks sent to remote Workers. As a final
note for this test, since the completion time is quite short, an initial barrier
has been artificially introduced in the DFF Init to synchronize all dgroups
and obtain a more accurate measurement. The reported times are thus the
maximum time observed among all dgroups without considering the spawning
time introduced by the dff run launcher (which accounts for about 200ms).

The last experiment is WordCount, a well-known I/O-bound streaming
benchmark. Its logical data-flow schema is sketched on the top left-hand side
of Fig. 13. There is a source stage (Sc) that reads text lines from a file or
a socket; a line tokenizer or splitter (Sp) that extracts words from the input
line and sends all words with the same hash value (called key) to the same
destination; a counter (C) that counts the number of instances of each word
received; and a sink (Sk) that collects words and prints all statistics (e.g.,
unique words, current number of words, etc.). Our test considers Twitter’s

Distributed-memory FastFlow Building Blocks 17

7.5K

15K

30K

45K

60K

75K

90K

97K
101K

120K

G
1

+G
2

+G
3

+G
4

+G
5

+G
6

+G
7

+G
8

+G
9

+G
10

+G
11

+G
12

+G
13

+G
14

+G
15

+G
16

tw
e

e
ts

/s

distributed groups (Sc+Sp)

Throughput scalability

measured
ideal

Fig. 13 WordCount experiment. Left): Logical schema and the FastFlow implementation.
Right): Throughput scalability (tweets/s) increasing the number of source-splitter dgroups.

tweets as text lines (max 280 characters including spaces), multiple replicas of
the pair source-splitter stages (to emulate tweet streams coming from various
sources), four replicas of the counter, and one sink stage. The FastFlow data-
flow graph implementing the test is shown on the bottom left-hand side of
Fig. 13. The grey rectangles identify the dgroups: each source-splitter replica
is part of a dgroup (G1...Gk in the figure), whereas the counter replicas and
the sink stage own to a single dgroup (G0 in the figure). By running a single
replica of the source-splitter dgroup and the counter-sink dgroup on the same
cluster node on different CPU cores with batchSize=32, we found a maximum
attainable throughput of about 120K tweets/s. Consequently, we configured
each source stage to constantly produce 120/16 = 7.5K tweets/s towards the
splitter stage. Then, to stress-test the shuffle communication pattern with the
by-key distribution, we replicated the source-splitter dgroup multiple times (up
to 16 replicas). The results obtained in these tests are plotted on the left-hand
side of Fig.13. The scalability is linear up to 13 replicas for an aggregated
throughput of about 97K tweets/s, then it flattens until we reach 16 droup
replicas where the last replica is executed on the same node of the counter-
sink dgroup (on different CPU cores) thus reaching a maximum throughput of
about 101K tweets/s (about 84% of the maximum).

Discussion

The experiments conducted have shown: a) the FastFlow shared-memory stream-
ing model is transparently preserved when porting to distributed-memory do-
mains, applications that use nontrivial communication patterns (e.g., hash-
based message scheduling in WordCount), and with both horizontal as well
as vertical cuts of the concurrent graph; b) the designed distributed RTS can
achieve close to nominal bandwidth on 1Gbit/s networks using the TCP/IP
protocol; c) the transparent batching feature, which can be enabled from the

18 Nicolò Tonci et al.

JSON configuration file, is helpful to optimize communications for small mes-
sages without modifying the application code; d) the RTS can efficiently bal-
ance tasks workload among multiple distributed groups yet privileging local
communications (i.e., towards group local Workers) to minimize communica-
tion overheads; e) streaming computations with computational tasks of a few
milliseconds can benefit from the distributed RTS to reduce the execution
time.
NOTE TO REVIEWERS: In the final paper version we will include an
assessment of the MPI transport protocol. At the time of writing, the trans-
parent batching feature is not complete for MPI.

5 Related Work

High-level parallel programming frameworks abstract the low-level threading,
communication, and synchronization details necessary for effectively utilizing
parallelism and liberate the programmer from writing error-prone concurrent
procedures. Such programming environments also increase the portability of
applications by taking care of non-functional parameters tuning (e.g., paral-
lelism degree, task’s granularity) as a function of the target platform. The
de facto standard for shared-memory parallel programming is the OpenMP
programming model, whereas, in the HPC context, the most broadly used
model is “MPI + X”, where X is usually either OpenMP or CUDA [9] [10].
However, several higher-level parallel programming libraries or domain-specific
languages (DSLs) have been proposed in the context of structured parallel
programming [4]. Several of them are implemented in C/C++ (SkePU [11],
SkeTo [12], SkelCL [13], GrPPI [14], Muesli [15]), some others are DSL-based
such as Musket [16] and SPar [17]. They provide the user with a restricted
set of pre-defined and optimized parallel components targeting heterogeneous
multi/many-cores and, in some cases, distributed-memory systems (e.g., GrPPI,
Muesli, Musket). Recently some of the concepts coming from the algorithmic
skeletons and parallel design patterns research communities have also fertilized
some commercial/industrial programming environments such as Intel TBB [18]
for multi-core parallelism, Khronos SYCL [19] for heterogeneous multi/many-
core equipped with GPUs and Apache Spark[20] and Apache Flink [21] for
cluster-level data-stream processing. In recent years there has been a prolif-
eration of frameworks aiming to ease the communication in distributed sys-
tems [22]. For example, in the HPC context, Mercury [23] leverages multiple
HPC fabrics protocols to implement efficient remote procedure calls. Instead,
in big data analytics and cloud environments, there are ActiveMQ and Ze-
roMQ 2 among the most used Message Queueing systems.

FastFlow [1,2] has been developed in the context of structured parallel pro-
gramming methodology, and it mainly targets streaming applications. What
mainly characterizes FastFlow compared to other notable approaches in the

2 ActiveMQ: https://activemq.apache.org/. ZeroMQ:https://zeromq.org/.

Distributed-memory FastFlow Building Blocks 19

field is its ambition to offer different yet structured software layers to the
system as well as application programmers. At the bottom level of the ab-
straction, a reduced set of flexible, efficient, and composable BBs are pro-
vided for building new domain-specific frameworks such as WindFlow [24],
and highly-distributed streaming networks. BBs mainly target parallel-expert
programmers. At the higher level of the abstraction, FastFlow provides some
well-known parallel exploitation patterns (e.g., ParallelFor and D&C) mainly
targeting application developers. Currently, all patters can be used only inside
a single dgroup. With its new distributed RTS, FastFlow also aspires to offer a
single programming model for both shared- and distributed-memory systems.

6 Conclusions and Future Work

We extended the FastFlow ’s BBs layer with a new RTS enabling the execution
of BBs-based FastFlow applications on distributed platforms. Changes to the
code-base required to port the applications to the hybrid shared/distributed-
memory environments are minimal and straightforward to introduce. First
experiments conducted on a 16-node cluster demonstrate that: i) the new
distributed RTS preserves the FastFlow programming model and does not in-
troduce unexpected overheads; ii) the transparent batching of messages is a
useful feature for tuning the distributed application throughput. Future exten-
sions will consider: a) adding support for the farm BB and bearing cyclic Fast-
Flow networks; b) introducing heuristics for automatically defining dgroups
to relieve the programmer from this decision; c) augmenting the number of
transport protocols provided to the user, and enabling the coexistence of mul-
tiple protocols on different zones of the FastFlow ’s nodes graph; d) developing
some high-level parallel patterns using the distributed RTS; e) expanding the
functionalities of the dff run launcher to improve the deployment phase.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and
efficient streaming on multi-core. Programming multi-core and many-core computing
systems, parallel and distributed computing (2017). DOI 10.1002/9781119332015.ch13

2. Torquati, M.: Harnessing Parallelism in Multi/Many-Cores with Streams and Parallel
Patterns. Ph.D. thesis, University of Pisa (2019)

3. Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Design patterns
percolating to parallel programming framework implementation. International Journal
of Parallel Programming 42(6), 1012–1031 (2014). DOI 10.1007/s10766-013-0273-6

4. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel computing 30(3), 389–406 (2004). DOI 10.1016/j.parco.2003.
12.002

5. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An effi-
cient unbounded lock-free queue for multi-core systems. In: Euro-Par 2012 Parallel
Processing, pp. 662–673. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). DOI
10.1007/978-3-642-32820-6 65

6. Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Targeting dis-
tributed systems in fastflow. In: Proceedings of the 18th International Conference on

20 Nicolò Tonci et al.

Parallel Processing Workshops, Euro-Par’12, p. 47–56. Springer-Verlag, Berlin, Heidel-
berg (2012). DOI 10.1007/978-3-642-36949-0 7

7. Secco, A., Uddin, I., Pezzi, G.P., Torquati, M.: Message passing on infiniband rdma
for parallel run-time supports. In: 2014 22nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 130–137 (2014). DOI 10.1109/
PDP.2014.23

8. Grant, W.S., Voorhies, R.: cereal–a c++ 11 library for serialization. URL
https://github. com/USCiLab/cereal (2013)

9. Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming on
clusters of multi-core smp nodes. In: 2009 17th Euromicro international conference on
parallel, distributed and network-based processing, pp. 427–436. IEEE (2009). DOI
10.1109/PDP.2009.43

10. Smith, L., Bull, M.: Development of mixed mode mpi/openmp applications. Scientific
Programming 9(2, 3), 83–98 (2001). DOI 10.1155/2001/450503

11. Ernstsson, A., Ahlqvist, J., Zouzoula, S., Kessler, C.: Skepu 3: Portable high-level pro-
gramming of heterogeneous systems and hpc clusters. International Journal of Parallel
Programming 49(6), 846–866 (2021). DOI 10.1007/s10766-021-00704-3

12. Tanno, H., Iwasaki, H.: Parallel skeletons for variable-length lists in sketo skeleton li-
brary. In: European Conference on Parallel Processing, pp. 666–677. Springer (2009).
DOI 10.1007/978-3-642-03869-3 63

13. Steuwer, M., Kegel, P., Gorlatch, S.: Skelcl-a portable skeleton library for high-level
gpu programming. In: 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, pp. 1176–1182. IEEE (2011). DOI 10.1109/
IPDPS.2011.269

14. López-Gómez, J., Muñoz, J.F., del Rio Astorga, D., Dolz, M.F., Garcia, J.D.: Exploring
stream parallel patterns in distributed mpi environments. Parallel Computing 84, 24–36
(2019). DOI 10.1016/j.parco.2019.03.004

15. Ciechanowicz, P., Poldner, M., Kuchen, H.: The Münster Skeleton Library Muesli: A
comprehensive overview. Ercis working papers, University of Münster, European Re-
search Center for Information Systems (ERCIS) (2009)

16. Rieger, C., Wrede, F., Kuchen, H.: Musket: A domain-specific language for high-level
parallel programming with algorithmic skeletons. In: Proceedings of the 34th ACM/SI-
GAPP Symposium on Applied Computing, SAC ’19, p. 1534–1543. ACM, New York,
NY, USA (2019). DOI 10.1145/3297280.3297434

17. Griebler, D., Danelutto, M., Torquati, M., Fernandes, L.G.: Spar: A dsl for high-level
and productive stream parallelism. Parallel Processing Letters 27(01), 1740005 (2017).
DOI 10.1142/S0129626417400059

18. Kukanov, A., Voss, M.J.: The foundations for scalable multi-core software in intel
threading building blocks. Intel Technology Journal 11(4) (2007). DOI 10.1535/itj.
1104.05

19. Reyes, R., Lomüller, V.: Sycl: Single-source c++ accelerator programming. In: Parallel
Computing: On the Road to Exascale, pp. 673–682. IOS Press (2016). DOI 10.3233/
978-1-61499-621-7-673

20. Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on apache
spark. International Journal of Data Science and Analytics 1(3), 145–164 (2016). DOI
10.1007/s41060-016-0027-9

21. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache
flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering 36(4) (2015)

22. Ramon-Cortes, C., Alvarez, P., Lordan, F., Alvarez, J., Ejarque, J., Badia, R.M.: A
survey on the distributed computing stack. Computer Science Review 42, 100422 (2021).
DOI 10.1016/j.cosrev.2021.100422

23. Soumagne, J., Kimpe, D., Zounmevo, J.A., Chaarawi, M., Koziol, Q., Afsahi, A., Ross,
R.B.: Mercury: Enabling remote procedure call for high-performance computing. In:
CLUSTER, pp. 1–8 (2013). DOI 10.1109/CLUSTER.2013.6702617

24. Mencagli, G., Torquati, M., Cardaci, A., Fais, A., Rinaldi, L., Danelutto, M.: Wind-
flow: High-speed continuous stream processing with parallel building blocks. IEEE
Transactions on Parallel and Distributed Systems 32(11), 2748–2763 (2021). DOI
10.1109/TPDS.2021.3073970

Noname manuscript No.
(will be inserted by the editor)

E�cient High-Level Programming in plain Java

Rui S. Silva · João L. Sobral

Received: date / Accepted: date

Abstract This paper introduces a framework that supports the development
of high-level parallel programs in Java, delegating the performance tuning to
later stages of development. The framework supports a complete set of locality
optimisations that are essential to build e�cient multicore applications. The
optimisation are introduced with Java annotations keeping the original code
platform independent. Performance results show that data layout improve-
ments can provide a 2.5 speedup, and when combined with the exploitation
of parallelism can deliver a 50x speedup when compared with an unoptimised
sequential base application on a 24-core machine.

Keywords High-Performance · Locality · Java · Model Driven

1 Introduction

The Java language is one of the most widely used programming languages.
Java provides several features to support safe and portable applications. This
is accomplished by running applications on a managed environment: applica-
tions are executed on a virtual machine using a Just-in-Time (JIT) compiler
to generate native code. Moreover, at run-time, it checks all object references
(type-checking, null pointer and range checking). This provides safer applica-
tions but can introduce additional overheads, if the JIT compiler is not able to
remove these additional run-time checks in cases where safety can be ensured.

The Java object model is also responsible for additional run-time overheads,
due to the support of those safety features and to the support �exible object
collections. Java object implementations in modern JVMs (e.g., OpenJDK 17)

João L. Sobral
Centro Algoritmi, Universidade do Minho, Braga, Portugal
E-mail: jls@di.uminho.pt

Rui S. Silva
Centro Algoritmi

2 Rui S. Silva, João L. Sobral

include an additional 8-byte header in the object data footprint to store meta-
object information (e.g., object type and array size) and collections of objects
(including multidimensional arrays of primitive values) are stored using an
array of pointers to objects. Unfortunately, the Java language is not popular
among the parallel programming community, due to these ine�cient memory
layouts and due to the additional run-time costs of safety features.

On the other hand, high level languages, such as Java, have the potential
to better encapsulate optimisations required to build e�cient parallel appli-
cations. Common optimisations include the implementation of e�cient data
layouts and loop tiling, among many others. Typically, implementing these
optimisations leads to "premature optimisation", where domain abstractions
are obfuscated by the implementation of these optimisations. Moreover, these
optimisations make the code less abstract and less portable (e.g., the code
includes low-level implementation details and/or platform dependent optimi-
sations).

This paper shows how the Gaspar framework enables the development
of high performance parallel applications. The framework introduces a new
two-step development process: 1) write the domain code using high-level ab-
stractions; 2) optimise the implementation by introducing optimisations for
the speci�c target platform.

2 Common Optimisations

Today's multicore systems su�er from the lack of enough memory bandwidth
to keep all processing units busy. The design of scalable parallel applications for
those systems requires a careful optimisation of parallel applications in order to
overcome that memory hall. Unfortunately, optimising the code has a negative
impact on the code readability. Even worse, it negatively impacts the usage of
domain abstractions in the code and those optimisations become an integral
part of the code. This complicates future evolutions of the parallel applications.
In some sense, optimisations "bind" the code to a speci�c computing platform
with a set of features. This defeats the overall idea of developing high-level
and portable applications.

2.1 Data Locality

This section gives an overview of the most frequent optimisations to improve
data locality (e.g., that ameliorate the impact of the memory hall) and discuss
their impact on the code. Basically, those optimisations fall into optimisations
that maximise memory bandwidth usage (i.e., spatial locality) and optimi-
sations that maximise data reuse (temporal locality). Table 1 lists the most
common locality optimisations, as well as the coding impact when implement-
ing each of those optimisations.

The most used optimisation and more challenging to implement is to im-
prove the data layout in memory, specially in object oriented systems, like

E�cient High-Level Programming in plain Java 3

Table 1 Most common data locality optimisations

Optimisation Type of locality Implementation places

Data layout transformation Spatial Many
Data sorting Spatial Single
Padding and Alignment Spatial Single
Packing Spatial Single/Many
Loop tiling Temporal Single
Loop fusion Temporal Single
Loop reorder Spatial and Temporal Single

Table 2 Example of AoP to SoA data layout transformation

AoP layout SoA layout

Particle particles[]; double positionX[];

double positionY[];

...

particles = new Particle[size]; positionX = new double[size];

positionY = new double[size];

...

particle.force(particles,...); force(particles, i,particles, ...);

this.positionX... particles.positionX[i]...

Java. The most common data layouts for a collection of objects (or data struc-
tures) are: Array of Pointers (AoP), Array of Structures (AoS) and Structure
of Arrays (SoA). AoP and AoS support coding styles where the code is closer
to real-world entities (e.g., developers can work with data structures instead
of array indexes) [1]. The AoP layout, adopted in Java, is popular due to its
support for abstract data types. The collection is an array of pointers to the
concrete data type. The other layouts improve spatial locality by storing data
in contiguous memory addresses. In AoS, the entities are stored in contiguous
memory addresses, as in SoA, which stores �elds into separate arrays. The
AoP requires additional space to hold the array of pointers, when compared
to SoA, but provides more �exibility to manage the data storage.

The data layout can have a signi�cant impact on performance, and the
choice of the best might depend on the platform and algorithm [2,3]. More-
over, the change from one layout to another might require considerable code
refactoring. Table 2 illustrates the data layout transformation required in Java
to use a SoA layout instead of the default AoP layout: 1) the array of instances
of class particle must be replaced by several arrays of particle coordinates; 2)
the creation of a new collection of particles is performed by creating the corre-
sponding raw arrays of coordinates; 3) the computation involving particles is
now performed using array indexes instead of particle �elds. The most impor-
tant drawback is the e�ort required to perform the transformation. Moreover,
after the transformation there is no "particle" entities in the code, only arrays
of raw data.

4 Rui S. Silva, João L. Sobral

Table 3 Example of loop tiling

original loop tiling

for (int jj = 0; jj < nblocks; jj++) {

for (int i = 0; i < mdsize; i++) { for (int i = 0; i < mdsize; i++) {

one[i].force(...); one[i].force(...); // new parameter jj

} }

}

The data sorting and padding/alignment are optimisations that are easy
to deal with since their impact on coding is more local. Data sorting reorders
the data storage in memory according to the way it is accessed. Padding and
alignment introduce additional �elds in data structures for more e�cient data
accesses (e.g., recent machines are more e�cient when transferring data aligned
at 32 or 64 bytes boundaries). Packing (or compaction) copies the data into
a new storage area in order to remove unnecessary data. It can have a wider
coding impact if the new data structure is di�erent from the original one.

The loop tiling optimisation changes the order of processing the data in
order to reuse the data in cache as much as possible. In terms of coding e�ort
this optimisation generally involves introducing one or more loops in the code
(see Table 3). Loop tiling can become more complex when multiple levels of
tiling are used. Loop tiling is frequently used with the packing optimisation
for a more compact storage of the data reused across inner iterations.

Other frequent optimisations include loop fusion and loop reorder. Both
optimisations have a relative small impact on the code.

The development of e�cient parallel applications usually involves the im-
plementation of several of these optimisations. For instance, it is quite common
to compose an e�cient data layout (e.g., SoA) with tiling and packing, how-
ever, packing implementation depends on the layout (i.e., it is implemented
in a di�erent way for an AoS or a SoA layout). Developing a framework sup-
porting a wide range of optimisations is a complex task, specially if the goal
is to keep the code at high-level, platform independent. The Gaspar frame-
work address this challenge by relying on a model driven approach (i.e., the
speci�cation of a domain model) as the base of code generation, and on Java
annotations to further generate optimised code.

2.2 Java collections

A key part of Java is the Java Collections Framework (JCF) that supports a
set of data containers that manage the memory without developer interven-
tion and allow hiding the collection layout (e.g., ArrayList vs LinkedList). All
containers available in the JCF support generics. JCF collections use the AoP
layout, making the default implementations not suited for HPC.

The ArrayList is the most used data structure of the JCF, approximately
47% in the study by Costa [4]. The OpenJDK implementation uses an array

E�cient High-Level Programming in plain Java 5

of pointers. Additionally, the ArrayList adds a mechanism that allows the
developer to add and remove elements without overloading the developer with
the array dimension management.

The Java collections support generic types, although, in many cases, the
developer only needs a collection of a single data type. In Java, the developer
can use Java collections or arrays of objects, but both have a negative im-
pact on performance. These are collections of objects, where the array has the
pointers to objects. This representation requires one extra instruction for each
access and spends more space (object headers and the pointers). Moreover, in
Java, it is not guaranteed that the objects are allocated in contiguous mem-
ory, thus, the spatial locality is low. On the other hand, primitive arrays are
allocated in contiguous positions in memory. So, there is only one header for
the array, and one data item can be accessed with a single instruction.

JCF does not provide containers of primitive data types, but it can use
collections of objects that represent the primitive types. For this, Java pro-
vides a mechanism for converting primitive type variables into objects of the
same type [5]. The solution creates an overhead [6], due to primitive type con-
version into an object, and the AoP layout. There are several approaches to
use primitive data types arrays backed by arrays of primitive data [7�9]. Thus,
these approaches improve the performance by removing the load instructions
to access the object and reducing the memory footprint (remove the object
header). However, these approaches do not support structured data types and
remove the domain abstractions from the code.

Java provides iterators to process the entire container. Iterators allow hid-
ing the container implementation to the developer, so it is possible to process
multiple containers types using the same source code. Iterators are typically
a safe approach for accessing containers, as they limit access to the elements
in the container. Iterators, being more abstract than using indexes, introduce
more instructions. The JIT compilation can remove these additional instruc-
tions in most cases.

Java iterators use the natural order to process the collection (e.g., the next
iterator method) and it possible to modify the iterator implementation (e.g.,
provide Java-compatible iterators). Java uses internal iterators to process the
collection elements with foreach and in the streams interface.

3 Gaspar framework

In traditional parallel programming frameworks, the developer accesses data
directly, frequently using indexes in arrays of raw data (e.g., see the SoA layout
example in Table 2). This makes it hard to implement optimisations involving
data layout transformations since the data representation is exposed in the
source code. The Gaspar framework was developed to address this issue by
promoting an abstract (e.g., object oriented) and e�cient way for accessing
data: iterators and higher-order functions. Java iterators hide the implemen-

6 Rui S. Silva, João L. Sobral
32 3. Proposed approach

Domain

Domain model

Generate code

Optimisation

Benchmark

Domain code

Select optimisation

Figure 3.1: Approach workflow

knowing the data layout implementation. For this step, the framework provides three levels of abstraction.

At the first (lowest) level is the indexed access, using the collection get and set methods. The second level

uses iterators, which remove the loop index from the domain code. The highest-level uses higher-order

functions which removes the loop in the code.

At the end of the Domain step, the program already implements all the functional requirements. The

program performance is not relevant at this first step: the emphasis is on program abstraction and correct-

ness. In the Optimisation step, the performance is analysed and improved. The developer analyses the

program execution and identifies the code parts that should be optimised using profiling tools (Benchmark

step). The approach includes a tool that enables access to the processor counters in Java to help the de-

veloper on this step. In the Select optimisation, the developer can optimise the program using two distinct

mechanisms: layout and domain decomposition (gSplitMapJoin mechanism). In this step, the developer

can select a data layout through an application parameter.

The domain decomposition allows the developer to apply multiple optimisations, such as tiling, pack-

ing and parallel execution. The mechanism improves the abstraction level since the developer defines

how to decomposition the domain, and the approach hides implementation details. The mechanism al-

lows dividing collections to define the subdomains. The mechanism starts by decomposing the domain,

processes all subdomains and finally aggregates the results. The traditional tiling implementation (sec-

tion 2.2.2) injects a new code into the program without any meaning for the domain (e.g., a new loop).

The proposed approach increases the abstraction level since one annotation specifies all the optimisation

Fig. 1 Approach overview

tation of a collection of objects. However, to support e�cient data layouts, the
approach needs to hide both the collection and objects implementation.

The approach supports the Java collections API (e.g., the List and Iterator
interfaces) but requires the usage of getter and setter methods for accessing
the object data �elds, which is a common practice in object-oriented program-
ming. The combination of iterators and getter/setter methods allows hiding
the layout representation and providing e�cient data access, namely by trans-
parently using a SoA collection implementation. The approach supports two
generic types of locality optimisations for HPC in Java applications:

1. Change of data layout - transparently supports di�erent layouts for object
collections (e.g., AoP and SoA) with the same programming interface. The
developer creates the domain code without depending on the internal data
representation of collections of objects. More e�cient data layouts (e.g., the
SoA layout) can be used without removing the object abstraction from the
code (e.g., see Table 2: Particle objects and methods call on these objects).

2. Change of the execution �ow - provides a high-level constructor that allows
applying optimisations that change the execution �ow in the �nal develop-
ment step. Thus, the optimisation step is independent of the domain code
development.

The proposed approach involves two generic steps (�gure 1): Domain and
Optimisation. In a �rst step, the developer speci�es the domain code with-
out being concerned with optimisations. For this, the approach provides a
high-level programming interface compatible with the Java collections. The
interface provides collections, iterators and higher-order functions for process-
ing collections of objects. In a second step, the developer speci�es the layout

E�cient High-Level Programming in plain Java 7

for those collections and other optimisations. Those optimisations are speci�ed
by annotations that make the optimisation code pluggable (it is possible to
enable or disable those optimisations), as such, this step does not require any
rewrite of the domain code developed in the �rst step.

The Domain speci�cation involves three sub-steps (blue boxes in �gure
1). First, the developer designs the domain model in the Uni�ed Modelling
Language (UML). The developer represents the domain concepts and the re-
lationship between them. Second, the framework uses the domain model to
generate a library containing collections implementations. The compositions
relationships of 1 to N are converted into the corresponding collections. Third,
the developer writes the domain code using Java interfaces without knowing
the data layout implementation.

At the end of the Domain step, the program already implements all the
functional requirements. The program performance is not relevant at this �rst
step: the emphasis is on program abstraction and correctness. In the Optimi-
sation step, the performance is analysed and improved. The developer analyses
the program execution and identi�es the code parts that should be optimised
using pro�ling tools (Benchmark step). At this step the developer can also
introduce parallelism. Additionally, the framework includes a tool that en-
ables access to the processor counters in Java to help the developer on this
step. In the Select optimisation, the developer can optimise the program using
two distinct mechanisms: layout and domain decomposition (gSplitMapJoin
mechanism that will be explained later).

3.1 Domain speci�cation

The domain speci�cation starts with the creation of the domain model, a
standard task on object-oriented designs, where the system is decomposed
"according key abstractions in the problem domain" [10]. The domain model
in the Gaspar approach is a UML class diagram, where the developer speci�es
the entities from the domain, their attributes and the relationships among en-
tities. The framework comprises a tool, implemented as an eclipse plugin, to
specify that model. The framework generates collections to support the di�er-
ent collections layouts for each entity from the model. The entities speci�ed
should have a composition relationship from 1 to N or 1 to 1. The current tool
does not allow polymorphic entities (i.e., all entities in collection must belong
to the same concrete class), which enables high performance implementations.
Figure 2 shows a simpli�ed example for a Particle object from a molecular
dynamics (MD) case study: a particle is composed by three 3D vectors, repre-
senting the particle position, velocity and the force acting on that particle in
an 3D space. Note that particle is a structured data type, composed of three
internal objects (3D vectors).

After generating the required classes from the domain model the developer
can write the domain code using the generated interfaces. The framework
support the basic Java interface, using the List and Iterator interfaces, which

8 Rui S. Silva, João L. Sobral

3.2. Programming interface 35

Figure 3.3: Particle interface (UML tool)

This package also contains additional classes to help the developer to create collections. The first

class allows the developer to create a single Particle (class realParticle). The second creates a collection

of Particles (class FactorygCollectionParticle). There are similar classes for the gVector.

gCollection

get() : T
…
hasNext() : boolean
next() : T
sync(gIterator) : void
…

<<interface>>
gIterator<T>

iterator(): Iterator
get(int i) : T
set(T, int) : void
map(voidFunction f) : void
reduce(voidFunction f, T r) : void
…

<<interface>>
gCollection<T>

Figure 3.4: The most important interfaces to access the gCollection

The gCollection package (figure 3.4) has the interfaces to support the collection. This package is the

same for all domains, but it is also generated by the tool. The most relevant interfaces in this package are

Fig. 2 Domain model comprising a Particle entity, composed of three 3D vectors

// the same method for all data layouts

void forceParticle(Particle p1, gList<Particle> particleSet) {

// get coordinates of particle p1

xi = p1.getPosition().getX();

yi = p1.getPosition().getY();

zi = p1.getPosition().getZ();

// iterate over particleSet

gIterator<Particle> iterator = particleSet.iterator();

while(iterator.hasNext()){

Particle p2 = iterator.next();

// compute distance

xx = xi - p2.getPosition().getX();

yy = yi - p2.getPosition().getY();

zz = zi - p2.getPosition().getZ();

(...)

}

}

Fig. 3 Example of the framework usage

is specially useful to adapt code already developed to use those generated
collections.

Figure 3 illustrates the program to compute the force between a Parti-
cle p1 and the other particles in a collection. To obtain the Position vector,
the developer uses getPosition, and then, accesses to the vector �elds through
the getX, getY and getZ getter methods. To access to particleSet, the devel-
oper uses a Java iterator and a while loop to process all elements. Note that
Particle, gList<Particle> and gIterator<Particle> are interfaces, that will be
implemented by concrete classes according to the data layout (this code is lay-
out independent). The Gaspar gList and gIterator interfaces provide a more
advanced API that is compatible with the Java List and Iterator interfaces
(actually, the code in �gure 3 is plain Java code with these small name di�er-
ences).

E�cient High-Level Programming in plain Java 9

@gSplitMapJoin(name = "Tiling", map = "Sequential", \\

split = {none ,"Virtual"}, reduce = {" default", "default"})}

void computeForces(gList<Particle> c1, gList<Particle> c2){

gIterator<Particle> it1 = c1.iterator();

while(it1.hasNext()) {

gIterator<Particle> it2 = c2.iterator();

while(it2.hasNext()) {

...

Fig. 4 Example of the speci�cation of tiling using the gSplitMapJoin annotation

3.2 Optimisation speci�cation

The approach makes it possible to develop a program where the code has the
domain entities (e.g., Particle interface in the example of Figure 3), but the
layout details are hidden (the developer writes the code using an API closer
to the AoP layout). The layout can be selected subsequently in the execution
step, making it possible to test layouts easily. The developed tool generates
two layouts by default: AoP and SoA. It is also possible to change the layout
on a speci�c part of the program. For this, the developer uses the packing
optimisation that will be presented later.

In addition to the speci�cation of e�cient data layouts, the framework sup-
ports several other optimisations by using a domain decomposition approach
that is described next. Generically the approach works as follows: the problem
domain is divided into sub-problems, the original function is applied to each
sub-domain and, after processing, processed sub-domains are joined together.

In OOP codes data collections are accessed using iterators. Accessing sev-
eral collections with several iterators is equivalent to nested "indexed fors" in
traditional non object-oriented codes. In those cases, the developer can insert
one annotation in the original method (see Figure 4) to specify how to split the
domain, process sub-domains and join processed sub-domains. The annotation
syntax is de�ned as follows:

� @SplitMapJoin - identi�es the annotation
� name - de�nes the internal name to use (for more advanced uses)
� map - kind of map to use (sequential, parallel, etc ...)
� split - de�nes how collections are split (one for each method parameter)
� join - de�ne how to join processed sub-collections.

The approach works by changing the method parameters by dividing the
collections, thereby the problem is processed as several subproblems. For each
collection used as method parameter, the developer de�nes the option for
domain decomposition (the split annotation �eld). On the other hand, there
are several options to aggregate the subcollections after processing (the join
annotation �eld). A new method is internally generated (de�ned by the name
�eld), that calls the original method with each subdomain. These calls can be
performed in sequential or in parallel, according to the option speci�ed in the
map �eld.

10 Rui S. Silva, João L. Sobral

In practice, the example in Figure 4 applies the tiling optimisation to the
loops inside of the computeForces method. The annotation processing tool cre-
ates a new method (Tiling.computeForces(...)) that calls the original method
multiple times (each time with one of the subdomains). In this case, it decom-
poses the collection c2 into several collections.

Current processors have multiple cache levels, so, sometimes, it is more
e�cient to partition the domain several times. The approach supports tiling
with multiple levels since the same mechanism can be applied again by anno-
tating the generated method (Tiling.computeForces(...)). In those cases, the
annotation "name" �eld helps to generate a method with a meaningful name.

The following subsections provide more details about how the annotation
supports several types of optimisations

3.2.1 Packing

The annotation supports the speci�cation of the packing optimisation by se-
lecting a speci�c kind of split. In the �gure 4 the collection c2 is divided using
a Virtual split. This kind of split creates views over the original c2 collec-
tion. Alternatively, the developer can choose to divide the collection in a way
where the data of each subdomain is copied into a new collection (i.e., to per-
form packing). In this case there are two packing alternatives: Packing and
PackingOnDemand. Packing creates all subcollections before processing and
writes the results, into the original collection, after processing all subdomains.
PackingOnDemand creates a subcollection and copies the data into the sub-
collection only when necessary. After processing each subproblem, the data is
rewritten into the original collection. If the processing is performed in paral-
lel, there is one subcollection for each thread. The packing allows changing the
layout of a collection or subcollection. For this purpose, the developer can use
PackingSoA or PackingOnDemandSoA in the split speci�cation.

3.2.2 Parallelism

The current approach implementation has several options to implement maps
including sequential and parallel versions. The sequential version processes the
elements by the natural order. The developer has several schedulers available
for parallel processing, namely: ParallelBlock, ParallelCycle and ParallelDy-
namic. The ParallelBlock aggregates elements into blocks. The block size is
computed as the number of elements divided by the number of threads. If the
number of elements is not divisible by the number of threads, the last block is
larger. In the Cycle scheduling, the thread TT processes the element%number
of threads. If the number of elements is less or equal to the number of threads,
this distribution is the same as of Block distribution. ParalllelDynamic sched-
uler creates one task per element in the collection and a thread pool distributes
the tasks by the threads in a dynamic way.

E�cient High-Level Programming in plain Java 11

public static void reduceMethod(Particle c, Particle ret){

ret.getForce().setX(c.getForce().getX() + ret.getForce().getX());

ret.getForce().setY(c.getForce().getY() + ret.getForce().getY());

ret.getForce().setZ(c.getForce().getZ() + ret.getForce().getZ());

}

Fig. 5 Example of reduce method that sums all private values

@gSplitMapJoin(name = "PForce", map = "ParallelBlock", \\

split = {"Virtual", "PrivateForce"}, reduce = {"default","md::reduceMethod"})

Fig. 6 Annotation example using a private collection in the second method argument

3.2.3 Privatisation

The map annotation �eld can be used to specify parallel execution, but it may
originate data races due to concurrent data accesses. The developer can use the
Java mechanisms to avoid data races in a per-object base (e.g., locks), however,
these mechanisms generally introduce an unacceptable overhead, since they
serialise the execution. Thread local data (aka privatisation) is an important
optimisation to improve the scalability of parallel programs in such cases. The
framework supports the speci�cation of private �elds in the domain model. For
this purpose, the developer adds private attributes into an Annotated Element,
where it also speci�es the split method name to generate. Based on this element
the UML tool generates a new split that returns a collection where the private
�eld is local to each thread and shared �elds can be accessed by all threads.
Note that, when introducing thread-private data �elds, the domain model and
the domain code remains unchanged, only speci�c �elds in the domain model
are annotated and a rebuild of the generated classes is required. Thus, the
developer uses the original domain code, but the data access methods hide if
the �eld is private or shared (e.g., one of the Particle getter methods in Figure
3 can return a thread local value).

The privatisation mechanism might require an explicit speci�cation of how
to reduce the thread local objects. In the developed framework the problem is
more complex since thread local objects may be implemented using di�erent
data layouts (e.g., AoP or SoA). Thus, a data layout-independent speci�cation
is necessary to support the privatisation mechanism. Figure 5 shows an exam-
ple of a user speci�ed reduce method for the MD case study. This method
receives two parameters: the object pointing to the private collection, and the
object to access the original collection. The implementation just needs to fol-
low the same coding rules of the domain code (e.g., Figure 3). In this case, the
collection's values are reduced simply using the sum operation.

In the MD example a more e�cient implementation uses a private force
vector. Figure 6 shows a gSplitMapJoin that uses a private Force vector on
each thread. The developer uses the split which name is equal to the comment
de�ned in the UML tool ("PrivateForce"). Additionally, the developer uses the

12 Rui S. Silva, João L. Sobral

Table 4 Illustrative code of the Sum versions tested

Java Index (AoP layout) Java Interator (AoP) Gaspar (AoP and SoA layout)

int i; Iterator<Double> it; Iterator<gDouble> it
i=0; it = c.iterator(); it = c.iterator()
for (; i<c.size(); i++) { while(it.hasNext()) { while(it.hasNext()) {
result += c.get(i); } result += it.next(); } result += it.next().getValue(); }

md::reduceMethod to reduce the private �elds, created by the "PrivateForce"
split.

3.2.4 Data sorting

Data sorting can be applied to the AoP collections. The consecutive collection
elements are placed in successive memory positions, to improve spatial locality.
The developer just calls the collection's sort method.

4 Evaluation

The performance is evaluated with �ve applications. The �rst algorithm sums
all the elements in a collection. The second algorithm is DAXPY, which cal-
culates the y = alpha * x + y operation for each element in the y collection,
where alpha is a constant and x is the element in another collection. This case
study allows auto-vectorisation, so the goal is to analyse the iterators impact
on vectorisation. The third case study evaluates the approach in the context of
an open-source Java framework for scienti�c applications whose code was al-
ready developed. JECoLi [11] is a Java framework for evolutionary computing
that uses Object Oriented programming in an e�ective manner. The fourth
case-study uses a more complex data structure. The base code comes from the
JGF moldyn benchmark [12]. The last case study is a highly tuned matrix
multiplication (MM) kernel developed in Java, whose base version uses a MM
kernel developed in plain Java, that was converted from a C-like code and
requires the use of tiling to attain a competitive base performance.

The results presented were obtained on a Linux compute node that has
two Intel Xeon E5-2695v2 processors with the Ivy Bridge architecture. Each
processor has 12 cores and supports 24-threads. The processor supports In-
tel Turbo Boost technology, but in this evaluation, the frequency is �xed at
2.4GHz, allowing the results to su�er less variation. The programs execution
use the JVM from the OpenJDK 1.8.0 20 package. Additionally, the evaluation
uses several JVM tuning parameters: -Xmx32G, -XX:LoopUnrollLimit=100,
-XX:+UseCompressedOops and -XX:+UseNUMA.

E�cient High-Level Programming in plain Java 13

0,0
0,1

0,2

0,3

0,4

0,5
0,6

0,7

0,8

0,9

1,0

Java Index
AoP

Java Iterator
AoP

Gaspar
Iterator AoP

Java Index
SoA

Java Iterator
SoA

Gaspar
Iterator SoA

Ex
ec

ut
io

n
tim

e
(s

)

Load and Sum Load Stalls Store Sum Others (safety, Loop)

Fig. 7 Performance of sum versions tested

4.1 Iterator overheads

This section evaluates the overhead of di�erent kinds of accesses to data col-
lections. For this speci�c purpose the sum benchmark is used. The goal is to
compare the performance of using di�erent data structures and ways of iter-
ating over those data structures. Table 4 illustrates the di�erent codes tested
in this subsection. Performance results are presented in Figure 7, for a sum of
16M of doubles. The overall execution time was divided into sub-types (taken
using the linux perf tool) that are explained next.

The sum benchmark loads a double value from memory and performs a
sum into an accumulated value. This is the base "Load and Sum" time in
the �gure. However, there might be additional overheads in this process, the
most important being the time waiting for the memory to deliver the required
value. This time is the "load stalls" time in the �gure and it is measured using
a speci�c hardware event count. The results presented show that there is no
performance di�erence between index-based and iterator-based when using a
SoA layout (e.g., raw data storage). Moreover the Gaspar framework provides
the same performance as the base Java (note that the Gaspar uses a higher-
level API that hides the data layout).

The AoP layout imposes two signi�cant overheads: 1) additional memory
stalls due to less locality of an AoP layout; 2) Less optimized code due to the
inability to keep the accumulated sum in a register ("store sum" overhead in
the �gure). In this case the AoP layout takes 32 bytes per double value, due to
the object header and 16-byte boundary alignment, plus an additional 4-byte
for the object pointer. This results in more than 4x used space in L1 cache
and in other memory levels, almost doubling the time required to perform
the sum. Java introduces additional small overheads that are avoided in the
Gaspar framework in this simple case study (range check, type check, etc.).

14 Rui S. Silva, João L. Sobral

4.6. Conclusions 101

0

0.5

1

1.5

2

2.5

3

Sum daxpy JECoLi MD

re
la
tiv
ep
er
fo
rm

an
ce

Figure 4.41: Evaluations performance summary (layout improvements)

generic using the most efficient layout. The integration of our approach in JECoLi was simple due to the

compatibility with the Java collections.

Our iterators reduce the number of instructions since some instructions are removed when compared

with Java iterators. Our approach allowed this reduction by the compiler since collection elements are

created all at once and use the same type of data.

The table 4.16 summarises the results that were measured during this work. For each case study,

different versions are measured, which are quantified in the #versions column. The #tests column identi-

fies the total number of versions measured with different parameters (e.g., number of threads). The last

column gives an estimate of the computation time spent for each case study.

versions # tests Total time
Sum 37 174 4m x 100 (7h)
daxpy 45 465 5m x 100 (8h)
JECoLi 4 14 1h x 10 (10h)
MD 83 553 233h x 10 (97 days)
MM 18 328 12h x 10 (5 days)

Table 4.16: Evaluations summary (development time)

In Sum and daxpy, several versions were created for comparison (i.e., without using the framework).

We replicated this versions by using the framework. It only needs one code for both layouts. At JECoLi,

4 different versions were created. First, we use the original version by the AoP layout for collections. The

other versions used the GasPar framework, with 3 different layouts: generic types in the layout, AoP layout

and the SoA layout. The code is the same for the three versions. In MD, we used two different codes

with the framework: the first used the flatten structure, the second used the structure composed of other

Fig. 8 Data-layout impact: speed-up when moving from an AoP to a SoA data layout

4.2 Gaspar and Data-layout impact

In simple case studies, such as the Sum and DAXPY the Gaspar framework
delivers the same performance as low level Java (e.g., index based in Figure 7).
The base performance of the Gaspar framework in the MD case study ranges
from 0.82x with an AoP layout to 0.95x with a SoA layout (an JGF version
converted to this layout).

Figure 8 shows the gains delivered by the Gaspar framework due to layout
improvement, computed as the speed-up in execution time over these base
sequential Gaspar AoP implementations. For Sum the SoA layout improves
the performance in almost 2.5 times. In DAXPY, the layout provides a gain
greater than 2.5x. Part of this gain is due to the vectorisation enabled by the
SoA data layout. This explains why this is the case study with the best speed-
up. In the MD case, an 2x speed-up is observed with the SoA layout. The
JECoLi framework provides more moderate improvements, however, the given
number is an average of three cases studies (CountOnesCAGATest, CountOne-
sEATest,CountOnesSPEA2Test).

4.3 Parallelism

Figure 9 shows the improvement in performance when combining the exploita-
tion of parallelism with the data layout improvements. It was possible to re-
duce the execution time by almost 20 times, for all case studies that support
parallelism. In the MD case the execution time was reduced by 50 times. In
JECoLi, this improvement is less since the parallel execution is not usable in
the examples available in the framework repository. The improvement is just
due to a more e�cient layout.

Note that in these case studies several other mechanism are required in
order to enable parallelism, namely, thread-private �elds are required in the
Sum (i.e., the partial sum), in the MD (i.e., partial forces sum) and in the

E�cient High-Level Programming in plain Java 15

100 4. Performance evaluation

4.6 Conclusions

The approach allows the use of the most efficient layout without neglecting the programmability. The eval-

uations use the same API as the Java collections and additionally improve the efficiency in accessing data

through the layout. Additionally, the approach allows the application of the most common optimisations,

hiding implementation details. All optimisations available in the GasPar are pluggable (can be removed or

introduced easily by the developer).

All evaluations had an improvement in performance. The figure 4.40 shows the improvement in

performance in all evaluations. It was possible to reduce the execution time by almost 20 times, for

all evaluations that support parallelism. MD reduced the execution time by 50 times. In JECoLi, this

improvement is less since the parallel execution is not used. The improvement is due to a more efficient

layout. JECoLi’s execution time has been reduced by 3 times.

0

10

20

30

40

50

60

Sum daxpy JECoLi MD MM

re
la

tiv
e

pe
rfo

rm
ac

e

Figure 4.40: Evaluations performance summary

Figure 4.41 shows the layouts improvement in execution time. For Sum the layout improves the per-

formance in⇠4.5 times. In daxpy, the SoA layout has 2.5 more performance. In the MD, the performance
doubled with the SoA layout. In MM, the most efficient layout is the base layout, for that reason, there are

no improvements.

Java uses Autoboxing and Unboxing to allow the use of its collections with primitive types. However,

its use causes a high cost when it is necessary reading and writing the value in the collection. These two

operations force the creation of a new object (daxpy).

Our approach allows, starting with a basic AoP version, and to switch to SoA layout. In the MD

case, the changes are limited to accessing the data. Manual implementation requires the same changes

and additionally needs to redefine the method’s parameters. Our approach allowed JECoLi to remain

Fig. 9 Combined performance of data-layout improvement and parallelism
76 4. Performance evaluation

T`Qi2+i2/ BMi +QmMiPM2bUAGBM2�`_2T`2b2Mi�iBQM I"QQH2�M= ;2MQK2_2T`2b2Mi�iBQMV&
BMi +QmMiPM2o�Hm2b 4 yc
7Q`UBMi B 4 ycB I ;2MQK2_2T`2b2Mi�iBQMX;2iLmK#2`P71H2K2MibUVcBYYV

B7U;2MQK2_2T`2b2Mi�iBQMX;2i1H2K2Mi�iUBVV +QmMiPM2o�Hm2bYYc
`2im`M +QmMiPM2o�Hm2bc

'

a) Original version

T`Qi2+i2/ BMi +QmMiPM2bUAGBM2�`_2T`2b2Mi�iBQM<;"QQH2�M> ;2MQK2_2T`2b2Mi�iBQMV &
BMi +QmMiPM2o�Hm2b 4 yc

7Q`UBMi B 4 ycB I ;2MQK2_2T`2b2Mi�iBQMX;2iLmK#2`P71H2K2MibUVcBYYV
B7U;2MQK2_2T`2b2Mi�iBQMX;2i1H2K2Mi�iUBVX;2io�Hm2UVV +QmMiPM2o�Hm2bYYc

`2im`M +QmMiPM2o�Hm2bc
'

b) GasPar Version

Listing 4.7: Code of countones: Original vs GasPar Collections

Package Class Data Type Data size

countones
CountOnesCAGATest Boolean 1000
CountOnesEATest Boolean 10000

knapsacking EAknapsacking -

motifs
EAMotifs Integer 5
ProcuraMotifs -
SeqMotifs -

multiobjective.countones

CountOnesMOSATest Boolean 100
CountOnesNSGAIITest Boolean 100
CountOnesSPEA2Test Boolean 5000
CountOnesSPEAMEMETest Boolean 100

multiobjective.fonseca FonsecaSPEA2Test Double 3

multiobjective.kursawe

KursaweESPUMOSATest Double 3
KursaweMOSATest Double 3
KursaweSPEA2ArchiveTest Double 3
KursaweSPEA2Test Double 3
KursaweSPEAMEMETest Double 3

multiobjective.schaffer SchafferSPEA2Test Double 1
multiobjective.wrapper SAMOGenericTest Double 3
numericalopt EANumericalOptimization Double 3

targetlist
EATargetList Integer 50
EATspOrdinal -

Table 4.10: JECoLi examples

All case studies are for the countOnes algorithm optimisation. The countOnes optimisation finds the

best solution for a problem where the optimal solution has all gnomes set to true. The CountOnesCAGA

uses the CellularGeneticAlgorithm to find the best solution. The solution has 1000 gnomes, and the process

is repeated for 1000 generations. The CountOnesEA evaluation starts with 10 random solutions and the

process stops after 100 000 generations. This case uses EvolutionaryAlgorithm to find the best solution.

CountOnesSPEA2Test uses SPEA2 algorithm to find the solutions. In this case, the population has 250

individuals, and the genome contains 5000 elements. The search stops after 500 generations.

Fig. 10 Illustration of JECoLi required code changes

MM (i.e., C sub-matrix local to each thread). Additionally, in the MM case
study packing and tilling are mandatory the have an e�cient sequential im-
plementation. In the MD case study the tiling was tested but the SoA layout,
by itself, delivers the best performance (note that these kind of tests are quite
easy to perform after converting the code to the Gaspar framework). Similarly,
the best MM parallel implementation is a combination of di�erent packing ap-
proaches for each matrix: the best implementation uses packing for matrices
A and B and packing on demand for matrix C. The basic virtual split option
(e.g., without packing) does not provide an acceptable performance.

4.4 Programming e�ort

Evaluating the programming e�ort is a complex task. In this subsection we, in-
stead, present illustrative examples of the overall programming e�ort in terms
of the amount of code changes and/or additional code required.

16 Rui S. Silva, João L. Sobral

Table 5 JGF AoP MD code changes

Original MD (AoP layout) Gaspar

Particle one[]; gList<Particle> one;
. . .

one = new Particle[size]; one= factory.creategList(mdsize);
. . .

positionx = one[i].xposition; positionx = one.get(i).getPositionX();
one[i].xposition = positionx; one.get(i).setPositionX(positionx);

...
for (i = 0; i < mdsize; i++) for (gIterator it : one)
one[i].force(..., i, one); force(..., it.get(), one);

The JECoLi framework only required a small amount of code changes
(one day to convert all the code examples in the framework repository). This
small amount of work is due to the object-oriented nature of the framework,
that already provided the required getter methods. The JECoLi uses a List of
generic objects. In practice, the examples provided in the framework repository
use a List of Double, Integer or Boolean. The programming e�ort was basically
to convert these List to use Gaspar collections, using the necessary getter
methods. Figure 10 illustrates this change.

The MD case study required more extensive code changes in the base JGF
implementation, however the programming e�ort is clearly less than the e�ort
required to implement an SoA layout (see Table 2). Table 5 illustrates these
changes.

The changes are of four types: 1) arrays are replaced by Gaspar collec-
tions; 2) collections are created using a factory method; 3) particle coordinates
are accessed using setter and getter methods; 4) for loops are converted into
iterator-based syntax. Overall the usage of getter and setter methods is the
one that requires the most extensive changes. However, it might be possible
to perform a simple search and replace approach in this case.

5 Discussion and related work

Table 6 shows a comparison of related approaches. The proposed framework
provides the most complete set of optimisations, including support for parallel
execution. The next paragraphs provide a discussion of alternatives to support
each of proposed optimisation, with an emphasis on High-Level programming.

5.1 Data layout

The choice of the data layout, in traditional approaches, is made at the begin-
ning of the code development. Thus, changing it after the initial coding step
can imply wide range code changes. On the other hand, the most e�cient lay-
outs typically do not use domain concepts, as they are closer to the execution

E�cient High-Level Programming in plain Java 17

Table 6 Support for common data locality optimisations

Layout Sorting Packing Tilling Parallelism Priv.

Sharma, SDLT, Wimmer X
Hirzel X
OpenMP X X
OpenACC X X X
MInt X X
Pluto, Polly X X
Proposed Approach X X X X X X

platform (e.g. the SoA layout). There are several options to allow the choice
of the layout in the �nal development step. The most common options are
data encapsulation, code transformation, use of proxies and use of the JVM
to manipulate the data accesses.

The data encapsulation technique hides the layout over an API by creating
temporary objects (e.g., using the adapter pattern). The overhead of creating
this object is removed in most cases, in recent versions of the JVM. However,
in older versions of the JVM, it introduces a signi�cant performance overhead
[6]. The proposed approach behaves closer to Java collections, since it returns
an iterator/proxy that enables direct access to the object in the collection.
This approach reduces the overhead by using the same object several times
(e.g., using the same iterator/proxy to iterate over all the elements in a col-
lection). Actually, a data encapsulation strategy could be created to simulate
the proposed framework, however, the programming overhead would be very
high, specially if other types of optimisations are supported.

In the code transformation approach, the source code is processed and
changed to implement the desired layout. Sharma [3] presents a C++ frame-
work that can change the AoS layouts to SoA or hybrid layouts. The tool
processes the code changing the layout (source to source approach) speci�ed
by metadata. It can also create hybrid layouts (between AoS and SoA) auto-
matically, according to the way that �elds are accessed.

Wende [13] suggest one approach based on proxy objects. The approach
uses macro-based C++ to generate the code referring to the proxy that allows
using both the AoS layout and the SoA layout. This approach is based on a
strategy similar to the proposed approach.

Intel suggests using the AoS layout for design and using the SoA layout for
performance. SIMD Data Layout Templates (SDLT) is a template library for
C++ language that enables abstract code (use of an AoS- based API) and uses
the layout SoA in memory. The template library creates an implementation in
the pre-compiler step, where the layout is also selected. SDLT uses the C++
operator overloading to enable the traditional access API (e.g., a[k].�eld1).
However, the use of this API introduces new copies of the elements and con-
sequently introduces overhead. To reduce the overhead, SDLT provides an
alternative API that implies accessing data using methods (e.g., a[k].�eld1()
). This strategy is similar to the proposed API and implies the same code

18 Rui S. Silva, João L. Sobral

rewrite (get and set for each �eld). However, in SDLT the data structure can
only have primitive types, although the proposed approach supports complex
structures.

The Java language provides an implementation alternative at the JVM
level since it can modify the data layout in memory. This approach allows a
more e�cient layout, but it is only possible to turn AoP into an AoS. Wimmer
et. al. [14] propose an improvement to the JVM to automatically in-line object
�elds by placing the parent and children objects in consecutive memory places
and by replacing memory accesses by address arithmetic. The authors point
out that using arrays as in-lining parents is complex since the Java byte-codes
for accessing array elements have no static type information. They claim that
an automatic AoP to AoS transformation at JVM level is impossible without
a global data �ow analysis.

5.2 Data sorting

Hirzel [15] modi�ed a JVM Garbage Collector to sort objects into memory
according to their temporal a�nity. Objects that used at the same time are
placed in nearby memory zones. The JVM sorts the objects during the garbage
copying. This technique still maintains the AoP layout and thus cannot avoid
the overhead of pointer indirection. This approach is transparent to the de-
veloper, but this requires a modi�ed JVM. In our approach, we sort objects
according to their position in the collection (AoP) for a similar e�ect.

5.3 Tiling and packing

The tiling can use two approaches: loop rewrite or decompose the domain into
multiple subdomains. The loop rewrite implies adding new loop(s) in the code
and rede�ne the internal loop(s) limits. It can be implemented manually, by
annotating the code or by a speci�c compiler. In these two last strategies,
the tiling optimisation is applied by a code analysis and transformation tool.
The loop rewrite has no meaning at the domain level. However, the domain
decomposition technique is abstract (closer to the domain). Additionally, it
makes it easy to apply packing optimisation.

OpenACC and Mint [16] are two programming frameworks that provide
OpenMP-like directives to support the loop tiling through a speci�c loop
clause. Both approaches apply tiling through primitives which simpli�es code
development by reducing development errors.

The Polyhedral model allows the analysis of dependencies within nested
loops. It can identify the tiling optimisations. Pluto [17] and Polly [18] are
tools that uses the Polyhedral model to apply the tiling optimisation.

The packing is typically associated with the tiling. The tile is copied into
consecutive memory positions. OpenACC provides the cache directive. So,
the compiler uses this directive to explore data access optimisations (data in
registers, software-managed cache, or read-only cache) [19].

E�cient High-Level Programming in plain Java 19

Our approach uses annotations that are similar to the directives. However,
in our case, annotation partitions the collections in order to rede�ne the limits
of the loops. On the other hand, our approach generates a new method that
allows us to create more levels of tiling. The proposed approach uses domain
decomposition to apply tiling optimisation. Additionally, the approach allows
the developer to use packing.

The approaches presented for tiling are based on loops. Our approach uses
domain decomposition to decompose the domain into smaller parts, bringing
the optimisation technique closer to the domain. However, this option has a
little cost since it requires new structures to support the subdomains. On the
other hand, the approach enables the packing optimisation for each subdomain.
In short, our approach increases the code abstraction and enables packing
optimisation with a small overhead.

5.4 Parallelism and privatisation

OpenMP uses annotations to introduce parallel execution in (sequential) base
codes. OpenMP provides a fork-join execution model. The parallel for is one of
the most commonly used annotations since it runs loop iterations across mul-
tiple threads. OpenACC uses primitives similar to OpenMP for developing
parallel code to run on accelerators (e.g., GPUs). Our approach partitions the
domain to support parallel execution. OpenMP and similar approaches parti-
tions loop having no direct meaning in the domain. Therefore, our approach
inserts parallelism through domain concepts.

6 Conclusion

Developing high-level and abstract code requires the implementation of opti-
misation mechanisms in order to e�ectively use the current multicore systems.
The Gaspar framework provides an high-level programming interface that is
compatible with Java collections. Simultaneously, the framework implements
a development cycle where the abstract code can be optimised in later devel-
opment stages. Thus, programmer can start by building a correct implemen-
tation, and later focus on performance issues in a pluggable manner (e.g., no
source code rewriting is necessary).

The framework delivers the most complete set of locality optimisations
which are essential in modern high-level programming frameworks. Perfor-
mance results show that the sequential execution time can decrease to more
than half (e.g., 2.5 speed-up). This speed-up, combined with the parallelism
exploitation can provide more than 50x speed-up over a non-optimised base
sequential implementation. The evaluation also showed the feasibility of ap-
plying the proposed approach to improve "legacy" Java code in a low e�ort
manner.

20 Rui S. Silva, João L. Sobral

Future work includes the support for more platform mappings, namely,
by supporting mappings for GPUs. In the long term, the framework can con-
tribute to a more automatic performance tuning for multicore execution.

References

1. James Je�ers, James Reinders, and Avinash Sodani. Intel Xeon Phi Processor High
Perfor- mance Programming: Knights Landing Edition. Morgan Kaufmann, 2016.

2. Deepak Majeti, Rajkishore Barik, Jisheng Zhao, Max Grossman, and Vivek Sarkar.
Compiler- driven data layout transformation for heterogeneous platforms. In European
Conference on Parallel Processing, pages 188�197. Springer, 2013

3. Kamal Sharma, Ian Karlin, Je� Keasler, James R McGraw, and Vivek Sarkar. User-
speci�ed and automatic data layout selection for portable performance. Rice University,
Houston, Texas, USA, Tech. Rep. TR13-03, 2013.

4. Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. Empirical study of usage and
per- formance of java collections. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, pages 389�400. ACM, 2017.

5. Samir Hasan, Zachary King, Munawar Ha�z, Mohammed Sayagh, Bram Adams, and
Abram Hindle. Energy pro�les of java collections classes. In Proceedings of the 38th In-
ternational Conference on Software Engineering, pages 225�236. ACM, 2016.

6. Nuno Faria, Rui Silva, and Joao L Sobral. Impact of data structure layout on perfor-
mance. In 2013 21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pages 116�120. IEEE, 2013.

7. S Osinski and D Weiss. Hppc: High performance primitive collections for java, 2015.
8. GNU Trove. High performance collections for java.
9. Sebastiano Vigna. fastutil: Fast and compact type-speci�c collections for java, 2016.
10. Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen, and
Kelli Houston. 2007. Object-oriented analysis and design with applications, third edition
(Third. ed.). Addison-Wesley Professional.

11. P. Evangelista, P. Maia, and M. Rocha. Implementing metaheuristic optimization algo-
rithms with jecoli. In 2009 Ninth International Conference on Intelligent Systems Design
and Applica- tions, pages 505�510, Nov 2009.

12. M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. Benchmarking java grande
appli- cations. In Proceedings of the Second International Conference on The Practical
Applications of Java, Manchester, UK, pages 63�73, 2000.

13. Florian Wende. C++ data layout abstractions through proxy types. In 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
758�767. IEEE, 2019.

14. Christian Wimmer and Hanspeter Mossenbock. Automatic array inlining in java virtual
ma- chines. In Proceedings of the 6th annual IEEE/ACM international symposium on
Code gener- ation and optimization, CGO '08, pages 14�23, New York, NY, USA, 2008.
ACM.

15. Martin Hirzel. Data layouts for object-oriented programs. In Proceedings of the 2007
ACM SIGMETRICS international conference on Measurement and modeling of computer
systems, SIGMETRICS '07, pages 265�276, New York, NY, USA, 2007. ACM.

16. Didem Unat, Xing Cai, and Scott B Baden. Mint: realizing cuda performance in 3d
stencil methods with annotated c. In Proceedings of the international conference on Su-
percomputing, pages 214�224. ACM, 2011.

17. Uday Bondhugula, Albert Hartono, J Ramanujam, and P Sadayappan. A practical
and fully automatic polyhedral program optimization system. In ACM SIGPLAN PLDI,
volume 10, 2008.

18. Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simburger, Armin Groÿlinger,
and Louis-Noel Pouchet. Polly-polyhedral optimization in llvm. In Proceedings of the First
Inter- national Workshop on Polyhedral Compilation Techniques (IMPACT), volume 2011,
page 1, 2011.

19. Ahmad Lashgar and Amirali Baniasadi. Openacc cache directive: Opportunities and
opti- mizations. In 2016 Third Workshop on Accelerator Programming Using Directives
(WACCPD), pages 46�56. IEEE, 2016.

Noname manuscript No.
(will be inserted by the editor)

Generic Exact Combinatorial Search at HPC Scale

Ruairidh MacGregor · Blair Archibald ·
Phil Trinder

Received: date / Accepted: date

Abstract Exact combinatorial search is essential to a wide range of important
applications, and there are many large problems that need to be solved quickly.
Searches are extremely challenging to parallelise due to a combination of factors,
e.g. searches are non-deterministic, dynamic pruning changes the workload,
and search tasks have very different runtimes. YewPar is a new C++/HPX
framework that generalises parallel search by providing a range of sophisticated
search skeletons.

This paper demonstrates generic high performance combinatorial search,
i.e. that a variety of exact combinatorial searches can be easily parallelised for
HPC using YewPar. We present a new mechanism for profiling key aspects of
YewPar parallel combinatorial search, and demonstrate its value. We exhibit,
for the first time, generic exact combinatorial searches at HPC scale. We
baseline YewPar against state-of-the-art sequential C++ and C++/OpenMP
implementations. We demonstrate that deploying YewPar on an HPC can
dramatically reduce the runtime of large problems, e.g. from days to just 100
seconds. The maximum relative speedups we achieve for an enumeration search
are near-linear up to 195(6825) compute-nodes(workers), super-linear for an
optimisation search on up to 128(4480) (pruning reduces the workload), and
sub-linear for decision searches on up to 64(2240) compute-nodes(workers).

Keywords Combinatorial search · Parallel skeletons · Constraint program-
ming · High performance computing

1 Introduction

Exact combinatorial search is essential to a wide range of important applications
including constraint programming, graph matching, and planning. A classic

School of Computing Science, University of Glasgow, Glasgow, UK
E-mail: {blair.archibald, phil.trinder}@glasgow.ac.uk

2 Ruairidh MacGregor et al.

example would be to allocate parcels to vans, and to plan delivery routes
for the vans. Combinatorial problems are solved by systematically exploring
a space of (partial) solutions, and doing so is computationally hard both in
theory and in practice, encouraging the use of approximate algorithms that
quickly provide answers yet with no guarantee of optimality. Alternatively, exact
search exhaustively explores the search space and delivers provably optimal
answers. Conceptually exact combinatorial search proceeds by generating
and traversing a (huge) tree representing alternative options. Backtracking
branch and bound search is a well known example. Although searches can be
time consuming, combining parallelism, on-demand tree generation, search
heuristics, and pruning can effectively reduce execution time. Thus a search
can be completed to meet time constraints, for example to load and dispatch a
fleet of delivery vans each morning.

Exact combinatorial search is very different to classical HPC applications.
The problems are NP-hard rather than polynomial. There is almost no use
of vectors or matrices: the primary data structure is a huge, dynamically
generated, irregular search tree. Almost all values are discrete, e.g. integers
or booleans. In place of nested loops there are elaborate recursive control
structures. The parallelism is highly irregular, that is the number and runtimes
of tasks are determined by the search instance, and vary hugely, i.e. by several
orders of magnitude[21].

There are three main search types: enumeration, which searches for all
solutions matching some property, e.g. all maximal cliques in a graph1; decision,
which looks for a specific solution, e.g. a clique of size k; and optimisation,
which looks for a solution that minimises/maximises an objective function, e.g.
finding a maximum clique. There are standard instances for many important
search applications, e.g. the DIMACS instances [10].

YewPar is a new C++ parallel search framework [5,2]. YewPar generalises
search by abstracting search tree generation, and by providing algorithmic
skeletons that support the three search types. The skeletons use sophisticated
search coordinations that control the parallel search including when new tasks
are generated. These are inspired by the literature, and are currently: Sequen-
tial, Depth-Bounded, Stack-Stealing and Budget. It also provides low-level
search specific schedulers and utilities to deal with the irregularity of search
and knowledge exchange between workers. YewPar uses the HPX library for
distributed task-parallelism [11], allowing search on multi-cores, clusters, HPC
systems etc.

This paper makes the following contributions.
Only a small number of specific exact combinatorial searches have been

hand-crafted for HPC scale (around 1000 cores), e.g. [9,4].
We present a new mechanism for profiling key aspects of generic

parallel combinatorial search in YewPar. While the extreme irregularity
of parallel combinatorial search is well known, it is seldom measured, and then

1 A clique in a graph is a set of vertices C such that all vertices in C are pairwise adjacent.
Maximal cliques cannot be extended by including one more adjacent vertex and Maximum
cliques are the largest cliques in the graph.

Generic Exact Combinatorial Search at HPC Scale 3

only for specific search applications, e.g. [21]. Key novelties are (1) to provide
profiles that quantify the irregularity of various search applications in the
generic YewPar framework, e.g. to report median task runtime, maximum task
runtime, etc. (2) to make irregularity characteristics visible to the developer to
aid performance tuning (Section 5).

We demonstrate for the first time generic exact combinatorial
searches at HPC scale. Generic YewPar searches have previously only been
demonstrated on relatively small-scale clusters: 17 compute nodes and 270
cores [5]. We use a combination of techniques like repeated measurements and
using multiple search instances to address the challenges of parallel search, e.g.
non-determinism, non-fixed workloads, irregular parallelism, and the nature
of NP-hard problems. Baselining against state-of-the-art sequential C++ and
C++/OpenMP implementations on 9 standard (DIMACS) search instances
shows that the generality of YewPar incurs a mean sequential slowdown of
9.6%, and a mean parallel slowdown of 27.6% on a single 18-core compute node.
Guided by the profiling we effectively parallelise seven standard instances of
the three searches, and systematically measure runtime and relative speedups
at scale. We demonstrate that deploying YewPar on an HPC can dramatically
reduce the runtime of large problems, e.g. from days to just 100 seconds.
The maximum relative speedups we achieve for the Numerical Semigroups
enumeration search are near-linear up to 192(6825) compute-nodes(workers),
super-linear for a Maximum Clique optimisation search on up to 128(4480)
(pruning reduces the workload), and sub-linear for a k-clique decision search
on up to 64(2240) compute-nodes(workers) (Section 6).

2 Background

2.1 Exact Combinatorial Search as an HPC Domain

An exact combinatorial search generates and explores a massive tree of possible
solutions. The search trees are generated on-demand to limit memory require-
ments, and provide ample opportunities to exploit parallelism. Space-splitting
approaches explore subtrees in parallel, speculatively for optimisation and
decision searches. Portfolio approaches run multiple searches, with varying
search orders/heuristics, and share knowledge between searches.

We focus on space-splitting approaches here. As the search trees are so
large (potentially exponential in the input size) we can easily generate millions
of parallel tasks: far more than commodity hardware can handle, but ideal for
modern HPC clusters.

However there are many aspects of search that make effective parallelisa-
tion extremely challenging in practice. Searches differ from standard parallel
workloads due to their heavy use of symbolic/integer data and methods as
opposed to floating point, and widespread use of conditionals meaning that
neither vectorisation nor GPUs are beneficial.

4 Ruairidh MacGregor et al.

Here we outline some specific challenges raised by combinatorial search at
HPC scale (100+ compute nodes, 5000+ cores), and show that despite these
issues exact combinatorial search is a fruitful HPC domain.

Task Irregularity. Parallel search tasks are highly irregular that is (1)
some tasks have short runtimes, e.g. several milliseconds, while others take
orders of magnitude longer, e.g. many minutes (2) tasks are generated dy-
namically, and the number of tasks varies depending on the search instance,
e.g. as determined by the number of children of a search tree nodes. Many
classical HPC workloads, e.g. computing over a homogeneous mesh, are regular
with tasks having similar runtimes, and the number of tasks can be statically
predicted.

Search tasks explore subtrees, and the sizes of these often varies by orders
of magnitude. The problem is compounded as the shape of the search tree
changes at runtime as new knowledge, like improved bounds, is learned. In
practice improved knowledge can make a significant proportion of existing tasks
redundant. We give a detailed analysis of search task irregularity in Section 5.

Speculation. Tree searches are commonly parallelised by speculatively
exploring subtrees in parallel. Most searches are compute, rather than memory
or communication bound, and to achieve substantial speedups large amounts
of speculation are used.

Speculatively exploring subtrees earlier than a sequential algorithm can
dramatically improve performance: some parallel task may find a solution
or strong bound long before the sequential algorithm would. So superlinear
speedups are not uncommon. Conversely, speculation may result in the parallel
search performing far more work than the sequential search, and may lead to
slowdowns as more cores are used. These superlinear speedups and slowdowns
due to increased workload are known as performance anomalies.

Preserving Heuristics. State of the art algorithms make essential use of
search heuristics that minimise search tree size. Parallel searches must preserve
the heuristic search ordering as far as possible, so standard random work
stealing isn’t appropriate. Rather, scheduling is often carefully designed to
preserve search heuristics [19,3].

Global Knowledge Exchange. Search tasks discover information that
must be shared with other search tasks, e.g. a better bound in a branch and
bound search. Sharing global state must be managed carefully at HPC scale
to avoid excessive communication and synchronisation overheads. It is likely
that some search algorithms that share significant amounts of data, such as
clause learning SAT solvers, will struggle to scale onto HPC. However many
searches only share small amounts of data globally. Moreover as the global
data primarily provides opportunities to optimise (e.g. prune the search tree),
there is no strong synchronisation constraint: remote search tasks are neither
stalled, nor producing incorrect data prior to receiving the new knowledge.

Programming Challenges. State of the art search implementations are
intricate, and it is unusual to see large scale parallelisations. Moreover few of the
parallel search implementations fully utilise modern architectures, e.g. provide
two level (thread + process) parallelism. Even when parallel searches share

Generic Exact Combinatorial Search at HPC Scale 5

common paradigms, they are typically individually parallelised and there is
little code reuse. One approach to minimise development effort is to parallelise
existing sequential solvers [20]. Alternatively high level frameworks provide
developers generic libraries to compose searches [1,24,8].

This paper focuses on YewPar, the latest such framework, and designed to
scale to HPC.

2.2 YewPar

YewPar2 is carefully designed to manage the challenges of parallel search.
Lazy Node Generators produce the search trees, and skeletons are provided to
efficiently search them in parallel. To support distributed memory parallelism,
YewPar builds on the HPX [11] task parallelism library and runtime system.
HPX is routinely deployed on HPC and Cloud systems, and YewPar can readily
exploit this portability at scale. Complete descriptions of the YewPar design
and implementation are available in [3,2]; it has the following key components.

Lazy Node Generators Search trees are too large to realise in memory,
and searches proceed depth-first lazily generating only the subtrees being
searched. The Lazy Node Generator for a specific search application is a data
structure that takes a parent search tree node and enumerates its children in
traversal (i.e. heuristic) order. While node generators create the children of
a node, how and when the search tree is constructed is determined by the
skeletons.

Search Coordinations. To minimise search time it is critical to choose
heuristically a good node to search next. We follow prior work e.g. [23], and
use both application heuristics (as encoded in the Lazy Node Generator), and
select large subtrees (to minimise communication and scheduling overheads)
that we expect to find close to the root of the search tree. In addition to
sequential depth first search, YewPar currently provides three parallel search
coordinations. Depth-Bounded search converts all nodes below a cut-off
depth dcutoff into tasks. Stack-Stealing search dynamically generates work
by splitting the search tree on receipt of a work-stealing request. In Budget
search workers search subtrees until either the task completes or the task has
backtracked as many times as specified in a user-defined budget. At that point
new search tasks are spawned for the top-level nodes of the current sub-tree.

YewPar Skeletons compose a search coordination with one of the three
search types, for example BudgetDecision, or DepthBoundedOptimisation.
There are currently four search coordinations, and hence 12 (3×4) skeletons.
The skeletons are implemented for runtime efficiency, e.g. C++ templates are
used to specialise the skeletons at compile-time. The skeleton APIs expose
parameters like depth cutoff or backtracking budget that control the parallel
search.

Search Specific Schedulers. YewPar layers the search coordination meth-
ods as custom schedulers on top of the existing HPX scheduler. That is, the

2 https://github.com/BlairArchibald/YewPar

6 Ruairidh MacGregor et al.

HPX scheduler manages several lightweight YewPar scheduler threads that
perform the search. In addition to search worker threads, each compute-node
has a manager HPX thread that handles aspects like messages and termination.
The schedulers seek to preserve search order heuristics, e.g. by using a bespoke
order-preserving workpool [2,3].

Knowledge Management. The sharing of solutions and bounds relies
on HPX’s partitioned global address space (PGAS). To minimise distributed
queries, bounds are broadcast to compute-nodes that keep track of the last
received bound. The local bound does not need to be up-to-date to maintain
correctness, hence YewPar can tolerate communication delays at the cost of
missing pruning opportunities.

3 Ease of Use

YewPar is designed to be easy to use by combinatorial searchers who lack
expertise in parallel programming. For example, although each of the three
searches we describe in Section 4 uses a published state-of-the-art algorithm,
they require only around 500 lines of code3. Most of the search application is
parameterised generic code. Notable exceptions are the node generator that
produces the search tree, and the bounding function (pruning predicate), that
are search-specific and must be specified.

Crucially a YewPar user only composes extremely high level parallel con-
tructs: they select and parameterise a search skeleton. For example the search
specified in the first 6 lines of Listing 1 returns the maximal node in some space.
The user specifies the search coordination, in this case StackStealing, provides
the application-specific Lazy Node Generator Gen to generate the search tree,
and chooses the type of search, here Optimisation. The listing also illustrates
how YewPar implements pruning. The user provides an application-specific
BoundFunction that is called on each search tree node and prunes if the bound
cannot beat the current objective.

Providing such high level abstractions of the parallel search makes it easy
to experiment with alternate parallel searches and search parameters. As an
example, the last 8 lines of Listing 1 specify a parallel budget version of the
maximal node search, where each search task has a budget of 50000 back-
tracks. In contrast, hand-written parallel search applications like[19,7] usually
add parallelism constructs directly to the main search algorithm, obfuscat-
ing the algorithm and making it very difficult to experiment with alternate
parallelisations without major refactoring.

A more complete description of how to specify parallel searches in YewPar
is provided in [5], together with a docker image artefact containing 6 example
search implementations.

The search coordinations provided by YewPar are significantly more ad-
vanced than those commonly used in hand-written parallel searches. For ex-
ample, in Section 6 we baseline our YewPar implementation against a simple

3 https://github.com/BlairArchibald/YewPar/apps

Generic Exact Combinatorial Search at HPC Scale 7

Listing 1: Two YewPar Parallel Search Skeletons

1 Node maximal_solution_ws =
2 YewPar :: Skeletons :: StackStealing < // search coord
3 Gen , // lazy node gen
4 Optimisation , // search type
5 BoundFunction <upperBound > // bound for pruning
6 >::search(space , root);
7

8

9 Params params;
10 searchParameters.backtrackBudget = 50000;
11 Node maximal_solution_budget =
12 YewPar :: Skeletons :: Budget < // search coord
13 Gen , // lazy node gen
14 Optimisation , // search type
15 BoundFunction <upperBound > // bound for pruning
16 >::search(space , root , params);

OpenMP version that adds pragmas to the main search loop. The programming
effort required to produce the OpenMP and YewPar versions is very similar,
but the OpenMP implementation is limited to shared memory, and to a simple
depth 1 bounded search. Implementing more complex search coordinations,
e.g. a heuristic-preserving depth 2 bounded search is far more intricate. Search
coordinations such as StackStealing require access to the scheduler. Moreover
conventional parallel schedulers often disrupt search heuristics [19], and we
show how the OpenMP scheduler disrupts the baselining search instances in
Section 6. This highlights the need for custom schedulers as in YewPar.

While the vast majority of parallel searches are handwritten, there are some
generic frameworks like TASKWORK [12], and Muesli [24]. These provide a
similar level of programming abstraction to YewPar, but are designed for branch
and bound optimisation and, unlike YewPar, do not currently support decision
or enumeration searches and tend to only support one search coordination.

4 Generic Exact Combinatorial Search

Due to the challenges of engineering performant parallel implementations of
exact combinatorial search, only a small number of specific exact combinatorial
searches have been hand-crafted for HPC scale, e.g. [9,4]. YewPar is designed
to minimise the effort required to engineer performant searches by providing a
library of re-usable skeletons and search coordinations. While this genericity
has previously been demonstrated by parallelising seven searches at cluster
scale (100s of cores) [5], it has never been demonstrated at HPC scale (1000s
of cores).

We further demonstrate the ease of construction (Section 3) by exhibiting
parallel searches covering the three search types.

Numerical Semigroups The first application comes from group theory, and
tackles the problem of counting the number of numerical semigroups of a

8 Ruairidh MacGregor et al.

particular genus, which is useful for areas such as algebraic geometry[6]. For
mathematical searches such as this, exactness is essential: an approximate
answer has no value.

A numerical semigroup can be defined as “Let N0 be the set of non-negative
integers. A numerical semigroup is a subset Λ of N0 which contains 0, is closed
under addition and has finite complement, N0 \ Λ. The elements in N0 \ Λ
are the gaps of Λ, and the number g = g(Λ) of gaps is the genus of Λ” [7].
A numerical semigroup can be viewed as taking a finite set of non-negative
integers X such that N0 \X remains closed under addition.

A numerical semigroups search enumerates the number of semigroups with
genus g, e.g. of genus 46. The YewPar node generator uses Hivert’s algorithm [7]
and exploits the relation between subsequent numerical semigroups to generate
search tree nodes. So the search counts the number of search tree nodes at the
specified depth, e.g. at depth 46.

Maximum Clique The maximum clique optimisation problem seeks to find the
largest clique in graph G. A clique C ⊆ V such that ∀u, v ∈ C({u, v} ∈ E).
The node generator implementation is based on the MCSa1 algorithm [25] that
exploits graph colouring for bounding/heuristic ordering.

a b

c

d

ef

g

h {c} [a,b,e]

{c,b} [] {c,e} []{c,a} [b]

{c,a,b} []

{f} [a,g,d]

{f,a} [g,d]

{f,a,g} [d]

{f,a,g,d} []

{f,a,d} []

{f,g} [d]

{f,g,d} []

{f,d} []

{} [c,f,g,h,d,b,a,e]

{g,a} [d,b]

{g,a,b} []{g,a,d} []

{g,d} [] {g,b} []

{g} [a,d,b]

{h,a} [] {h,e} []

{h} [a,e] {e} []. . .

Fig. 4.1: A maximum clique instance. Input graph with clique {a, d, f, g} to
the left and corresponding search tree to the right. Each tree node displays
the current clique and a list of candidate vertices (in heuristic order) to extend
that clique.

Maximum clique arises in areas such as computational biology, information
retrieval, economics and signal transmission theory [22]. Search instances are
drawn from the standard DIMACS challenge instances [10].

k-clique with Finite Geometry. Some applications require a specifically sized
clique. The k-clique decision search determines whether there is a clique C
in a graph G of size k, i.e. |C| = k. We apply k-clique to a problem in finite
geometry - determining if a spread in geometries of the Hermitian variety
H(4, q2) exists[13]. A spread is a set of lines L such that every point is incident
with exactly one element of L. For H(4, q2), a spread (if it exists) will have
size q5 + 1. Intuitively, a spread forms a partition of the points.

Generic Exact Combinatorial Search at HPC Scale 9

Symmetries in the state space up to depth 3 are broken by pre-processing
with GAP [26]. So the clique being searched for is of size q5 +1−3. We consider
geometries of the form H(4, 32), so k = 35 + 1− 3 = 241, and the Maximum
Clique node generator is used to generate the search tree.

5 Profiling Irregularity in Exact Combinatorial Search

Parallel exact combinatorial search produces extremely irregular parallelism
(Section 2.1). Although the irregularity of a small number of specific parallel
searches has previously been investigated, e.g. [21, Fig. 4], detailed analysis of
irregularity is uncommon, and the extent of the irregularity in most searches is
unknown.

To provide detailed information on search task irregularity we have added
a small data store on each YewPar compute-node that records key aspects of
the parallel search: task runtimes, number of backtracks, number of search tree
nodes visited, and total number of tasks spawned. To allow the shape of the
tree to be investigated, the data is indexed by the tree depth where the task
was spawned.

Experimental Setup. Measurements are made on the following platforms.
YewPar and OpenMP are compiled with gcc 8.2.0 and HPX 1.2.1. Cirrus
is an HPC cluster comprising 228 compute-nodes, each having twin 18-core
Intel Xeon (Broadwell) CPUs (2.1Ghz), 256 GB of RAM and running Red
Hat Enterprise Linux Version 8.1. The GPG Beowulf Cluster comprises 17
compute-nodes, each having dual 8-core Intel Xeon E5-2640v2 CPUs (2Ghz),
64GB of RAM and running Ubuntu 18.04.2 LTS.

Search Task Runtimes (STR) records the distribution of runtimes for tasks
spawned at each depth in the search tree. Much of the variance arises from the
structure of the search tree. STR allows us to visualise the distribution of task
runtimes throughout a search and provides information about the shape of the
search tree for a given search instance.

We illustrate the range and distribution of search task runtimes using a
violin plot for the tasks spawned at each search tree depth, excluding the time
for spawned tasks to complete. The shape of each violin plot represents the
distribution of runtimes, e.g. wide sections correspond to frequent runtimes.
The white cross represents the median value, and the black rectangle the
interquartile range.

As a basis for comparison we record the STR for a relatively regular parallel
tree search. This synthetic search enumerates the tree nodes down to depth
30 in a balanced binary tree (so all subtrees are the same size), creating tasks
down to depth 8. Figure 5.1 shows the search task runtimes at different depths.
Task runtimes at depths 0 to 7 are uniformly small. The tasks at depth 8 do
most of the enumeration, and their runtimes have a compact distribution with
median 16.4ms and an interquartile range of 16.3ms to 16.6ms.

10 Ruairidh MacGregor et al.

Fig. 5.1: Regular Search Task Runtimes: task runtime distributions for a
balanced binary tree search to depth 30 using the Depthbounded skeleton,
dcutoff = 8. (1 GPG Cluster Compute-Node)

Fig. 5.2: Search task runtime distributions for a Numerical Semigroups genus
48 search, Budget skeleton with b = 107 backtracks. Depths 2-5 spawn no tasks
and are omitted (1 GPG Cluster Compute-Node)

In contrast, Fig. 5.2, Fig. 5.3 and Fig. 5.4 show that the STR distributions for
typical combinatorial searches are very different. Figure 5.2 is for a Numerical
Semigroups genus 48 search, using the Budget skeleton with a budget of b = 107

backtracks. The distribution of task runtimes is plotted for each depth in the
search tree down to depth 48. Although task sizes increase steadily at depths
1-7, there are few tasks and little variance. This reflects a known result that the

Generic Exact Combinatorial Search at HPC Scale 11

Fig. 5.3: Search task runtime distributions for depths 36 to 39 of a Numerical
Semigroups genus 48 search, Budget skeleton with b = 107 backtracks (1 GPG
Cluster Compute-Node)

Fig. 5.4: Search Task Runtime Distributions for a Brock400 1 Maximum Clique
search, depth 2 Depthbounded skeleton (1 GPG Cluster Compute-Node)

Numerical Semigroups search tree is narrow at low depths [7]. Between depths
12 and 41 there is massive variability in search task runtimes. For example
at depth 16 the median task runtime is 19ms, while the interquartile range is
31.5ms, and the maximum task runtime is 499ms.

Figure 5.3 provides more details of the Numerical Semigroups search task
runtime distributions at depths 36..39. Not only is the massive variability in
runtimes clear, but it is far more apparent that the distributions at these levels,

12 Ruairidh MacGregor et al.

Fig. 5.5: Node throughput and relative speedup from 1(15) GPG Cluster
Compute Nodes(workers) for a Numerical Semigroups genus 49 search, Budget
skeleton with b = 107 backtracks

as at other levels, are multi-modal. For example the distributions at levels 36
and 37 both have four clear modes.

Figure 5.4 shows the search task runtime distributions for a Maximum Clique
search instance using the Depthbounded skeleton at depth 2 (dcutoff = 2).
This optimisation search instance is brock400 1 from the DIMACS benchmark
suite [10]. Tasks are spawned at only three depths and the vast majority of
search tasks, 12458 out of 12753, are generated at depth 2. Depths 1 and 2 both
exhibit massive variability in search task runtimes. Most tasks are have short
runtimes (less than 70ms), but a small number have much longer runtimes (over
900ms). At depth 2 the median task runtime is 8ms, while the interquartile
range is 26ms, and the maximum task runtime is 916ms.

Profiles like Figure 5.2 and Figure 5.4 are a valuable tool as they enable
developers to accurately quantify and visualise search task runtimes, a key
aspect for tuning parallel performance.

Search Tree Node Throughput records the number of nodes visited by some
search task per unit time. It is commonly used as a measure of search speed
and, indirectly, the size of the workload[15]. As the number of cores grows,
increasing node throughput illuminates how parallelism may reduce search
runtime.

YewPar has been extended to record node throughput by counting each
node visited during the search using a depth-indexed vector of atomic counters
in the profiling data store. To minimise the number of atomic operations each
search worker maintains a local counter and only updates the atomic counter
in the vector on termination.

Generic Exact Combinatorial Search at HPC Scale 13

Fig. 5.6: Node throughput and relative speedup from 1(15) GPG Cluster
Compute Nodes(workers) for a brock800 2 Maximum Clique search, depth 2
Depthbounded skeleton

Figure 5.5 shows the node throughput and relative speedup for a Numerical
Semigroups genus 48 search. This enumeration search again uses the Budget
skeleton with a budget b of 107 backtracks, and is measured on between 1 and
16 compute nodes of the GPG cluster. This graph, and the other graphs in
this section, report throughput as the mean number of nodes visited divided
by the median runtime over 5 executions.

Node throughput increases linearly as the number of compute nodes and
cores increases, and is closely correlated with the speedup. This is as expected
for an enumeration search that has a fixed workload, i.e. must visit exactly
the same number of search tree nodes in every execution. So for enumeration
searches a higher node throughput directly correlates with speedup.

Figure 5.6 shows the node throughput and speedup for a Maximum Clique
search instance using the Depthbounded skeleton at depth 2 (dcutoff = 2).
This optimisation search instance is DIMACS brock800 2 and is measured on
1 to 16 compute nodes of the GPG cluster.

Both node throughput and speedup increase superlinearly as the number of
compute nodes and cores increases, but are not strongly correlated. Speculative
search tasks account for the increase in node throughput as the number of
cores increases. We believe that the rate of increase of node throughput falls
at high core counts because the speculative threads prune much of the search
tree. It is, however, not easy to measure how much of the tree is pruned as the
pruned subtrees are never generated. The reduced node throughput is again as
expected for an optimisation search where pruning reduces the workload.

14 Ruairidh MacGregor et al.

Search
Instance

Sequential
C++

Sequential
YewPar

Slowdown
%

OpenMP
(1 Worker)

C++

OpenMP
(18 Workers)

C++

Depth-Bounded
YewPar

Slowdown
%

brock400 1 252.60 301.08 19.19 295.63 18.89 23.77 25.89
brock400 2 183.38 218.32 19.05 217.96 7.80 10.04 28.74
brock400 3 145.44 174.15 19.74 230.71 4.26 5.66 32.86
brock800 1 3790.72 3868.66 2.06 5914.71 195.48 240.86 23.22
brock800 2 3808.82 3764.54 -1.16 6820.68 232.26 256.52 10.44
brock800 3 3512.92 3511.75 -0.03 4697.50 183.88 207.45 12.82
brock800 4 1316.16 1282.45 -2.56 3560.01 86.87 102.15 17.59
C250.9 1725.04 2112.06 22.44 1756.48 115.72 179.57 55.18
p hat700-3 1139.00 1278.38 12.24 1020.68 77.52 115.49 48.98

Geo. Mean 9.66 27.63

Table 6.1: Comparing YewPar runtimes (s) and slowdown (%) with Hand-
written Maximum Clique Implementations: Sequential and Depth-bounded
OpenMP Implementations (Cirrus)

6 Exact Combinatorial Search at HPC Scale

Measuring Parallel Search is Challenging primarily due to the non-determinism
caused by pruning, random work-stealing, and finding alternate valid solutions.
These can lead to performance anomalies (Section 2.1) that manifest as dra-
matic slowdowns or superlinear speedups. We control for this by investigating
multiple instances of multiple search applications and selecting the median of
5 executions. The experimental setup is as in Section 5.

Sequential and Single Compute-Node Baselines. YewPar’s generality incurs
some overheads compared to search specific implementations as it decouples
search tree generation and traversal. For example, Lazy Node Generators copy
search tree nodes (in case they are stolen) instead of updating in-place. We
evaluate these overheads on Maximum Clique as a competitive sequential
implementation is available [18,17].

Sequential Baseline. The first 4 columns of Table 6.1 show the mean
sequential runtimes (over 5 executions) of the 9 DIMACS clique instances [10]
that take between 100 seconds and 1 hour to run sequentially on Cirrus.
The results show a limited cost of generality, i.e. a maximum slowdown of
22.44%, a minimum slowdown of -2.56%, and geometric mean slowdown of
9.7%. We attribute the small runtime reductions compared with C++ for 2
search instances to optimisations arising from different C++ and C++/HPX
compilation schemes.

Parallel Baseline. Parallel execution adds additional overheads, e.g. the
YewPar skeletons are parametric rather than specialised, and the distributed
memory execution framework is relatively heavyweight on a single compute
node. To evaluate the scale of these overheads we compare with a search-specific
OpenMP version of the maximum clique implementation. It is imperative that
the parallel search algorithm and coordination are almost identical, as otherwise
performance anomalies will disrupt the comparison. Hence the Lazy Node Gen-
erator is carefully crafted to mimic the Maximum Clique implementation [18],
and the OpenMP implementation uses the task pragma to construct a set

Generic Exact Combinatorial Search at HPC Scale 15

of tasks for each node at depth 1, closely analogous to the DepthBounded
skeleton in the YewPar implementation.

There are significant slowdowns for OpenMP using a single worker as the
OpenMP scheduler does not preserve the search heuristic, and this is confirmed
by printing the task schedule. That is OpenMP provides no guarantee that the
search tasks are executed in the order they are spawned, and this illustrates a
common issue when using off-the-shelf parallelism frameworks for search [19].
The effect is smaller in the parallel version as the likelihood that at least 1
worker follows the heuristic increases.

Columns 5-7 of Table 6.1 compare the runtimes of the YewPar and OpenMP
versions for the DIMACS search instances with 18 search workers on a single
Cirrus compute node. We measure the searches on 18 workers/cores rather than
on all 36 physical cores available on a Cirrus compute node as experimentation
reveals that OpenMP performance reduces above 18 cores. We attribute this
to starvation as the depth 1 spawning creates too few tasks to utilise all of
the cores. A depth-2 backtracking search would generate far more work, but
implementing such a search in OpenMP that is correct, and exactly emulates
the YewPar DepthBounded search, is far from trivial especially when trying to
maintain search heuristics. The geometric mean slowdown increases to 27.6%,
with a maximum slowdown of 55%.

The sequential and single compute node overheads of YewPar are lower on
the GPG Cluster. For the same Maximum Clique codes on a slightly larger set
of DIMACS instances the mean sequential slowdown is 8.7%, and the slowdown
on a single 16-core compute node is 16.6% [5].

We conclude that for these search instances the parallel overheads of YewPar
remain moderate, while facilitating the execution of multiple search applications
on multiple platforms: multicores, clusters, or HPC systems.

Scaling. As exact combinatorial search problems are NP hard the workloads
generated by instances vary greatly, and hence it is not possible to double
problem size to measure weak scaling. Hence we report strong scaling, and
speedups are relative to execution on a small number of Cirrus compute nodes.

We measure the scaling of searches covering the three search types. Profiling
informs the selection of search skeleton and its parameterisation. For example
Fig. 5.2 reveals that the depth bound must be at least 12 for the Numerical
Semigroups search as there are so few tasks at lower depths. Similarly Fig. 5.4
reveals that a depth bound of 2 for a smaller Maximum Clique instance
generates 12K tasks, so we predict that this bound will be ample for 2000
search workers on the larger instance.

The parallel searches we evaluate are outlined in Section 4, and the instances
measured are as follows. Numerical Semigroups is an Enumeration search at
genus 61, and uses the YewPar Budget skeleton with a budget of 107 backtracks.
Maximum Clique is an Optimisation search for the DIMACS p hat1000-3
instance, and uses the Depthbounded skeleton with a depth cutoff of 2 for
all measurements other than on 4480 workers where we use a cutoff of 3 to
minimise starvation. K-clique is the finite geometry Decision search with k=241
and uses the Depthbounded skeleton with a depth cutoff of 3. This relatively

16 Ruairidh MacGregor et al.

Fig. 6.1: Numerical Semigroups genus 61 search, budget 107 backtracks; Speedup
relative to 16(560) Cirrus Compute Nodes(workers)

Fig. 6.2: Maximum Clique p hat1000-3 Search Speedup Relative to 8(280)
Cirrus Compute Nodes(workers); Depthbounded with cutoff 2, increased to 3
for 16(4480) to minimise starvation.

high cutoff is selected to generate many search tasks, as searching for a specific
clique size induces huge amounts of pruning. While successful decision searches
terminate early, here we measure unsuccessful searches that must explore the
entire space.

Runtimes Numerical Semigroups runtimes fall from 2649s on 16(560)
Cirrus Compute Nodes(workers) to 302s on 195(6825) Compute Nodes(workers).

Generic Exact Combinatorial Search at HPC Scale 17

Fig. 6.3: k-clique Finite Geometry Search Speedups Relative to 1(35) Cirrus
Compute Node(workers); Depthbounded with cutoff 3

Recall that each YewPar worker is associated with a core. Maximum Clique
runtimes fall from 2255s on 8(280) to 102s on 128(4480) compute nodes(workers).
For the 178 435 k-clique search, the most significant runtime decrease is from
4563s on 1(35) to 127s on 64(2240) compute nodes(workers). The other k-clique
searches have low runtimes: 178 517 has the greatest runtime: 393s on 1(35)
and this reduces to 19s on 64(2240) compute nodes(workers). A complete set
of runtime and speedup data is available [14].

The results demonstrate that deploying YewPar on an HPC can dramatically
reduce the runtime of different types of combinatorial search compared with
state of the art sequential and parallel implementations. As a further example,
the runtimes for a Maximum Clique p hat1000-3 have fallen from 130.8 hours
(Sequential), 4.2 hours (Cilk+) and 3.0 hours (C++ custom threading) on a
dual 32-core Intel Xeon E5-2697A (2.6Ghz) [16] to 102s (4480 YewPar workers
on Cirrus). As the Xeon has a faster clock speed than both GPG and Cirrus
we would expect even longer sequential runtimes on these platforms.

Speedups Figure 6.1 shows the speedups for the Numerical Semigroups
genus 61 search. The speedups are relative to execution on 16(560) compute
nodes(workers). The relative speedup is near linear up to 4480 workers, with
parallel efficiency over 90%. By 6825 workers both speedup and efficiency have
declined.

Figure 6.2 shows relative speedups from 8(280) compute nodes (workers) for
the Maximum Clique p hat1000-3 search. Relative speedups increase steadily
as the core counts increase up until 4608 cores where super-linear speedups are
achieved. Super-linear speedups are common for optimisation searches where
pruning can dramatically reduce the workload.

18 Ruairidh MacGregor et al.

Figure 6.3 shows relative speedups from 1(35) compute nodes (workers)
for 5 instances of the k-clique decision search. Speedups vary from instance
to instance. The best speedup achieved is for instance 178 435 that has a
significantly longer runtime at 1(35) i.e. 4563s. Lower speedups are achieved for
instances with lower runtimes on 1(35), and these range from 393s for 178 517
to 113s for 59 684. For these instances runtimes are reduced to between 10s
and 20s on 64(2240) compute nodes (workers), and the system is starved of
work. So it is likely that far better scaling could be achieved for larger search
instances.

7 Conclusions

We report the first ever study of generic combinatorial search at HPC scale, i.e.
100+ compute nodes and 4000+ cores. The study demonstrates the capacity
of the YewPar search framework to scale to HPC.

We have demonstrated generic high performance combinatorial
search, i.e. that a variety of exact combinatorial searches can be easily par-
allelised for HPC using YewPar. Complete implementations of sophisticated
state-of-the art parallel searches require only around 500 lines of code. Pre-
viously (1) just a few searches have been individually hand-crafted for HPC
scale e.g. [9,4]; and (2) the genericity of YewPar has only been demonstrated
on a modest cluster (100s of cores) by parallelising seven searches [5]. Here we
exhibit HPC-scale searches using different YewPar skeletons and covering the
three search types: optimisation, enumeration, and decision (Section 4).

We have presented a new mechanism for profiling key aspects of
generic parallel combinatorial search in YewPar. The extreme irregu-
larity of parallel combinatorial search has only rarely been measured, and then
only for specific search applications, e.g. [21]. We exhibit profiles that quantify
the irregularity of many search applications in the generic YewPar framework.
Although implemented for YewPar and in HPX the profiling techniques do not
depend directly on either: these are generic techniques and measures valuable
for any parallel combinatorial search framework. Search task runtime profiling
aids parallelisation by providing information on aspects like the huge differ-
ences in search task runtimes, mean task runtime, and the radically different
(and frequently multi-modal) task runtime distributions at each search tree
depth, e.g. Fig. 5.2. Profiling node throughput quantifies the dramatic differ-
ences in parallel behaviour between enumeration searches with fixed workloads,
e.g. Fig. 5.5, and optimisation searches with variable workloads, e.g. Fig. 5.6
(Section 5).

We demonstrate, for the first time, generic exact combinatorial
searches at HPC scale. Baselining against state-of-the-art sequential C++
and C++/OpenMP implementations on 9 standard (DIMACS) search instances
shows that the generality of YewPar incurs a mean sequential slowdown of
9%, and a mean parallel slowdown of 27.6% on a single 18-core compute node
(Table 6.1). Guided by the profiling we effectively parallelise seven standard

Generic Exact Combinatorial Search at HPC Scale 19

instances of the three searches, and systematically measure runtime and relative
speedups at scale. We show how deploying YewPar on an HPC can deliver
dramatic reductions in runtime compared with state of the art hand crafted
search implementations, both sequential and parallelised at smaller scale. For
example reducing the p hat1000-3 sequential search from 131 hours to just 102
seconds using YewPar on a 4480 cores (Fig. 6.2).

Comparing different search types shows similar speedup and scaling charac-
teristics to smaller-scale parallel search [5], e.g. pruning in the Maximum Clique
optimisation search reduces workload and hence delivers super-linear speedups
up to 128(4480) compute-nodes(workers) (Fig. 6.2). The maximum relative
speedups we achieve for the Numerical Semigroups enumeration search are
near-linear up to 192(6825) compute-nodes(workers) (Fig. 6.1), and sub-linear
for five k-clique decision searches on up to 64(2240) compute-nodes(workers)
(Fig. 6.3). It is likely that far better scaling can be achieved for k-clique, and
other decision searches, if suitable instances can be found (Section 6).

Ongoing Work. Currently determining good parameters for a search
instance, like depth cutoff or backtrack budget, entails a parameter sweep.
Ongoing work seeks to determine whether we can use pre-execution profiling
to predict parameters, e.g. is backtracks-per-second-per-worker sufficient to
determine an appropriate budget for search instances? We would also like to
explore whether performance can be improved by extending YewPar to use the
profiling metrics to dynamically adapt the search, e.g. a compute node with
ample work may increase the depth cutoff to provide more search tasks.

Acknowledgements This work was supported EPSRC grants MaRIONet (EP/P006434),
STARDUST (EP/T014628) and S4: Science of Sensor Systems Software (EP/N007565).

References

1. Alba, E., et al.: MALLBA: A Library of Skeletons for Combinatorial Optimisation. In:
Euro-Par, Paderborn, Germany, August, 2002, Proceedings (2002)

2. Archibald, B.: Skeletons for Exact Combinatorial Search at Scale. Ph.D. thesis, University
of Glasgow (2018), http://theses.gla.ac.uk/id/eprint/31000

3. Archibald, B., Maier, P., Stewart, R., Trinder, P.: Implementing YewPar: A Framework
for Parallel Tree Search. Euro-Par, Gottingen, Germany (2019)

4. Archibald, B., et al.: Sequential and parallel solution-biased search for subgraph algo-
rithms. In: CPAIOR 16th Thessaloniki, Greece, June, 2019 (2019)

5. Archibald, B., et al.: YewPar: skeletons for exact combinatorial search. In: PPoPP ’20:,
San Diego, California, USA, February, 2020. ACM (2020)

6. Barucci, V., et al.: Maximality properties in numerical semigroups and applications to
one-dimensional analytically irreducible local domains, vol. 598. American Mathematical
Soc. (1997)

7. Fromentin, J., Hivert, F.: Exploring the tree of numerical semigroups. Math. Comp.
85(301) (2016)

8. Galea, F., Le Cun, B.: Bob++: a framework for exact combinatorial optimization
methods on parallel machines. In: International Conference High Performance Computing
& Simulation (HPCS) (2007)

9. Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8) (2017)

20 Ruairidh MacGregor et al.

10. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, Workshop, October, 1993. American Mathematical Society
(1996)

11. Kaiser, H., et al.: HPX: A Task Based Programming Model in a Global Address Space.
In: ICPGASPM 2014, Eugene, OR, USA, October, 2014 (2014)

12. Kehrer, S., Blochinger, W.: Development and operation of elastic parallel tree search
applications using TASKWORK. In: Ferguson, D., Muñoz, V.M., Pahl, C., Helfert,
M. (eds.) Cloud Computing and Services Science - 9th International Conference,
CLOSER 2019, Heraklion, Crete, Greece, May 2-4, 2019, Revised Selected Pa-
pers. Communications in Computer and Information Science, vol. 1218, pp. 42–65.
Springer (2019). https://doi.org/10.1007/978-3-030-49432-2 3, https://doi.org/10.1007/
978-3-030-49432-2 3

13. Klein, A., Storme, L.: Applications of finite geometry in coding theory and cryptography.
Information Security, Coding Theory and Related Combinatorics 29, 38–58 (2011)

14. MacGregor, R.: Generic High Performance Exact Combinatorial Search [Data Repository].
https://doi.org/10.5281/zenodo.4270336

15. Maher, S.J., Ralphs, T.K., Shinano, Y.: Assessing the effectiveness of (parallel) branch-
and-bound algorithms. arXiv preprint arXiv:2104.10025 (2021)

16. McCreesh, C.: Solving hard subgraph problems in parallel. Ph.D. thesis, University of
Glasgow (2017)

17. McCreesh, C.: Sequential MCsa1 Maximum Clique Implementation (2018), https://
github.com/ciaranm/sicsa-multicore-challenge-iii/c++/

18. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique algorithm.
Algorithms 6(4) (2013)

19. McCreesh, C., Prosser, P.: The Shape of the Search Tree for the Maximum Clique
Problem and the Implications for Parallel Branch and Bound. TOPC 2(1) (2015)

20. Menouer, T., et al.: Mixing Static and Dynamic Partitioning to Parallelize a Constraint
Programming Solver. International Journal of Parallel Programming 44(3) (2016)

21. Otten, L., Dechter, R.: AND/OR branch-and-bound on a computational grid. J. Artif.
Intell. Res. 59 (2017)

22. Pardalos, P., Xue, J.: The maximum clique problem. Journal of Global Optimization 4
(04 1994)

23. Pietracaprina, A., et al.: Space-efficient parallel algorithms for combinatorial search
problems. J. Parallel Distrib. Comput. 76 (2015)

24. Poldner, M., Kuchen, H.: Algorithmic skeletons for branch & bound. In: ICSOFT,
Setúbal, Portugal, September, 2006 (2006)

25. Prosser, P.: Exact algorithms for maximum clique: A computational study. Algorithms
5(4) (2012)

26. The GAP Group: GAP - Groups, Algorithms, and Programming, Version 4.8.7 (2017),
https://www.gap-system.org/Releases/4.8.7.html

Noname manuscript No.
(will be inserted by the editor)

Interruptible Nodes: Reducing Queueing Costs in
Irregular Streaming Dataflow Applications on Wide-SIMD
Architectures

Stephen Timcheck · Jeremy Buhler

Received: date / Accepted: date

Abstract Streaming dataflow applications are an attractive target to parallelize on
wide-SIMD processors such as GPUs. These applications can be expressed as a
pipeline of compute nodes connected by edges, which feed outputs from one node to
the next. Streaming applications often exhibit irregular dataflow, where the amount
of output produced for one input is unknown a priori. Inserting finite queues be-
tween pipeline nodes can ameliorate the impact of irregularity and improve SIMD
lane occupancy. The sizing of these queues is driven by both performance and safety
considerations – relative queue sizes should be chosen to reduce runtime overhead
and maximize throughput, but each node’s output queue must be large enough to
accommodate the maximum number of outputs produced by one SIMD vector of
inputs to the node. When safety and performance considerations conflict, the appli-
cation may incur excessive memory usage and runtime overhead. In this work, we
identify properties of applications that lead to such undesirable behaviors, with ex-
amples from applications implemented in our MERCATOR framework for irregular
streaming on GPUs. To address these issues, we propose extensions to support in-
terruptible nodes that can be suspended mid-execution if their output queues fill. We
illustrate the impacts of adding interruptible nodes to the MERCATOR framework on
representative irregular streaming applications from the domains of branching search
and bioinformatics.

Keywords Irregular · Dataflow · Streaming · Queueing · Interrupt · SIMD

This work was supported by National Science Foundation award CNS-1763503.

Stephen Timcheck
Washington University in St. Louis, St. Louis, Missouri, USA
E-mail: stimcheck@wustl.edu

Jeremy Buhler
Washington University in St. Louis, St. Louis, Missouri, USA
E-mail: jbuhler@wustl.edu

2 Stephen Timcheck, Jeremy Buhler

1 Introduction

Streaming computations arise in numerous domains, including bioinformatics [1],
astrophysics [13], data integration [2], network packet inspection [10], branch-and-
bound search [6], and decision cascades in machine learning [14]. Applications of this
type process a long stream of independent data items, which makes them amenable
to running on wide-SIMD devices such as GPUs. Streaming applications can be ex-
pressed as a pipeline of compute nodes connected by edges, where incoming data is
processed by a node and then sent to the next node via a connecting edge. High-level
programming support for streaming is important to manage node execution and data
storage on edges transparently to the application designer; in this work, such sup-
port is provided by MERCATOR [3,12], a framework we previously constructed to
support streaming applications on GPUs.

Many streaming applications of interest — including those mentioned above —
exhibit irregular dataflow. In an irregular application, the number of output data items
produced per input to a node is not fixed a priori but rather varies dynamically and
unpredictably for each data item. Irregular data flow means that data must be queued
on edges between nodes, both for parallelism (i.e., accumulating a full SIMD vector
of inputs to the next node) and for safety if a node generates more output than the next
node can consume at once. The sizes of inter-node queues should be carefully chosen
based on considerations of average and worst-case node behavior [12], and schedul-
ing of an application’s nodes must then be cognizant of inter-node queue occupancy
to ensure safe and efficient execution [9].

A basic property of streaming pipelines in MERCATOR is that execution of a
compute node is uninterruptible: once the node begins to consume a SIMD vector of
inputs, it must finish before another node can be scheduled to execute. This behav-
ior arises because existing GPU runtimes do not support preemptive scheduling of
compute kernels or of functions within one kernel. As a result, for each node, there
is a minimum safe size for its output queue, namely the space needed to hold the
most output that could be generated by one vector of input. This safety constraint
must override queue sizing decisions driven by average-case performance considera-
tions, which can result in applications that allocate much more queue space than they
typically use and that may be inefficiently scheduled.

In this work, we first identify performance and memory usage problems that ap-
pear in irregular streaming applications due to safety constraints arising from uninter-
ruptible nodes. We then describe modifications to our MERCATOR framework that
enable application programmers to cooperatively support suspension and resumption
of a node, which requires saving and restoring its execution state. Finally, we bench-
mark some representative applications to evaluate the impact of interruptibility on
application performance and memory usage.

The rest of the paper is divided as follows. Section 2 examines related work, while
Section 3 describes our application model. Section 4 looks at examples of irregular
streaming applications and the impact minimum queue size restrictions have on their
performance and memory usage. Section 5 describes MERCATOR’s new interrupt-
ible node facility and the challenges of implementing interruptible nodes. Section 6

Interruptible Nodes: Reducing Queueing Costs 3

empirically evaluates interruptible nodes on two applications, NQueens and BLAST.
Finally, section 7 concludes and considers future work.

2 Related Work

Our own prior work on MERCATOR includes the design of its node scheduler [9]
and techniques for reducing overhead caused by switching from one pipeline node to
another during execution [12]. This work focuses on a mechanism to allow a node to
suspend and later resume execution and shows how, in the context of a wide-SIMD
execution model for streaming pipelines, such a mechanism can have important ben-
efits for throughput and for memory usage.

Prior work in scheduling multiple tasks on the GPU includes work on cooperative
CPU-GPU scheduling. Hyoseung et al. [5] considered a single GPU shared between
multiple non-preemptive tasks that must be scheduled sequentially. The CPU deter-
mines which GPU task to run at any given time. Kato et al.’s TimeGraph system [4]
similarly includes a CPU-side scheduling mechanism for GPU tasks, each of which
may have multiple components, and can make scheduling decisions based on task
priority. MERCATOR also manages multiple non-preemptively executing tasks, in
the form of different compute nodes in a pipeline, but the nodes along with their
scheduler are all functions within one GPU kernel. Hence, we cannot use the fa-
cilities that might be used by CPU-side schedulers, such as multithreading or timer
interrupts. Moreover, nodes communicate through the pipeline edges between them,
which raises a different set of scheduling considerations than for independent tasks.

Other work has investigated preemptive scheduling of multiple kernels on a shared
GPU, which would be desirable for, e.g., GPU virtualization and would also help
ameliorate the problems we identify with non-preemptive node execution in MER-
CATOR. One such system, Chimera [8], assumes the existence of hardware sup-
port for kernel preemption (which was simulated using GPGPU-Sim) and focuses
on how to lower the throughput and latency impacts of context switching between
kernels. While MERCATOR does not consider applications with strong latency con-
straints, our prior work also focuses on reducing throughput impacts, specifically
the frequency of required inter-node switches (which, unlike in the case of indepen-
dent tasks, are unavoidable for nodes in a streaming pipeline with finite queues). The
present work furthers the goal of switching reduction by using node interruptibility
to enable optimizations that further reduce switches and so improve throughput.

Much like Chimera, FLEP [15] seeks to enable kernel preemption on the GPU,
with a focus on speeding up high-priority kernels as well as fairly distributing time
between kernels. The authors design preemption both for the entire GPU and for spe-
cific processors on the GPU. Unlike Chimera, FLEP’s preemption does not assume
hardware support but rather is achieved partly via compiler-side transformations on
kernel code, wrapping the kernel’s interior with conditions to exit on setting a variable
available to the CPU. FLEP further uses timing information gathered from applica-
tions to estimate preemption overhead and guide decisions on when to preempt a
kernel. While MERCATOR’s scheduling decisions are not motivated by priorities,
the present work must also contend with code transformations to enable nodes to sus-

4 Stephen Timcheck, Jeremy Buhler

n0 n1 n2

g0,a0 g1,a1 g2,a2

s0 s1 s2

Fig. 1: A simple pipeline application topology. Node n0 feeds into n1, and n1 feeds
into n2. Node ni has service time si, average gain gi, and maximum gain ai.

pend at certain strategic points so that another node can run. We presently offer only
low-level facilities that enable application developers to write preemptible code man-
ually, but future work will consider the feasibility of automated, higher-level program
transformations to support node suspension and resumption.

3 Application Model

In this section, we more formally describe streaming dataflow applications and how
we map them onto a wide-SIMD execution platform. Our target for MERCATOR
applications is an NVIDIA GPU running applications written in the CUDA language;
however, this platform’s properties and limitations are typical of other wide-SIMD
targets such as AMD GPUs running OpenCL. Details of MERCATOR’s usage and
application mapping beyond those described here may be found in [12].

3.1 Application Mapping

An application is represented as a pipeline of compute nodes n0,n1, . . . with succes-
sive nodes connected by dataflow edges as shown in Figure 1. Each compute node
ni consumes a vector of up to v inputs at a time and produces a variable number of
outputs per input for the downstream node ni+1 to process later. The number of out-
puts produced per input to a node, which we call its gain, may vary dynamically in a
data-dependent fashion up to some known maximum.

An edge between two nodes has a finite queue in which data produced by the up-
stream node is stored until it can be consumed by the downstream node. We assume
that queue sizes are fixed for the duration of an application’s execution, or at least for
the time needed to process a large number of inputs, due to the high cost of dynamic
memory allocation on our target platform. When a node ni begins to consume input
from its upstream queue, it does so in SIMD vectors of up to v items at a time until
either its upstream queue empties or it cannot consume another vector of inputs with-
out potentially overflowing the remaining output space in its downstream queue. At
that point, ni must yield control to a global node scheduler, which selects other nodes
to execute until ni again has both available input data and available output space.

A GPU platform typically contains multiple processors, each of which may sup-
port multiple, asynchronous, non-communicating execution contexts (GPU blocks
in CUDA). MERCATOR runs an independent replica of the application’s pipeline
within each context, with all contexts pulling data competitively from a single shared

Interruptible Nodes: Reducing Queueing Costs 5

input stream, running asynchronously in parallel, and writing to a single shared out-
put stream. Each context’s pipeline replica has its own set of queues and its own
scheduler instance that runs nodes sequentially within that context. In what follows,
we focus on the behavior and memory usage of one pipeline replica, which processes
SIMD vectors but whose nodes are sequentially scheduled, with the understanding
that a GPU executing an application may run (and allocate queue memory for) hun-
dreds of pipeline replicas concurrently.

Finally, we emphasize that node scheduling is non-preemptive: once a node starts
to consume a vector of inputs, it cannot yield to the scheduler until those inputs have
been completely processed and any outputs from them emitted downstream. This
lack of preemption is a limitation of our target platform – CUDA does not support
preemptive scheduling of different GPU kernels or of different functions within a
single GPU kernel. Consequently, a node cannot safely consume a vector of inputs
unless it has space for the most output it could possibly generate from these inputs in
its downstream queue; otherwise, it might either overrun that queue or deadlock the
application because it cannot finish execution.

3.2 Application Performance and Queue Optimizations

A node ni’s behavior is characterized by its service time si, average gain gi, and
maximum gain ai. The service time si is the average time ni takes to process a vector
containing between 1 and v inputs, which is assumed to be constant due to the SIMD
target architecture. The gain of a node defines how many data items are output (on
average for gi, or in the worst case for ai) for each item input to ni. The average
number of outputs from ni per input to the first node n0 in the pipeline is ni’s average
cumulative gain, computed as Gi = ∏i

k=0 gk.
Our performance metric of interest for streaming dataflow applications is through-

put. Throughput depends on the node scheduler, which should schedule nodes so
as to ensure that they have full vectors of input ready to consume whenever possi-
ble. Moreover, because switching execution between nodes incurs runtime overhead,
scheduling should ideally ensure that a node can run for as long as possible before
an empty input queue or full output queue requires switching to another node. Ir-
regular dataflow forbids a priori computation of a static optimal schedule as in reg-
ular streaming dataflow models [7,11], but MERCATOR uses a scheduling policy,
Active-Full/Inactive-Empty (AFIE) [9], that ensures that nodes run with full input
vectors and limits inter-node switches to within a small constant factor of the fewest
possible even under a clairvoyant schedule.

Even with AFIE scheduling, application throughput is sensitive to the relative
sizes of inter-node queues. For example, a node with high average gain benefits from
a larger output queue because it can write more outputs before filling the queue and
forcing a return to the scheduler. Given a fixed total budget of queue memory for
one pipeline replica and the average cumulative gains Gi of each node, one may
formulate the problem of how to allocate the budgeted memory among the queues
in the pipeline so as to minimize the expected number of times the application must

6 Stephen Timcheck, Jeremy Buhler

return to the scheduler. By solving this problem analytically, we may perform queue
space distribution [12] to minimize scheduling overhead.

Finally, it may be that the overhead of queueing and dequeueing data between
two adjacent pipeline nodes ni, ni+1 exceeds the benefit to SIMD occupancy obtained
by having the queue in the first place. In such cases, it may be better to merge the two
nodes into one that performs their combined computations for each vector of inputs
to ni. Merging analysis [12] relies on knowledge both of the average gain gi and of
the service time si for each node.

4 Impact of Minimum Safe Queue Sizes

The need to enforce minimum safe sizes to accommodate uninterruptible nodes has
consequences for application performance and resource utilization. In this section, we
identify these consequences and illustrate them through two representative irregular
streaming applications from the domains of branching search and bioinformatics. A
key feature in these applications is a large gap between a node’s average gain, which
is most relevant for performance analysis, and its maximum gain, which determines
the minimum queue size needed for safety.

4.1 Example Applications

In this section and Section 6, we study two irregular streaming applications whose
pipelines exhibit the impacts of minimum safe queue sizes: NQueens and BLAST.

NQueens. The NQueens application enumerates all possible ways of placing N queens
on an N×N chess board such that no queen can attack another. The problem can be
solved using a branching search tree, in which a node at level i of the tree determines
all the feasible ways to place a queen on row i of the board given fixed placements
of queens on rows 1...i−1. Similar branching structures appear in branch-and-bound
combinatorial optimization and other tree traversal applications.

To make NQueens a streaming application, we create a pipeline of N nodes, where
node ni enumerates feasible ways to place the i+1st queen. An initially empty board
is passed to the first node, which outputs N partial boards, each with a possible place-
ment of a queen on the first row. For each such board, the second node places a queen
in all feasible ways on the second row and passes the resulting partial boards to the
third node, and so on until all complete feasible boards are enumerated. Node ni can
produce up to ai = N − i outputs per input, though some of these possibilities are
infeasible and so are discarded.

Our benchmark computation enumerates all feasible solutions for N = 18. To en-
sure adequate parallelism to occupy all GPU blocks, we precompute feasible place-
ments of the first four queens on the CPU and pass these partial boards as the input
stream to a GPU pipeline of 14 nodes.

Interruptible Nodes: Reducing Queueing Costs 7

BLAST. The Basic Local Alignment Search Tool for nucleotide sequence [1] performs
pattern matching in a large DNA database. A small DNA query sequence is compared
to the database to identify substrings that match it to within a small edit distance. The
application extracts successive substrings of length k = 8 from the database and com-
pares them to a hash table of all k-mers in the query; when a k-mer matches, the
locations of all matching k-mers in the query are enumerated, and each such match is
further verified using a series of increasingly complex filters to retain the small frac-
tion of matches that are biologically significant. BLAST is representative of a large
class of decision filter cascades that can be implemented as irregular streaming appli-
cations; other examples include Viola-Jones face recognition [14] and Snort packet
inspection [10].

The four nodes of the BLAST pipeline check the hash table, enumerate the posi-
tions of matches in the query, and implement successive filters. Of particular interest
to our work is node n1, which is responsible for enumerating k-mer matches and can
list up to 16 matching query positions for each database position. We test BLAST on
a query of length 30 Kbases from a bacterial genome against a database containing
two copies of the human genome, equalling 6.4 Gbases.

4.2 Memory Bloat

For a node ni that processes up to v inputs at once and emits at most ai outputs per
input, the minimum safe size for its output queue is aiv+ v−1 slots [9]. Clearly, aiv
slots are needed to accommodate the node’s maximum outputs from one input vector;
the remaining v−1 slots are needed to accommodate a residue from prior runs of less
than one full vector-width of items whose consumption may have been deferred in
hopes of obtaining a full vector later. In short, the minimum safe queue size scales
linearly with a node’s maximum gain.

In contrast, the ideal queue size for a node is one that minimizes the overhead
incurred by the node scheduler, which is proportional to the frequency with which
the scheduler must be called to switch between nodes. In [12], we showed that given
a fixed total amount of memory devoted to queues, the fraction of that memory that
should be allocated to a node’s output queue to minimize switching scales roughly as
the square root of a node’s average cumulative gain.

When the minimum safe size for a queue exceeds its ideal size for a given memory
budget, we say that the queue is bloated. The larger the gap between a queue’s average
cumulative gain and its (individual) maximum gain, the greater the bloat of its output
queue.

As an example, Table 1 illustrates the ideal and safe queue sizes for all 14 nodes
of the NQueens application when using SIMD vectors of size 128. Nodes early in
the pipeline have large maximum gains and hence large minimum queue sizes, since
the branching search for feasible boards at early stages has few constraints. In con-
trast, the average cumulative gain is smallest for nodes early in the pipeline, growing
rapidly with greater tree depth except at the highly constrained final stages. More-
over, all nodes individually have average gains less than (and mostly less than half)
their maximum gains.

8 Stephen Timcheck, Jeremy Buhler

In the table, we consider a total queue memory allocation of 600 MB across 368
pipeline replicas, which was determined to be on the low end of a reasonable total
queue memory allocation based on how much memory NQueens uses for input and
output streams and how much memory was available on our GPU. The output queues
for nodes early in the pipeline have smaller ideal sizes than their minimum safe sizes
and hence are bloated. The queues for nodes 0 and 1 are bloated by more than a factor
of ten. The application designer must therefore either increase its memory allocation
to accommodate the required bloat or take away memory from later nodes’ queues,
incurring more scheduling overhead as a result.

Table 1: Gains and implied queue sizes of NQueens application with 128-wide SIMD
vectors and a target allocation of 600 MB for all queues.

Node Max Gain Avg. (Cumulative) Gain Safe Queue Size (Items) Ideal Size (Items)

0 14 8.87 (8.87) 1919 44
1 13 7.46 (66.13) 1791 120
2 12 6.18 (408.62) 1663 298
3 11 5.12 (2094.02) 1535 674
4 10 4.20 (8792.57) 1407 1381
5 9 3.40 (29853.91) 1279 2545
6 8 2.71 (80990.22) 1151 4191
7 7 2.14 (173673.81) 1023 6138
8 6 1.66 (288936.00) 895 7917
9 5 1.27 (366991.64) 767 8922
10 4 0.94 (344898.36) 639 8649
11 3 0.66 (227664.25) 511 7027
12 2 0.41 (94298.90) 383 4523
13 1 0.19 (18367.82) 255 3992

The problem of bloat may be exacerbated by optimizations that attempt to merge
adjacent nodes. In the case of NQueens, analysis of service times and SIMD occu-
pancy according to [12] suggests that merging nodes 0 and 1 and eliminating the
queues between them could be beneficial for throughput. However, merging two
nodes with maximum gains a and a′ results in a combined node with maximum
gain a · a′. For this example, the minimum safe size for the merger of nodes 0 and
1 is 14 · 13 · 128+ 127 = 23423 entries – nearly 200 times the ideal queue size of
120. Adding this space to the ideal allocation shown would increase the application’s
overall queue memory usage by roughly 40%.

In short, when an application’s nodes have a large maximum gain but a small av-
erage cumulative gain, the resulting constraint on queue sizes can lead to substantial
bloat that increases memory requirements and forces deviation from the throughput-
ideal pattern of queue sizing.

Interruptible Nodes: Reducing Queueing Costs 9

4.3 Pessimistic Scheduling Behavior

Even when bloat is not a substantial concern, the disparity between a node’s average
and maximum gain can incur additional costs to execution. To illustrate the issue,
consider the queue allocations for the BLAST application shown in Table 2. The
total memory allocation is much smaller than for NQueens (only 32 KB per pipeline,
for 368 pipelines) because of the need to reserve as much GPU memory as possible
for BLAST’s sequence database. Given the application’s overall memory budget and
SIMD width, the minimum queue sizes do not incur substantial bloat except at the
last node; overall, bloat accounts for only a small fraction of the application’s overall
queue space usage (either ideal or minimum safe).

Table 2: Gains and implied queue sizes of BLAST application with 128-wide SIMD
vectors and a target allocation of 11.5 MB for all queues.

Node Max Gain Avg. (Cumulative) Gain Safe Queue Size (Items) Ideal Size (Items)

0 1 0.38 (0.38) 255 1552
1 16 1.92 (0.73) 2175 2151
2 1 0.03 (0.02) 255 392
3 1 0.000009 (0.0000002) 255 1

However, we observe that node n1, the enumeration node, exhibits a large dispar-
ity between its maximum gain (16) and its individual average gain (roughly 2). This
node cannot consume a vector of input unless it has at least 16 · 128 = 2048 slots
free in its output queue; otherwise, the vector’s output might overrun the queue in
the worst case. However, the node’s actual gain averages 246 outputs from one input
vector. Hence, after consuming one input vector, the node typically must yield to the
scheduler and cannot be run again until its output queue is emptied. Yet the node’s
queue is large enough to hold more than 8 input vectors’ worth of “typical” output!

Hence, even disregarding bloat, a node whose maximum gain greatly exceeds its
average gain typically leaves most of its output queue unused. If that space could
safely be used without fear of overrun, the node would encounter a full output queue
(and hence would need to return the scheduler) much less often.

Both bloat and pessimistic scheduling behavior are driven by nodes with maxi-
mum gains that far exceed their average individual or cumulative gains. This disparity
is traceable to a basic limitation of our model: because nodes must process their in-
puts without interruption, they need enough space to write the maximum possible
amount of output each time they run. In the next section, we describe a method to
remove this limitation.

5 Interruptible Nodes

To overcome performance and resource issues caused by large minimum queue sizes,
we extend the MERCATOR framework with support for interruptible nodes. We first

10 Stephen Timcheck, Jeremy Buhler

d e v i c e vo id
MyNode : : run (i n t x) {

i = 0 ;
w h i l e (i < M) {

i n t v = f (x , i) ;
push (v , v > 0) ;
++ i ;

}
}

Fig. 2: A MERCATOR node function that iterates over its input to produce up to M
outputs per input item. Although the code appears sequential, it runs concurrently on
an entire SIMD vector of inputs, each of which maps to the variable x in a different
CUDA thread.

describe the basic idea of interruptible nodes and why they address the problems
identified in the previous section, then describe how we implement them given the
limitations of our target platform.

5.1 Semantics of Interruptible Nodes

The key observation underlying interruptible nodes is that, while a node may produce
> 1 output per item in its input vector, it cannot actually enqueue more than v items
(the width of one SIMD vector) at a time. More specifically, a node in a MERCATOR
application emits items to its downstream queue by calling a function push(), which
takes a vector of items and a per-SIMD-lane flag indicating whether each item is valid
(and so should be emitted). Because push() cannot emit more than v items at once,
A node that may emit multiple outputs from a single input must call push() multiple
times in one run.

As an example, Figure 2 illustrates CUDA code for a MERCATOR application
node MyNode. Each SIMD lane of MyNode takes an integer input x and produces up
to M outputs. The ith potential output for a SIMD lane is computed from the input
by a function f(), and the result is pushed downstream iff it is a positive value.
This node’s maximum gain is M, but its average gain depends on the inputs and the
properties of the function f().

A single call to push() is safe so long as the downstream queue has at least v slots
available to receive outputs. This is true no matter how large the node’s maximum
gain is. Hence, in a node that may call push() several times, we wish to make each
such call a yield point – if the push would fail due to insufficient queue space, the
node should be suspended, and control should return to the scheduler. Once sufficient
space is available, the node may resume execution from the point of suspension.

Making a node interruptible addresses the performance and resource concerns
raised in the previous section. Critically, it is no longer necessary to bloat a node’s
output queue to accommodate its maximum gain ai, because the node can be sus-
pended if it would otherwise overrun the queue. The only size constraint on the out-
put queue is that it hold at least 2v− 1 entries – the minimum needed by the AFIE

Interruptible Nodes: Reducing Queueing Costs 11

scheduler for safety given pushes of size up to v items. Moreover, if (as in our BLAST
example) a node’s output queue size significantly exceeds its vector width times its
average gain, the node will likely be able to consume multiple vectors of input with-
out filling the queue and returning to the scheduler. Should the node exhaust its queue
space while processing a vector, it can now be suspended and resumed later.

5.2 Implementation Challenges for Interruptibility

A MERCATOR application is specified using a high-level pipeline description that
produces a CUDA skeleton, with stub functions for each node that are filled in by the
application developer. These functions are compiled together with MERCATOR’s
node scheduler and other runtime support code to form a single GPU kernel that
consumes a stream of inputs stored in GPU global memory. Adding interruptible
node semantics to this model is challenging due to the limitations of CUDA and so
requires cooperation from the application developer.

Ideally, CUDA device code would support a facility for saving execution state in
a way that can be resumed later, analogous to setjmp/longjmp in C or continua-
tions in functional languages. In the absence of such a facility, we chose to provide
a minimal set of extensions to let an application recognize when node suspension is
required and communicate a decision to suspend to the MERCATOR runtime. The
application developer then implements state saving and restoring as part of the node’s
code.

We extended MERCATOR’s runtime in two ways. First, the push() function
now returns a boolean value to indicate if the next call to push() might fail due to
insufficient (i.e., < v items) downstream queue space. Second, a node now returns a
boolean value to the MERCATOR runtime to indicate whether it finished processing
its input vector (and so can immediately be run again with another vector if one is
available) or had to suspend in the middle of processing a vector. In the latter case,
when a node resumes after interruption, the runtime will invoke it with the same input
vector that it was processing when it suspended execution. MERCATOR guarantees
that a suspended node will not be called again until it can successfully complete at
least one push operation of up to v items and so make progress.

The application developer’s code for a node is responsible for detecting that the
next call to push() may fail, saving its state in order to suspend itself, and later
restoring this state and resuming execution when it is called after a suspension. This
code may take advantage of MERCATOR’s per-node state facility, which lets the
developer declare state variables that can be initialized at application load time and
then read and written from within a node. Figure 3 illustrates a modification of the
node in Figure 2 to support suspension and resumption.

Even this simple example illustrates the challenges of user-directed suspension
and resumption. The state variable is shared by all CUDA threads, so writes to it
must be protected by block-wide synchronization calls to ensure that all threads see
a consistent value. Real applications may need to store multiple pieces of state in
order to resume execution. The more complex the control structure of the node (e.g.,
a push() inside nested loops), the more challenging it is to transform the code to

12 Stephen Timcheck, Jeremy Buhler

d e v i c e vo id
MyNode : : i n i t () {

i f (t h r e a d I d x . x == 0)
g e t S t a t e ()−> i = 0 ;
s y n c t h r e a d s () ;

}

d e v i c e boo l
MyNode : : run (i n t x) {

i n t i = g e t S t a t e ()−> i ;
boo l c a n C o n t i n u e = t r u e ;
w h i l e (i < M && c a n C o n t i n u e) {

i n t v = f (x , i) ;
c a n C o n t i n u e = push (v , v > 0) ;
++ i ;

}
s y n c t h r e a d s () ;

i f (t h r e a d I d x . x == 0)
g e t S t a t e ()−> i = (i == M ? 0 : i) ;
s y n c t h r e a d s () ;

r e t u r n (i == M) ;
}

Fig. 3: Modification of a node to support suspension and resumption. The current iter-
ation i, which is the only state variable that must be stored on suspension, is initialized
to 0 at application start and is then read from stored state each time the node is run.
When a push indicates that the downstream queue is full, the loop is interrupted and
its current state stored. If fewer than M iterations have completed, the node returns
false to the MERCATOR runtime to indicate that it should be suspended.

behave correctly in the presence of suspension and resumption. Future work should
investigate whether a CUDA language compiler can be extended to perform the trans-
formations needed for node interruptibility or to implement an efficient setjmp-like
facility.

Finally, we note that the code transformations needed to support interruptibility
themselves introduce overhead, in the form of additional state reads and writes and
additional synchronization. The cost of this overhead must be weighed against the
savings from fewer invocations of the node scheduler when evaluating the perfor-
mance impact of interruptible nodes.

6 Empirical Evaluation

To evaluate the quantitative impacts of interruptible nodes on application perfor-
mance and storage in MERCATOR, we implemented interruptible node support as
described in the previous section, then modified the code of our example applications
(BLAST and NQueens) to support saving and restoring of node state. We then in-
vestigated the behavior of these applications on an NVIDIA RTX 2080 GPU using
CUDA 11.2. Applications were run using inputs as described in Section 4.1 with a

Interruptible Nodes: Reducing Queueing Costs 13

SIMD vector width of 128 and used 368 pipeline replicas (the maximum number of
CUDA blocks permitted on our GPU given the applications’ register usage) to fully
occupy all processors of the GPU. All reported running times represent the average
over 50 trials.

6.1 Reduction of Scheduling Overhead

We first compared the NQueens application without interruptible node support (“NoIn-
terrupt”) to a version in which all 14 nodes of the pipeline were made interruptible
(“AllNodeInterrupt”). We did this comparison for a range of target allocations for
total queue memory, from 600 to 1400 MB summed over all queues in all replicas.
For the NoInterrupt implementation, any queue bloat required for safety was allo-
cated over and above this target value. For the AllNodeInterrupt implementation, we
allocated the same total amount of memory as for the corresponding NoInterrupt ver-
sion but redistributed the excess previously used for bloat across all the application’s
queues so as to minimize switching overhead, according to the analysis of [12].

Figure 4 shows that the net impact of interruptibility on performance was negative
– the additional cost and complexity of saving and restoring node state far outweighed
any savings from overhead reduction. This result was consistent over a range of pos-
sible targets for total memory allocated to queues.

600MB
700MB

800MB
900MB

1000MB

1100MB

1200MB

1300MB

1400MB -

2

2.2

2.4

2.6

·104

Target Queue Space for all Pipelines

O
ve

ra
ll

E
xe

cu
tio

n
Ti

m
e

(m
s)

NoInterrupt AllNodeInterrupt
4NodeInterrupt

Fig. 4: Total execution time for NQueens for different target allocationsfor total queue
memory. Measured times are the average of 50 trials and have a 95% confidence
interval of ±150 ms.

14 Stephen Timcheck, Jeremy Buhler

Recall from Table 1 that only the first few nodes of the NQueens pipeline ex-
hibited output queue bloat. To reduce the cost of interruptibility, we modified the
AllNodeInterrupt implementation so that only the first four nodes of the pipeline
were interruptible; the remaining nodes were left uninterruptible. This modified im-
plementation (“4NodeInterrupt”) exhibited a statistically significant performance im-
provement over the uninterruptible version for target allocations up to 1100 MB.

As shown in Figure 5, redistribution of space previously needed for bloat in the
first four nodes of NQueens had a salutary effect on scheduler overhead. Nodes near
the middle of the the pipeline, which have the largest average cumulative gain (i.e.,
process the most data) benefit the most from larger output queues through reduction in
scheduler calls, which we believe to be the primary source of performance improve-
ment. This benefit diminishes as the total memory allocated to queues grows, since
bloat (and hence the memory redistributed to other queues) is the excess of a queue’s
minimum safe size, which is fixed, over its optimal target size, which grows with the
overall memory allocation. Moreover, larger queues reduce the absolute number of
times the scheduler is called, which further reduces the benefit of the redistribution
optimization. Hence, we see that the difference in running time between NoInterrupt
and 4NodeInterrupt decreases with increasing target allocation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -

1

2

3

·106

Node Index

N
um

be
ro

fS
ch

ed
ul

er
C

al
ls

NoInterrupt 4NodeInterrupt

Fig. 5: Number of scheduler calls from each node for NQueens given 600MB total
queue space for all pipelines.

We then investigated whether the same strategy of targeted interruptibility was
effective for the BLAST application. Recall from Table 2 that BLAST was not sig-
nificantly bloated even at a relatively small target allocation of queue space; however,
we identified node 1, which has a max gain of 16 but an average gain of only 2, as
having a queue that was significantly underutilized. We therefore made only this node

Interruptible Nodes: Reducing Queueing Costs 15

interruptible and compared the performance of the modified application (“Interrupt”)
to that of the original, uninterruptible version (“NoInterrupt”).

Figure 6 shows that at the smallest target allocation (11.5 MB across all queues),
targeted interruptibility had a large beneficial effect on running time. As Figure 7
shows, making node 1 interruptible greatly reduced the number of times it was forced
to yield to the scheduler, as would be expected given that the node can now safely
consume multiple vectors of input before filling its output queue. Allowing this queue
to fill also reduced the frequency with which the following node, node 2, had to yield
to the scheduler due to an empty input queue.

11.5MB

17.25MB
23MB

28.75MB

34.5MB

40.25MB
46MB

51.75MB

57.5MB

63.25MB
69MB

74.75MB

80.5MB

86.25MB
92MB -

200

400

600

800

Target Queue Space for all Pipelines

O
ve

ra
ll

E
xe

cu
tio

n
Ti

m
e

(m
s)

NoInterrupt Interrupt

Fig. 6: Total execution time for BLAST for different target allocations of queue mem-
ory. Measured times are the average of 50 trials and have a 95% confidence interval
of ±50 ms.

Once again, the benefits of interruptibility were highest at small target alloca-
tions, as larger allocations (e.g., 92 MB, as shown in the figure) are naturally large
enough to permit node 1 to write multiple input vectors’ worth of worst-case output
to its output queue before yielding. Overall, we observed no statistically significant
difference in performance in the interruptible vs. uninterruptible implementations for
target allocations larger than 11.5 MB.

6.2 Combining Interruptibility with Node Merging

As discussed in Section 3, node merging to eliminate queue overhead is a potentially
useful pipeline transformation. However, for nodes with large maximum gains, merg-

16 Stephen Timcheck, Jeremy Buhler

0 1 2 3 4 -

1

2

3

4

·106

Node Index

N
um

be
ro

fS
ch

ed
ul

er
C

al
ls

11.5MBNoInterrupt 11.5MBInterrupt
92MBNoInterrupt 92MBInterrupt

Fig. 7: Number of scheduler calls from each node for BLAST at two different target
queue space allocations.

ing can result in excessive queue bloat for the merged node’s output queue – bloat
that can be ameliorated by making the merged node interruptible.

We investigated the impact of merging nodes 0 and 1 of the NQueens applica-
tion, which our analysis in [12] suggested was potentially beneficial to performance.
Without interruptibility, merging these two nodes increased the application’s actual
queue memory usage by 16-30% beyond the target, as shown in Figure 8. Making
the merged node interruptible eliminated this excess memory usage. The resulting
implementation exhibited running time similar to that of the unmerged version.

7 Conclusion and Future Work

Irregular streaming dataflow applications have great potential for wide-SIMD paral-
lelization, but this potential can be realized only by inserting queues in the application
pipeline. The “right” sizes for these queues are determined by potentially conflicting
design considerations: performance, which favors certain relative queue sizes to re-
duce scheduling overhead, and safety, which imposes often severe minimum queue
size requirements when a node can produce many outputs per input in the worst
case. We have shown that the pressure of safety on queue size can be ameliorated
by selectively making nodes interruptible, and that doing so can be a net positive for
throughput and/or queue memory usage.

Interruptibilty works best when targeted to nodes with large maximum gains but
much smaller individual or cumulative average gains. The space saved from such
node’s output queues can be removed from the application, decreasing its memory

Interruptible Nodes: Reducing Queueing Costs 17

600MB
700MB

800MB
900MB

1000MB

1100MB

1200MB

1300MB

1400MB -

600

800

1,000

1,200

1,400

1,600

Target Queue Space for all Pipelines

To
ta

lM
em

or
y

U
se

d
A

ft
er

B
lo

at
(M

B
)

NoInterrupt (01)NoInterrupt
(01)Interrupt

Fig. 8: Total actual memory used for each target allocation in NQueens before and
after merging nodes 0 and 1.

usage, or redistributed to other nodes in the pipeline, potentially increasing through-
put. Even when queue sizes do not change much after interruptibility, a node whose
average gain is far below its maximum gain can benefit from reduced scheduler over-
head when it is made interruptible. These benefits are most readily seen when the
overall target allocation of queue space to the application is smaller, since changing
queue sizes and allowing greater queue occupancy have the largest impact when the
total available queue space is small.

In the future, we hope to obtain more accurate measurements of the overhead of
interruptibility, in particular the cost of saving and restoring state. Timing these oper-
ations, which take place inside a function called within the CUDA kernel, is challeng-
ing, particularly because they may involve operations by multiple GPU threads that
run asynchronously. We also plan to better model potential increases in node switch-
ing overhead when the bloat is removed from a node’s output queue. Accounting for
these effects would allow us to better predict whether making a node interruptible is
likely to be beneficial to throughput overall and to direct the effort of optimization
accordingly.

Another avenue for investigation is whether the burden of interruptibility on the
application developer — in particular, the need to extensively rewrite code to support
interruptions — can be reduced. Ideally, the CUDA runtime would provide support
to implement suspension and resumption of nodes with appropriate saving of state
in between. Because of GPUs’ very large register files, naively saving all register
state for a block when suspending might have a prohibitive cost in time and memory;
hence, it may be preferable to leverage compiler analysis or user-provided variable
tagging to identify and save only live data at the point of suspension. Alternatively,

18 Stephen Timcheck, Jeremy Buhler

GPU support for hardware preemption would greatly aid interruptibility and might
change the preferred realization of streaming applications on the GPU entirely. The
impacts of hardware preemption for irregular streaming could be investigated now on
multicore CPUs, which have robust preemptive multithreading as well as increasingly
large SIMD vector widths.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool.
Journal of Molecular Biology 215(3), 403–410 (1990)

2. Cabrera, A.M., Faber, C.J., Cepeda, K., Derber, R., Epstein, C., Zheng, J., Cytron, R.K., Chamberlain,
R.D.: DIBS: A data integration benchmark suite. In: Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, ICPE ’18, p. 25–28. Association for Computing Machinery,
New York, NY, USA (2018)

3. Cole, S.V., Buhler, J.: MERCATOR: A GPGPU framework for irregular streaming applications. In:
2017 International Conference on High Performance Computing Simulation (HPCS), pp. 727–736
(2017)

4. Kato, S., Lakshmanan, K., Rajkumar, R., Ishikawa, Y., et al.: TimeGraph: GPU scheduling for real-
time multi-tasking environments. In: 2011 USENIX Annual Technical Conference (USENIX ATC
11) (2011)

5. Kim, H., Patel, P., Wang, S., Rajkumar, R.R.: A server-based approach for predictable GPU access
control. In: 2017 IEEE 23rd International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), pp. 1–10. IEEE (2017)

6. Kolesar, P.J.: A branch and bound algorithm for the knapsack problem. Management science 13(9),
723–735 (1967)

7. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75, 1235–1245 (1987)
8. Park, J.J.K., Park, Y., Mahlke, S.: Chimera: Collaborative preemption for multitasking on a shared

GPU. ACM SIGARCH Computer Architecture News 43(1), 593–606 (2015)
9. Plano, T., Buhler, J.: Scheduling irregular dataflow pipelines on SIMD architectures. In: Proceedings

of the 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing, WPMVP’20, pp.
1–9. Association for Computing Machinery, New York, NY, USA (2020)

10. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of the 13th USENIX
Conference on System Administration, LISA ’99, p. 229–238. USENIX Association, USA (1999)

11. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming applications. In:
R.N. Horspool (ed.) Compiler Construction, pp. 179–196. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2002)

12. Timcheck, S., Buhler, J.: Reducing queuing impact in streaming applications with irregular dataflow.
Parallel Computing 109, 102863 (2022)

13. Tyson, E., Buckley, J., Franklin, M., Chamberlain, R.: Acceleration of atmospheric Cherenkov tele-
scope signal processing to real-time speed with the Auto-Pipe design system. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 595, 474–479 (2008)

14. Viola, P., Jones, M.: Robust real-time object detection. In: International Journal of Computer Vision
(2001)

15. Wu, B., Liu, X., Zhou, X., Jiang, C.: FLEP: Enabling flexible and efficient preemption on GPUs.
ACM SIGPLAN Notices 52(4), 483–496 (2017)

Noname manuscript No.
(will be inserted by the editor)

SMSG: profiling-free parallelism modeling for
distributed training of DNN

Haoran WANG · Thibaut TACHON ·
Chong LI · Sophie ROBERT · Sébastien
LIMET

Received: date / Accepted: date

Abstract The increasing size of deep neural networks (DNNs) raises a high
demand on distributed training. Hybrid parallelism, which combines different
parallelism strategies, has been proved to an efficient option than using ei-
ther data parallelism or operator parallelism a single parallelism. Good hybrid
parallelism strategies could be found by a human expert, but it takes time
to design such suitable strategies, and it is not easy to adapt them to new
coming DNNs or variations of the existing DNNs. Thousands of new types
of DNNs have come out each recent year. Therefore, automating parallelism
strategy generation is crucial and desirable for DNN designers. Recently, some
automatic searching approaches have been studied to free the experts from
the heavy parallel strategy conception. However, these approaches all rely
on a numerical cost model, which requires heavy profiling results that lack
portability. The profiling work needs to be done again, whether the network
structure or hardware architecture changes. Besides, the large number of op-
erators and possible partition dimensions of each operator also complicate the
profiling tasks. As a result, these profiling-based approaches cannot lighten
the strategy generation work.

Our intuition is that there is no need to predict the actual execution time of
the distributed training but to compare the relative value of the cost of different
strategies for choosing a proper parallel strategy. From the previous numerical
cost models, which consider the operator as the primitive item, SMSG proposes
as an alternative a symbolic cost model based on the communication and
computation semantic. With the symbolic model, we decouple the parallel
algorithm from hardware characteristics. SMSG defines cost functions for each
kind of operator to quantitatively evaluate the amount of data for computation
and communication. Heavy profiling tasks are avoided. Besides, to control

H. WANG
20 quai du point du jour, 92100 Boulogne-Billancourt, France
Tel.: +33-640711437
E-mail: wanghaoran19@huawei.com

2 Haoran WANG et al.

the high searching complexity caused by the redistribution cost, a functional
transformation using the Third Homomorphism theorem was applied to reduce
the searching complexity. Experiments show that SMSG can find good hybrid
parallelism strategies to generate an efficient training performance similar to
the state of the art. Moreover SMSG covers wide varieties of DNN models
with good scalability. SMSG provides as well good portability when changing
training configurations that a profiling-based approach cannot.

Keywords Distributed Training · Deep Network Networks · Symbolic Cost
Model · Functional Transformation · Performance Analysis

1 Introduction

The size of DNN models has been scaling up dramatically in recent years.
Many gigantic models achieved remarkable accuracy in domains like natural
language processing (NLP) [1], computer vision [2], recommendation systems
[3], etc. The execution of such a gigantic model requires tremendous compu-
tational and memory resources [1]. To be able to train gigantic models in a
distributed way, different parallelism, like data parallelism[4], operator paral-
lelism[5] and pipeline parallelism[6], have been proposed. Different parallelisms
were initially designed for different basic model structures. Mixing parallelisms
[7] could provide not only a more general approach for modern complex struc-
tures but also a more efficient solution to train a DNN model than applying
single parallelism.

Efficient mixing parallelism with hybrid strategies could be designed by a
human expert [7]. However, it is time- and labour-consuming to find a well-
behaviour strategy for each given DNN model. Experts usually spend months
to decide an efficient parallel strategy for a new DNN model. Therefore, sys-
tematically generating efficient strategy generation is crucially desired by the
DNN model researchers.

Several strategy searching approaches, like [8–13], have been proposed and
could provide effective hybrid strategies for their targeted DNN models. How-
ever, these approaches exhibit poor generality for new-coming DNN models
because they are all based on a profiling-based cost model. The number of
operators in the modern DNN model is more than 1000 [1], and the num-
ber of possible partition dimensions increases exponentially w.r.t the number
of devices [13]. Therefore, the profiling work takes a lot of time [8]. Besides,
when the shapes or the sub-structures of a DNN change or deal with a differ-
ent hardware environment, the profiling tasks need to be prepared again. All
these time-costly tasks result in the poor generality of these approaches.

To avoid the limitations of the profiling-based approaches, we proposed a
profiling-free approach to expand the generality of automatic strategy search-
ing in this paper. Our main contributions are the followings. (i) Based on the
computation and communication semantics, we build a symbolic cost model
to quantitatively evaluate the relative cost instead of predicting the execution
time of different parallelism strategies. In this model, the cost is separated into

SMSG: profiling-free parallelism modeling for distributed training of DNN 3

two parts: the hardware parameters and the computation and communication
data quantity. We decouple the hardware characteristics from the parallel exe-
cution details with this model. Therefore, we only need to profile the hardware
parameters rather than the execution time of each operator under uncountable
configurations.

(ii) Inspired by the Homomorphism theory, we derive the strategy gener-
ation from the symbolic cost model and reduce the exponential complexity
caused by the redistribution cost between operators. Therefore, the searching
time is restricted to an acceptable range, which contributes to the generality
of our approach.

To validate the generality of SMSG, we conducted the following experi-
ments. We choose Expert-Designed strategies for targeted DNN models as the
best performance baseline, and we choose TensorOpt [8], the SOTA method of
operator-level strategy searching, as the automatic searching approach base-
line. First, we compare the strategy quality of ResNet[2] on different hardware
architectures. With careful profiling, both SMSG and TensorOpt can find the
strategy with similar end-to-end performance as the Expert-Designed strat-
egy. However, the experiments also show that the profiling-based approaches
like TensorOpt find strategies with sub-optimal performance without carefully
profiling results. Moreover, we tested SMSG on varieties of DNNs including
ResNet50/101/152, Wide&Deep [3], Bert [14], GPT-3 [1], and T5 [15]. The
similar performance of the Expert-Designed strategy validates the generality
of SMSG.

2 Modeling the cost of distributed training

2.1 Distributed strategies searching

The objective of DNN training is to find proper parameters to predict results
from new inputs. A training iteratively executes Forward Propagation (FPG)
and Backward Propagation (BPG). A FPG computes a batch of inputs using
current parameters to predict results; a BPG starts from the derivative of
the last operator back to the derivative of the first operator, computes the
gradients and updates the parameters according to the Loss. The input data
of a DNN model is always processed in a batch, i.e. dozens of or hundreds of
data items are executed simultaneously in an iteration step.

A DNN model could be represented as a computational graph, which is
a directed acyclic graph (DAG), where vertices are the operators and edges
connected to the operators signify the dataflow direction in the graph. Op-
erators are DNN-level mathematical computations such as Matrix Multipli-
cation (MatMul), Convolution (Conv), Element-wise operator (Ele-W, e.g.
Add/Mul), etc. The data of DNN training is tensor structured as a multi-
dimension array. The dimension of the tensor, which organizes data (e.g. an
image, a sentence, or a vector of features) in a batch, is called batch dimension.

4 Haoran WANG et al.

Fig. 1 Simplest computational graph with DP/MP examples

DNN training can be parallelized differently. In the paper, we take the
following the most used parallelisms as examples:

– Data parallelism partitions a batch into several mini-batches onto multi-
devices while each device owns the same entire DNN models. Data paral-
lelism is efficient for the DNNs with a small parameter size because there
is no extra communication cost except the parameter updating at the end
of each step (training iteration). The cost of parameter updating corre-
sponds to the qp in Section 2.3. However, gigantic state-of-the-art models
can have trillions of parameters [1] where data parallelism suffers from high
parameter updating costs.

– Operator parallelism which splits the other dimension except for the batch
dimension of the operator, which causes extra intra-communication which
corresponds to the qc. The number of possible dimensions of operator par-
allelism for a single operator is enormous, so the analysis of the intra-
communication cost is complicated. Besides, different dimensions parti-
tioned for connected operator generates data redistribution, which corre-
sponds to the qr.

Fig. 1 shows a computational example composed by two MatMul. The
first MatMul is partitioned along its batch dimension, which is applied Data
Parallelism, while the second one is partitioned along the vertical dimension
of its second input tensor, which is one kind of model parallelism. It can be
conducted from this graph that the output of the first MatMul is the same
tensor as the first input of the second MatMul. Data redistribution is generated
because of the mismatch of the data.

Deep Learning (DL) frameworks [16–18] can accelerate the development
of DNN models by systematically generating execution code from a computa-
tional graph. Advanced frameworks can even automatically insert communica-
tion for distributed training from parallelism strategies. A parallelism strategy
denotes along which dimensions the tensors of an operator are partitioned, as
shown in Fig. 3.

SMSG: profiling-free parallelism modeling for distributed training of DNN 5

Deciding a suitable hybrid parallelism strategy is difficult for the following
reasons: (i) Different types of operators may prefer different parallelism strate-
gies. For example, it is not suitable to partition the kernel tensor of a Conv
op because the shape of the kernel is usually 3 ∗ 3 or 5 ∗ 5. A common prac-
tice for Conv op is to partition it along its batch dimension (data parallelism)
or channel dimension (one of the possible operator parallelism strategies). [2]
(ii) Besides, the shape of the operators also affects the strategy choices. [8] A
MatMul op is more suitable for data parallelism when its parameter tensor
is small and should be configured as operator parallelism when its parame-
ter tensor is very large. (iii) The operators are not executed separately. They
are all connected in the computational graph via the edges. [19] The output
tensor of an operator is also the input tensor of its successive operator. If the
parallel strategies are different for these two operators, the tensor needs to be
redistributed in the cluster, which generates additional cost and should also
be taken into consideration.

Due to these difficulties, it is time and labour-consuming to concept ac-
curate parallelism strategies according to researchers’ expertise and experi-
ments. Moreover, expert-designed hybrid parallelism usually returns bad per-
formances when migrated to new DNN models. Therefore, systematic strategy
searching has become a crucial research topic.

2.2 Profiling-based modeling

Many parallelism strategy generators have been proposed recently: OptCNN
[11], ToFu [13], TensorOpt [8], etc. OptCNN supports operator-level (data par-
allelism and operator parallelism) parallel strategy searching automatically for
each layer (a group of operators to perform one object) in CNN with a numer-
ical cost model and a dynamic programming algorithm. ToFu and TensorOpt
extend OptCNN to generate strategies for each operator. The results of these
works show the feasibility and the potential of automatic parallelism strategy
generation.

The principal idea of distributed cost modelling is to describe the time
consummation of the distributed training. Related works[8,12] try to build
a general cost model to predict the actual execution time. They compare the
predicted time of different parallelism strategies of the given DNN on a specific
hardware platform and choose the strategy with the lowest predicted time. Let
us take OptCNN [11] as an example since other solutions are the extensions
of it.

A computational graph G = (V,E) is defined by the vertices set V such
that vi ∈ V is an operator and the edges set E such that eij represents
the dataflow direction between vi and vj . The hybrid parallelism strategy S
of the Graph G is defined as the set of operator-level strategies. Let Op an
operator, if n denotes its number of input tensors, SOp = {si, 1 ≤ i ≤ n} where
si = [xd1, xd2, ...] is a set of integer to define how to partition each tensor of
di dimension.

6 Haoran WANG et al.

The predicted global execution time T is defined as follows:

T (G,S, D) =
∑

vi∈V
(te(vi, Svi , D)+tp(vi, Svi , D))+

∑

eij∈E
tr(eij , Svi , Svj , D) (1)

– te(vi, Svi , D) is the time to execute the operator vi under its strategy. It
includes the time for local computation and the communication time caused
by the partition strategy. te is an average time measured from several
executions of the operator vi profiled with its strategy under hardware
environment D.

– tp denotes the parameter updating time at the end of each iteration (after
backward propagation). Parameter updating is usually implemented by
all-reduce, requiring the same profiling method as te.

– tr, the redistribution cost between two connected operators vi, vj , is usually
estimated by the multiplication of the data size and the known communi-
cation bandwidth.

This modelling methodology describes the total cost generated from the
distributed training. Experiments show that optimal hybrid strategies are
found in this way. However, OptCNN can only search layer-level strategies;
Tofu/TensorOpt searches operator strategies only for small DNNs. The main
limitation of these modelling methods is that they require inevitable preparing
work to profile the operator under different configurations. New types of DNNs
come out today, which also carries out new types of operator and partition
dimensions. This modelling methodology becomes unrealistic for the following
reasons: (i) A computational graph may contain thousands of operators. Even
the operators could be classed into dozens of types, but the profiling works are
required when the shape of the operators changes. (ii) For one operator, all
the dimensions of its tensors are splittable, thus causing a polynomial search
space, making the profiling work heavy. (iii) Profiling results of an operator
are heavily dependent on the hardware. Re-profiling is needed when the type,
number of the accelerator, or cluster connections change.

Due to the heavy preparation work, these profiling based modelling meth-
ods lack portability and generality. As a result, a more general method for new
DNNs with different environments is demanded.

2.3 Profiling-free modeling

The profiling task is inevitable for these approaches because, from an AI ex-
pert’s point of view, the operator is the basic unit of performance modelling
that cannot be split. As a result, te(vi, Svi , D), ts(vi, Svi , D) are unsplittable
and the values could only be estimated through profiling.

Our insight is to model the cost through a parallel computing model like
the bridging model[20]. We model the computation and communication costs
caused by parallel strategy instead of the execution time of operators and

SMSG: profiling-free parallelism modeling for distributed training of DNN 7

edges. With such a modelling methodology, the parallel execution analysis
can be decoupled with the hardware environment, which is critical in avoiding
the heavy profiling task. Besides, we do not need to compare the real pre-
dicted time to evaluate the performance of hybrid parallelism strategies S.
The relative value could compare the performance.

Based on what has been presented above, we propose the following symbolic
cost model as a metric to compare the performance of two strategies S on a
computational graph G:

C(G,S) =
∑

vi∈V
(w × qx(vi, Svi) + g × (qc(vi, Svi) + qp(vi, Svi)))+

∑

eij∈E
g × qr(eij , Svi , Svj)

(2)

In this model, the variables could be classified into two categories as follows:

– Profiled hardware parameters: w, g denote the real-time computation
capacities of the accelerator. The calibrated FLOPS and bandwidth usually
cannot be fully used, and these two values are obtained through profiling
the hardware environment.

– Data quantity function without profiling: qx(vi, Svi), qc(vi, Svi) and
qp(vi, Svi) are respectively the computation quantity, intra-communication
caused by parallelism and parameter updating communication for an oper-
ator vi under the strategy Svi . qr(e, Svi , Svj) denotes the quantity of data
redistribution caused by conflicting strategy of two connected operators.

The hardware feature and parallel costs are separated with this symbolic
modelling method. The computation and communication capacities w, g can
be estimated by profiling the hardware. The quantities qx, qc, qp and qr can be
symbolically analysed without profiling.

Various new DNNs have come out in recent years, but they are all based on
20+ computational operators (e.g. MatMul, Conv, Etc.) and 100+ element-
wise operators. These operators can be classed into 20+ types. We analyze the
semantics of these 20+ operator types and build the symbolic cost model for
each operator type under different strategies. As for the possibilities of par-
tition dimension, even though there are many dimensions for each operator,
only a few are practical for parallel training after semantic studying. For ex-
ample, Conv operator has seven possible partition dimensions including batch,
input channel, input height, input weight, output channel, kernel height, ker-
nel weight, but only batch and two channels are practical because the other
dimensions generates super large communication cost. For partitioning kernel
dimension, the communication is hard to be implemented because the shape
is usually petite, like 3× 3. As a result, we define the cost model for the 20+
types of operators with limited possible partition dimensions, which could be
generally applied to any DNN.

8 Haoran WANG et al.

map(max(0)) map(×2) reduce(+)

Fig. 2 Minimal neural network example

Fig. 3 Possible distribution of a 3D tensor over 4 devices

Our symbolic model can help find the optimal strategy because it is es-
sentially the same as the profiling-based model. In fact, the two models de-
scribe the same parallel cost in different scope, te(vi, Svi , D) in profiling-based
model is actually the summation of w × qx(vi, Svi) + g × qc(vi, Svi) in our
symbolic model. tp(vi, Svi , D) equals to g × qc(vi, Svi) and tr(e, Svi , Svj , D) =
g×qc(e, Svi , Svj). Thanks to the symbolic modeling, the heavy profiling works
are avoided. We can quantitatively evaluate the cost of computation, intra
communication and redistribution with the defined symbolic cost model. We
only profiles the communication/computation capacity of the hardware. How-
ever, because we don’t use the real profiled value, the redistribution cost of the
symbolic cost invokes high search complexity. Section 3 proposes a method to
reduce the strategy generation complexity. Although this complexity reduc-
tion comes at the cost of decreasing the quality of the strategy found, we
present a scheme to mitigate the decrease in quality. This scheme can be seen
as a heuristic-based greedy approach in which we prove that the heuristic-
based vertex reordering preserves the graph cost thanks to its definition as a
homomorphism.

3 Functional transformation and reduction

The cost of a vertex depends on its own strategy (computation amount qx,
intra-communication qc and parameter updating qp) but also of the strategy
of its neighbours (redistribution qr). Choosing a strategy for a vertex will
influence its neighbours that will influence their neighbours until the whole
graph recursively. It is impossible to find the optimal distribution strategy for
real-life deep neural networks in a reasonable amount of time.

Example We illustrate the complexity of the problem through the following
minimal example. Consider a toy neural network represented on fig. 3 of 3
operators on 3-dimensional tensors that we aim to distribute over four devices.
Operators may be, for example, a relu followed by an element-wise twofold
increase followed by the sum of all elements. Possible distributions of a 3D
tensor over four devices are all illustrated on fig. 3, and the number is 6. As

SMSG: profiling-free parallelism modeling for distributed training of DNN 9

there are three operators, the total number of possibilities for this whole tiny
graph is 63 = 216.

We plan to cut the complexity of this problem by taking decisions based on
local contexts and not questioning them afterwards, which is a greedy method.
To mitigate the difference between our cost and the optimal one, we treat
vertices by order of decreasing importance. This way, the most critical vertices
will have a strategy that benefits them the most. Although the less important
ones may not benefit from the best strategy, the global impact on performances
will be smaller. In order to justify this reordering, we formulate our algorithm
as a homomorphism that presents the benefit of being computable in any
order.

To do so, we will first introduce how the cost may be computed from a ho-
momorphism of a vertex list in sec. 3.3. However, the data-flow representation
of the computation is not a list but a directed acyclic graph (DAG). Morihata
[21] showed that the homomorphism theory (and especially its third theorem)
might be extended to trees. The only difference between a tree and a DAG lies
in the number of parents (outputs) that may be more than 1 in a DAG which
leads to the existence of several possible paths from one vertex to another.
To remove the existence of these different paths, we propose to consider the
spanning tree of the DAG that would select only one of those paths for each
case.

3.1 Notations

S is the set of all strategies of all vertices in G. We note si the strategy of
vertex vi in S. The cost of the computational graph was given by equation (3).

costop(vi, si) = w × qx(vi, si) + g ×
(
qc(vi, si) + qp(vi, si)

)

costrdst(vi, vj , si, sj) = g × qr(eij , si, sj)
(3)

This way, equation (3) can be rewritten

C(G,S) =
∑

vi∈V
costop(vi, Svi) +

∑

(vi,vj)∈E
costrdst(vi, vj , Svi

, Svj) (4)

Remark that if Svj /∈ S (because vj has not been seen yet) then
costrdst(vi, vj , Svi , Svj) = 0. Assume function strt(v) gives the set of possible
strategies for a given vertex v. The strategy generation consists of taking for
each vertex the strategy that minimizes its cost. It may be expressed recur-
sively as

10 Haoran WANG et al.

v0 v1 v2 v3 v4

v0 (v1 (v2 (v3 (0, v4))))⊕ ⊕ ⊕ ⊕

(c, v0)

c

h

⊕

fst

(a) Leftward processing of costall rdst

v0v1v2v3v4

v0v1)v2)v3)((((0, v4) ⊗⊗⊗⊗

(c, v0)

c

h

⊗

fst

(b) Rightward processing of costall rdst

Fig. 4 Leftward and rightward processing of costall rdst over a vertex list

costv (vi, si, S,G) = costop(vi, si) +
∑

(vi,vj)∈E costrdst(vi, vj , si, sj)

search(vi, S,G) = S ∪ {si} such that si ∈ strt(vi) minimizes costv (vi, si, G, S)

S0 = ∅
Si<|V | = search(vi, Si−1, G)

(5)

The remaining of this section will express equations (5) as a homomor-
phism. As a preliminary, we introduce the following notations taken from [22].
hom(⊕, f, a)(l) is a homomorphism that maps function f on each element of
l before reducing with the binary operator ⊕ whose first application will be
with initialization element a. For example

hom(⊕, f, a)([x, y, z]) = a⊕ f(x)⊕ f(y)⊕ f(z)

We note α list the type of list of elements of type α. Function will be noted
in curry notation. For example, f : A→ B → C is the function f , that when
applied to an argument of type A will produce a function of type B → C that
when applied to an argument of type B will produce a value of type C. We
use ++ : α list → α list → α list as the concatenation operator. The function
composition is noted (f ◦ g)(x) = f(g(x)). To access elements of a couple, we
use fst(x, y) = x and snd(x, y) = y.

3.2 Redistribution cost as a homomorphism

We define the leftward operation costall rdst to compute all redistribution cost
of a linear graph (list). A leftward operation is a recursive operation for which
the elements are added to the left (input) side (see fig. 4(a)). To be a leftward
operation, costall rdst needs to be defined in the form

SMSG: profiling-free parallelism modeling for distributed training of DNN 11

h([v] ++x) = v ⊕ h(x)

with

h : α list → β list

⊕ : α→ β → β

We instantiate this form with the operation costall rdst leftward

costall rdst = fst ◦ h
h([v] ++x) = v ⊕ h(x)

h([v0]) = (0, v0)

vi ⊕ (c, vj) = (c+ costrdst(vi, vj , si, sj), vi)

(6)

Suppose that S, for which si, sj ∈ S, is a global constant fixed for the whole
cost computation. As edges direction have no influence on the redistribution
cost, function costall rdst is also computable rightward (in the output direction,
as illustrated in fig. 4(b)). A rightward operation must respect the form

h(x++[v]) = h(x)⊗ v

with

h : α list → β list

⊗ : β → α→ β

We instantiate this form with the operation costall rdst rightward

costall rdst = fst ◦ h
h(x++[v]) = h(x)⊗ v

h([v0]) = (0, v0)

(c, vj)⊗ vi = (c+ costrdst(vi, vj , si, sj), vi)

(7)

Thus, by the third homomorphism theorem [22], costall rdst is a homomor-
phism because it is defined both leftward (eq. (6)) and rightward (eq. (7)).

3.3 Cost and strategy generation as a homomorphism

The intra-communication cost is defined directly as the homomorphism

costall op = hom(+, costop , 0)

Hence, the whole cost of the graph may be defined as the addition of the
two homomorphisms

cost l(l) = costall op(l) + costall rdst(l)

The two may also be computed together as

12 Haoran WANG et al.

cost l = fst ◦ h
h([v] ++x) = v ⊕ h(x)

h([v0]) = (costop(v0, s0), v)

vi ⊕ (c, vj) = (c+ costrdst(vi, vj , si, sj) + costop(vi, si), vi)

(8)

and symmetrically for the rightward notation.

cost l = fst ◦ h
h(x++[v]) = h(x)⊗ v

h([v0]) = (costop(v0, s0), v)

(c, vj)⊗ vi = (c+ costrdst(vi, vj , si, sj) + costop(vi, si), vi)

(9)

In this case too, the third homomorphism theorem tells us that cost l is
a homomorphism because it is defined both leftward (eq. (8)) and rightward
(eq. (9)). Now that we have shown how the cost may be formulated as a
homomorphism, the strategy generation may be in turn written leftward

S = fst ◦ h
h([v] ++x) = v ⊕ h(x)

h([v0]) =
(
search(v0, ∅, []), [v0]

)

vi ⊕ (S,L) =
(
search(vi, S, L), vi ++L

)
(10)

and rightward

cost l = fst ◦ h
h(x++[v]) = h(x)⊗ v

h([v0]) =
(
search(v0, ∅, []), [v0]

)

(S,L)⊗ vi =
(
search(vi, S, L), vi ++L

)
(11)

The strategy generation being a homomorphism allows us to state that the
vertex list (linear graph) may be processed in any order. This homomorphism
may be extended to trees thanks to the work of Morihata [21]. Trees differ
from DAGs in the sense that a node may have several parents in the case of a
DAG. To address this issue, we treat the DAG as its spanning tree (only pick
one parent of each node) while computing the redistribution cost with respect
to all of the DAG edges. This allows us to treat any DAG cases, but our proof
that the reordering of the vertices preserves the cost cannot be extended to
DAGs.

4 Evaluation

4.1 Experiment environment

DNN models: We evaluate SMSG on real-world DNN models:

SMSG: profiling-free parallelism modeling for distributed training of DNN 13

– Computer Vision:
– ResNet50 with Cifar10 dataset,
– ResNet50/101/152 [2] with ImageNet dataset,
– Fully Convolution Network (FCN) [23];

– Recommendation Systems:
– Wide&Deep [3] with Criteo dataset;

– Neural Language Processing:
– BERT [14],
– PanGu-Alpha 2.6B and 13B [24] (B stands for billion, which signifies

the size of parameters),
– T5 [15] (Text-to-Text Transfer Transformer) with dedicated text

dataset respectively.

Evaluation metric: We choose the average step time to compare the
performance of the hybrid parallel strategies. Step time is the training time of
one batch of data, including the FPG and BPG, which is inversely proportional
to throughput. Shorter step time denotes better performance.

Hardware environments: The experiments are conducted on an At-
las900 AI cluster [25]. Each Atlas node is composed of eight Ascend910 ac-
celerators. Our experiments test until 32 accelerators where the four nodes
are connected with a 32-port switch. All the Ascend910 clusters are inter-
connected directly, even from a different node. We also implemented an 8
NVIDIA-V100 GPU cluster as a control group to show the better portability
of our approach.

Deep Learning Framework: Our experiments are conducted on Mind-
Spore, which supports automatically lancer distributed training with a given
strategy. The strategy found by SMSG will be taken as an input for Mindspore,
and the training will be conducted on this DL framework.

Searching Algorithm: SMSG offers the ability to modeling the cost and
compute it with the homomorphism. As for the searching algorithm, we imple-
mented a linear-complexity searching algorithm D-Rec [26] for the experiments
in this section.

Baseline: We choose Expert-Designed strategies for each specific real-
world DNN model as the baseline and compare its step time with that of
the strategy found by SMSG. To show the better portability of SMSG than
the profiling-based approaches, we choose TensorOpt [8] as the competitive
approach, which is the SOTA approach in 2021.

4.2 Generality

We tested the quality of the hybrid parallel strategy found by SMSG in an ex-
tensive range of real-world DNN models. Table 1 shows the average step times
of training varieties of DNN models with Expert-Designed strategies and the
strategies found by SMSG. The last column shows the performance percentage
of SMSG to Baseline (high than 100% denotes a better performance). It can
be found that the minimum performance percentage of SMSG to the baseline

14 Haoran WANG et al.

Performance: step time/ms (8 Ascends)
DNN models Baseline SMSG Percentage

CV

ResNet50-cifar 48.58 45.91 105.83%
ResNet50-ImageNet 57.53 61.18 94.03%
ResNet101-ImageNet 86.73 93.38 92.88%
ResNet152-ImageNet 120.57 127.46 94.59%
FCN 485 512 94.72%

Rec.Sys. Wide&Deep 21.6 22.38 96.51%

NLP

BERT 110.63 122.38 90.40%
PanGu-Alpha 2.6B 4826 4876 98.91%
PanGu-Alpha 13B 13990 13988 100.01%
T5 1288 1279 100.70%

Table 1 Performance on varieties of DNN models

is 90.40% for the BERT model. The experiments show that SMSG can find
good hybrid strategies for varieties of real-world DNN models with a correct
performance higher than 90% to the Expert-Designed strategies.

The hardware parameters and quantity functions are separated thanks to
the profiling-free modelling. SMSG only profiles the communication and com-
putation of the 8 Ascends cluster one time (it takes a few minutes), and the
hardware parameter values can be generally used for all the DNN models. The
DNN models are different compositions of the 20 kinds of operators. SMSG
shows its generality in searching for varieties of DNN models with the prede-
fined quantity functions and the one-time profiled cluster parameters.

4.3 Portability

The experiments in this subsection demonstrate the portability of SMSG and
the profiling-based approach when the training environments are changed. For
the profiling-based approaches like TensorOpt, profiling the operators under
different parallel configurations of typical DNN models usually takes more
than one day. On the contrary, for SMSG, profiling a hardware configuration
takes only some minutes. In this section, the results of SMSG shown in Table
2 and Table 3 are obtained with the profiled communication and computation
capacity on targeted hardware architecture because it only takes some minutes.
However, for the TensorOpt, we kept one profiling base and varied the training
configurations to show the impact of the profiling data. We choose two typical
DNN models, ResNet152-ImageNet and Wide&Deep, to test.

Table 2 shows the percentage performance of TensorOpt and SMSG w.r.t.
the number of cluster devices. Both for ResNet and Wide&Deep, it can be
easily conducted that with the increase in devices numbers, the quality of
strategies found by TensorOpt decreases because they do not have enough
profiling data of the possible partition dimensions, so they missed the opti-
mal strategies. However, the profiling-free approach SMSG can keep a good
strategy quality because of the leveraged profiling time.

SMSG: profiling-free parallelism modeling for distributed training of DNN 15

Performance: Percentage w.r.t the Baseline

DNN models Dev. Num.
TensorOpt

(Profiled with
8 Ascend)

SMSG

ResNet152-
ImageNet

8 93.16% 94.59%
16 79.15% 110.74%
32 63.25% 90.17%

Wide&Deep
8 96.23% 96.51%
32 59.96% 102.82%

Table 2 Portability w.r.t. the scale of cluster

Performance: Percentage w.r.t the Baseline

Profiling Base DNN models
TensorOpt
(8 Ascends)

TensorOpt
(8 GPUs)

SMSG

8 GPUS
ResNet152-ImageNet 62.12% 99.18% 99.53%

Wide&Deep 49.55% 98.25% 98.33%

8 Ascend
ResNet152-ImageNet 98.16% 71.56% 94.59%

Wide&Deep 97.23% 66.89% 96.51%

Table 3 Portability w.r.t. hardware architecture

Same conduction can be made from Table 3 that searching the strategy
with different profiled data from a different architecture for TensorOpt, the
decrease of strategy quality is evident, while SMSG keeps good results. The
cost model of TensorOpt is based on the profiled execution time of operators
on the actual hardware. The execution time of an operator with the same
parallel strategy is different on GPUs and Ascends. That is why the strategy
quality of TensorOpt decreases when executed on GPUs with profiling data
on Ascends. Heavy profiling tasks (a few days) limit the portability of these
profiling-based approaches, while SMSG with a lightened profiling job is more
practical.

5 Conclusion

This paper proposes SMSG, a profiling-free strategy generation method for
distributed DNN training. The main idea of SMSG is that its symbolic cost
model is built based on the relative cost instead of the execution time. The
hardware parameters and similar data quantity functions are separated. The
cost functions can be optimized independently from the hardware. Besides,
we introduce homomorphism to re-organize the redistribution cost so that the
searching algorithm does not have graph topology dependency. These two con-
tributions offer us the generality and portability for the DNN parallel strategy
generation.

References

1. T. Brown, B. Mann, N. Ryder, et al., in Advances in Neural Information Processing
Systems, vol. 33 (Curran Associates, Inc., 2020), vol. 33, pp. 1877–1901. URL

16 Haoran WANG et al.

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf

2. K. He, X. Zhang, S. Ren, J. Sun, in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016), pp. 770–778. DOI 10.1109/CVPR.2016.90

3. H.T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah,
in Proceedings of the 1st Workshop on Deep Learning for Recommender Systems (As-
sociation for Computing Machinery, New York, NY, USA, 2016), DLRS 2016, p. 7–10.
DOI 10.1145/2988450.2988454. URL https://doi.org/10.1145/2988450.2988454

4. A. Krizhevsky, I. Sutskever, G.E. Hinton, in Advances in neural information processing
systems (2012), pp. 1097–1105

5. J. Dean, G.S. Corrado, R. Monga, et al., in Proceedings of the 25th International Con-
ference on Neural Information Processing Systems - Volume 1 (Curran Associates Inc.,
Red Hook, NY, USA, 2012), NIPS’12, pp. 1223—-1231

6. Y. Huang, Y. Cheng, A. Bapna, O. Firat, M.X. Chen, D. Chen, H. Lee, J. Ngiam,
Q.V. Le, Y. Wu, Z. Chen, GPipe: Efficient Training of Giant Neural Networks Using
Pipeline Parallelism (Curran Associates Inc., Red Hook, NY, USA, 2019)

7. M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzaro, arXiv preprint
arXiv:1909.08053 (2019)

8. Z. Cai, X. Yan, K. Ma, Y. Wu, Y. Huang, J. Cheng, T. Su, F. Yu, IEEE Transactions on
Parallel and Distributed Systems 33(8), 1967 (2022). DOI 10.1109/TPDS.2021.3132413

9. S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long, J. Yang, L. Xia,
L. Diao, X. Liu, W. Lin, in Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Association for Computing Machin-
ery, New York, NY, USA, 2021), PPoPP ’21, p. 431–445. DOI 10.1145/3437801.3441593.
URL https://doi.org/10.1145/3437801.3441593

10. J.M. Tarnawski, D. Narayanan, A. Phanishayee, in Advances in Neural Information
Processing Systems, vol. 34, ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
J.W. Vaughan (Curran Associates, Inc., 2021), vol. 34, pp. 24,829–24,840. URL
https://proceedings.neurips.cc/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-
Paper.pdf

11. Z. Jia, M. Zaharia, A. Aiken, in Proceedings of Machine Learning and Systems,
vol. 1, ed. by A. Talwalkar, V. Smith, M. Zaharia (2019), vol. 1, pp. 1–13. URL
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-
Paper.pdf

12. Z. Jia, S. Lin, C.R. Qi, A. Aiken, (PMLR, 2018), Proceedings of Machine Learning
Research, vol. 80, pp. 2274–2283. URL http://proceedings.mlr.press/v80/jia18a.html

13. M. Wang, C.c. Huang, J. Li, (Association for Computing Machinery, New
York, NY, USA, 2019), EuroSys ’19. DOI 10.1145/3302424.3303953. URL
https://doi.org/10.1145/3302424.3303953

14. J. Devlin, M.W. Chang, K. Lee, K. Toutanova, in Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers) (Association
for Computational Linguistics, Minneapolis, Minnesota, 2019), pp. 4171–4186. DOI
10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423

15. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, P.J. Liu, Journal of Machine Learning Research 21(140), 1 (2020). URL
http://jmlr.org/papers/v21/20-074.html

16. M. Abadi, P. Barham, J. Chen, et al., in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) (USENIX Association, Savannah,
GA, 2016), pp. 265–283. URL https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/abadi

17. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., in Advances in neural information processing systems
(2019), pp. 8026–8037

18. MindSpore. https://www.mindspore.cn/
19. H. Wang, C. Li, T. Tachon, H. Wang, S. Yang, S. Limet, S. Robert, in European Con-

ference on Parallel Processing (Springer, 2021), pp. 201–216

SMSG: profiling-free parallelism modeling for distributed training of DNN 17

20. L.G. Valiant, Journal of Computer and System Sciences 77(1), 154 (2011)
21. A. Morihata, K. Matsuzaki, Z. Hu, M. Takeichi, SIGPLAN Not. 44(1), 177–185 (2009).

DOI 10.1145/1594834.1480905. URL https://doi.org/10.1145/1594834.1480905
22. J. Gibbons, Journal of Functional Programming 6(4), 657–665 (1996). DOI

10.1017/S0956796800001908
23. A. Schwing, R. Urtasun, (2015)
24. W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang, Z. Yang, K. Wang,

X. Zhang, C. Li, Z. Gong, Y. Yao, X. Huang, J. Wang, J. Yu, Q. Guo, Y. Yu, Y. Zhang,
J. Wang, H. Tao, D. Yan, Z. Yi, F. Peng, F. Jiang, H. Zhang, L. Deng, Y. Zhang, Z. Lin,
C. Zhang, S. Zhang, M. Guo, S. Gu, G. Fan, Y. Wang, X. Jin, Q. Liu, Y. Tian, CoRR
abs/2104.12369 (2021). URL https://arxiv.org/abs/2104.12369

25. Atlas900. https://e.huawei.com/en/products/cloud-computing-dc/atlas/atlas-900-ai
26. H. Wang, C. Li, T. Tachon, H. Wang, S. Yang, S. Limet, S. Robert, in European Con-

ference on Parallel Processing (Springer, 2021), pp. 201–216

