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Resumo

As linguagens de programação em lógica, como o Prolog, são baseadas em clausulas de

Horn e fornecem um mecanismo de inferência bem reconhecido. Apesar do Prolog ser

uma linguagem popular e bem sucedida, o seu potencial é limitado pelo seu método

de resolução que é baseado na resolução SLD.

A tabulação é uma técnica poderosa e reconhecida que melhora a declaratividade e

expressividade, dos sistemas tradicionais de Prolog, em programas com recursão e

computações redundantes. Muito resumidamente, a tabulação consiste em armazenar

respostas intermédias para subgolos de forma a que estas as respostas possam ser

reutilizadas quando um subgolo similar aparece. A técnica de tabulação pode, assim,

ser vista como uma ferramenta natural para a resolução de problemas de programação

dinâmica, onde uma estratégia recursiva geral divide um problema em sub-problemas

mais simples que, muitas vezes, são os mesmos.

Multithreading é uma técnica que permite aos computadores a execução de um pro-

grama usando em simultâneo de vários caminhos de execução num único processo, não

necessitando portanto de ter uma cópia completa do programa em cada caminho de

execução. Quando a tabulação é combinada com multithreading, temos o melhor dos

dois mundos, uma vez que podemos explorar a combinação de uma semântica mais

declarativa com um maior controle processual. No entanto, apesar da disponibilidade

de ambos a tabulação e multithreading em alguns sistemas Prolog, a implementação

dessas duas técnicas em conjunto implica laços complexos ao ńıvel do mecanismo de

suporte subjacente inerente ao sistema Prolog.

Nesta tese, propomos uma nova abordagem para a combinação de tabulação com

multithreading, onde cada caminho de execução vê suas tabelas como privadas, mas,

para ao ńıvel do mecanismo de suporte subjacente ao Prolog, teremos um espaço de

tabela comum onde as tabelas são compartilhadas entre todos os caminhos de execução.

Nós apresentaremos três arquiteturas para a nossa abordagem de espaço de tabelas
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comum: No Sharing (NS), Subgoal Sharing (SS) e Full Sharing (FS), e mostramos como

explorar suas vantagens. Além disso, apresentaremos um novo alocador de memória

e dois tipos de estruturas de dados lock-free que são destinadas especialmente para

ambientes com as caracteŕısticas do nosso ambiente de trabalho. Os resultados obtidos

nesta tese são muito promissores e abrem várias direções de pesquisa para trabalhos

futuros.
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Abstract

Logic programming languages, such as Prolog, are derived from Horn Clause Logic and

provide a well understood resolution based inference mechanism. Although Prolog is a

popular and successful language, its potential is limited by the SLD resolution method

on which it is based.

Tabling is a recognized and powerful technique that improves the declarativeness and

expressiveness of traditional Prolog systems in dealing with recursion and redundant

computations. In a nutshell, tabling consists of storing intermediate answers for

subgoals so that they can be reused when a similar subgoal appears. The tabling

technique can thus be viewed as a natural tool to implement dynamic programming

problems, where a general recursive strategy divides a problem in simple sub-problems

that, often, are the same.

Multithreading is a technique that enables computers to support multiple concurrent

paths of execution within a single process without the need of having an entire copy

of the program. When tabling is combined with multithreading, we have the best of

both worlds, since we can exploit the combination of higher declarative semantics

with higher procedural control. However, despite the availability of both tabling

and multithreading in some Prolog systems, the implementation of these two features

implies complex ties to each other and to the underlying engine.

In this thesis, we propose a new approach for multithreaded tabling where each thread

views its tables as private but, at the engine level, we will use common table space

where tables are shared among all threads. We present three designs for our common

table space approach: No Sharing (NS), Subgoal Sharing (SS) and Full Sharing

(FS), and show how to exploit their advantages. Additionally, we introduce a novel

memory allocator and two lock-free trie data structures that are specially aimed for

environments with the characteristics of our framework. The results obtained with

this thesis are very promising and open several research directions for future work.
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Chapter 1

Introduction

The main goal of a programming language is to enable the communication between

humans and machines in order to define problems and their general means to obtain so-

lutions. The first programing languages were machine languages. To communicate, the

programmer had to learn how to express problems in machine-oriented terms. Higher-

level languages, developed from machine languages, through the provision of facilities,

for the expression of problems, in terms closer to the problem’s conceptualization. It

is believed that higher-level languages are particularly helpful in developing succinct

and correct programs that are easy to write and understand. Logic programming

languages, together with functional programming languages, form a major class of

languages, called declarative languages, and because they are based on the predicate

calculus, they have a strong mathematical basis [4]. Arguably, Prolog is the most

popular and powerful logic programming language. Prolog gained its popularity mostly

because of the success of the sophisticated compilation technique and abstract machine

known as the WAM (Warren’s Abstract Machine), presented by David H. D. Warren

in 1983 [133].

The operational semantics of Prolog is given by SLD resolution [65], an evaluation

strategy particularly simple that matches current stack based machines particularly

well, but that suffers from fundamental limitations, such as in dealing with recursion

and redundant sub-computations. Tabling is a recognized and powerful implementa-

tion technique that overcomes the limitations of traditional Prolog systems in dealing

with redundant sub-computations and recursion and that can considerably reduce the

search space, avoid looping and have better termination properties than pure SLD

resolution [27].
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Tabling consists of storing intermediate answers for subgoals so that they can be reused

when a repeated subgoal appears during the resolution process. Tabling has become

a popular and successful technique thanks to the ground-breaking work in the XSB

Prolog system and in particular in the SLG-WAM engine [110], the most successful

engine of XSB. The success of SLG-WAM led to several alternative implementations

that differ in the execution rule, in the data-structures used to implement tabling, and

in the changes to the underlying Prolog engine. Currently, the tabling technique is

widely available in systems like XSB Prolog [125], Yap Prolog [118], B-Prolog [138],

ALS Prolog [48], Mercury [120], Ciao Prolog [28] and more recently in Picat [140].

Multithreading is a type of execution model that allows multiple threads to coexist

within the context of a process such that they execute independently but share the

process resources. The increasing availability of computing systems with multiple

cores sharing the main memory is already a standardized, high-performance and viable

alternative to the traditional (and often expensive) shared memory architectures. The

number of cores per processor is expected to continue to increase, further expanding

the potential for taking advantage of multithreading support. As consequence, mul-

tithreading has become an increasingly popular way to implement dynamic, highly

asynchronous, concurrent programs. Multiple examples of frameworks exist that

exploit the modern multicore architectures currently available. For example, for imper-

ative programming languages, the Cilk [21] and Intel Threading Building Blocks [102]

frameworks provide runtime systems for multithreaded parallel programming, provid-

ing programmers with the means to create, synchronize, and schedule threads in an

efficient fashion. For functional programming languages, the Eden [75] and HDC [59]

Haskell based frameworks allow the users to express their programs using polymorphic

higher-order functions. For object-oriented programming languages, the MALLBA [2]

and DPSKEL [89] frameworks also showed relevant speedups in the parallel evaluation

of combinatorial optimization benchmarks.

In the specific case of Prolog, when multithreading is combined with tabling, one can

have the best of both worlds, since one can exploit the combination of higher procedural

control with higher declarative semantics. In a multithreaded tabling system, tables

may be either private or shared between threads. While thread-private tables are easier

to implement, shared tables have all the associated issues of locking, synchronization

and potential deadlocks. Here, the problem is even more complex because we need to

ensure the correctness and completeness of the answers found and stored in the shared

tables. Thus, despite the availability of both threads and tabling in Prolog compilers

such as XSB, Yap, and Ciao, the implementation of these two features such that they
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work together seamlessly implies complex ties to one another and to the underlying

engine.

1.1 Thesis Purpose

One of the great advantages of Prolog is its potential for the implicit exploitation of

parallelism. Many references to parallel Prolog systems exist in the literature [51],

being the most common proposals those that exploit Or-Parallelism and/or And-

Parallelism. Or-parallelism corresponds to the simultaneous execution of the body of

different clauses, thus it is used when more than one clause unifies with the current call.

And-Parallelism corresponds to the simultaneous execution of the subgoals contained

in a clause’s body, thus it is used when more than one subgoal occurs in the body of

the clause.

Given the advantages of tabling evaluation, the question that arises is if a tabling

mechanism has the potential for the exploitation of parallelism/concurrency. On one

hand, tabling still exploits a search space as traditional Prolog, but on the other hand,

the parallel/concurrent model of tabling is necessarily far more complex than the tradi-

tional models of parallelism, once it also introduces concurrency on the access to tables.

Currently, only the Yap [105, 109] and the XSB [76] systems combine tabling with some

form of parallelism/concurrency. Yap combines the tabling-based SLG-WAM [110]

execution model with Or-Parallelism using shared memory processes to exploit the

advantages of shared memory architectures. XSB also extends the tabling execution

model based on the SLG-WAM to support concurrency, using threads instead of

processes. In XSB, the SLG-WAM was extended with a concurrent shared tables

model that ensures the correct execution of concurrent sub-computations. However,

the practical results of using this model are still limited [12].

In this thesis, we follow XSB’s approach and we exploit the potential of Prolog for

explicit parallelism/concurrency using threads. The current version of Yap (which is

our base Prolog system) includes support for multithreading, but its implementation

was not compatible with the current tabling engine. This thesis aims to create a

robust and efficient solution that allows the integration of both mechanisms not only

for Yap, but also for systems based on similar tabling and multithreaded mechanisms.

Together with the expected increase in the number of cores per processor in the next

generation architectures, this thesis is a contribute for making Prolog an even more

powerful programming language since, at least, the Yap system offers the advantages
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of concurrent tabling.

Accordingly, our journey begun with the study and implementation of three concurrent

designs to support different levels of concurrency within the table spaces. These

designs represent alternative trade-offs between concurrency and memory usage. In

the first design, we avoid concurrency by allowing threads to consume all memory in

a private fashion. In the second design, threads share part of the table space in a

concurrent fashion, while in the third design, threads fully share the table space. In

order to understand the advantages and limitations of each design, next we selected

and adopted a set of benchmarks that could expose the vulnerabilities of each design.

These benchmarks create worst case scenarios, where an arbitrary number of threads

is used to evaluate exactly the same sub-computations [8]. One of the initial main

limitations found, that was common to all designs, was the memory management. Thus

we studied and implemented a new state-of-the-art memory allocator that minimizes

the performance degradation that the designs suffered when exposed to simultaneous

memory allocation requests [6].

Arguably, one of the greatest challenges that we have faced during the development

of the thesis, was the question of whether we could or not improve the performance of

Yap when handling concurrent data structures. This question led us to a hot topic in

the parallel community which was lock-free data structures. With lock-free, we were

able to reduce granularity of the synchronization, using low-level tools such as atomic

compare-and-swap operations. A deep study led us to the development of two new

state-of-the-art lock-free trie data structures, specially aimed from environments with

the characteristics of our system [13, 10, 11, 14].

It is somehow painful to recognize that, currently, Prolog systems are not in the same

position as they were in the 80’s. Other programming paradigms, languages and

frameworks have positioned themselves as stronger alternatives. A major purpose of

this thesis is them to get back part of the glamour of Prolog systems, specially in

the parallel programming community. To do so, we will show how to take advantage

of our multithreaded tabling framework to scale well-known dynamic programming

problems [12]. With all these contributions and the ones that we discuss at the end,

as further work, we hope to pinch Prolog and our specific implementation towards

an efficient and novel parallel framework that can be useful to everyone interested in

parallel programming.
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1.2 Thesis Outline

This thesis is structured into eight chapters that reflect the work developed. Next,

follows a summary of the main topics presented and discussed in each chapter.

Chapter 1: Introduction. The current chapter.

Chapter 2: Prolog and Multithreaded Tabling. Introduces the background ter-

minology related with logic programming, the Prolog language and tabling.

Focus is then given to the combination of tabling with multithreading, which

is the core topic of this thesis.

Chapter 3: Concurrent Table Space Designs. Presents the three new concur-

rent designs for supporting multithreaded tabling at the table space level and

their implementation in Yap Prolog, named as the YapTab-Mt framework.

Chapter 4: Concurrent Memory Allocation. Presents an efficient and scalable

user-level memory allocator specially aimed for environments with the charac-

teristics of our multithreaded tabling framework.

Chapter 5: Lock-Free Data Structures. Presents two proposals for lock-free data

structures that address concurrency within table space data structures. For each

proposal, it discusses the implementation of the concurrent search and insert

operations, the correctness of the proposal and its efficiency in the context of

the YapTab-Mt framework.

Chapter 6: Batched Scheduling on Concurrent Table Spaces. Describes key

implementation details necessary to extend the system to support concurrent

batched scheduling and presents a performance analysis comparison between

local and batched scheduling. As we will observe, the default implementation

supports local scheduling.

Chapter 7: Subgoal-Sharing with Shared Answers. Discusses how to scale the

execution of concurrent tabled programs using a subgoal-sharing design.

Chapter 8: Conclusions. Discusses the research and contributions of the thesis to

the state-of-the-art in multithreaded tabling systems and suggests directions for

future work.
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Chapter 2

Prolog and Multithreaded Tabling

This chapter introduces the background needed for the following chapters. First, it

describes the background terminology related with Logic Programming, the Prolog

language and tabling. Next, it introduces multithreading in the context of logic

programs and gives an overview about the state-of-the-art systems on the combination

of tabling with multithreading, which is the core topic of this thesis.

2.1 Logic Programming

Logic Programming roots started mostly with Robinson in 1965, when he began the

research for an automated theorem proving tool, on his work about the Resolution

Principle [104]. The resolution principle is based on the induction principle “if the

implication A ⇒ B is true, then to prove B, it is sufficient to prove A”. The

expression Logic Programming was introduced afterwards by Kowalski, to designate

the use of logic as the theoretical base for computer programming languages [64].

Kowalski showed how Selected Linear Deduction (SLD) resolution treats implications

as deduction procedures. Kowalski and Kuehner argued that SLD resolution was the

best inference system for first order logic, because it fills the following criteria [65]:

• Admits few redundant deductions and limits those which are irrelevant to a

proof ;

• Admits simple proofs;

• Determines a search space which is amenable to a variety of methods for heuristic
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search.

The completeness of SLD resolution ensures that, by applying SLD resolution to a

theory (or computer program) and a query, is it possible to use the theory to search

for all solutions that satisfy the query [29, 3, 74].

Logic Programming is based on predicate calculus. An algorithm is seen as a set of two

disjoint elements: logic and control. The logic component corresponds to the definition

of the problem to be solved, while the control component, defines how the solution

can be reached. The programmer needs only to specify the logic component of the

algorithm, which is the problem to be solved, and leave the control of execution to the

Logic Programming system.

According to Karlsson [62], Prolog as become the most popular Logic Programming

language due to its efficient implementations. Prolog has the following major features:

• Variables are logical variables which can be instantiated only once;

• Variables are untyped until instantiated;

• Variables are instantiated via unification, a pattern matching operation finding

the most general common instance of two data objects;

• At unification failure the execution backtracks and tries to find another way to

satisfy the original query.

Common literature, also recognizes that Prolog has the following advantages [25]:

• Simple declarative semantics. A logic program is simply a collection of

predicate logic clauses.

• Simple procedural semantics. A logic program can be read as a collection of

recursive procedures. Clauses are tried in the order they are written and goals

within a clause are executed from left to right.

• High expressive power. Pure Prolog is based on a subset of first-order

predicate logic and Horn clauses, thus it is Turing complete. Logic programs

can be seen as executable specifications that despite their simple procedural

semantics allow for designing complex and efficient algorithms.
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• Inherent non-determinism. Since in general several clauses can match a goal,

problems involving search are easily programmed in these kind of languages.

These advantages lead to a more flexible programming style, in the sense that programs

are more easy to understand, transform and/or expand.

The basic data structures for logic programs are called terms. Terms can be constants,

variables or functors (functional terms). A functor can be identified by name and arity

(number of arguments). For example, f/n denotes the functional term f(t1, ..., tn),

where t1 to tn are themselves terms and called the arguments of f. Constants can be

considered functors with arity zero, atoms represent symbolic constants syntactically

similar to terms and literals are similar to terms, except that literals form individual

goals to which a truth value can be assigned.

A substitution (or unification) is an operation that replaces some variables occurring

in a formula with terms.

A logic program is a finite set of clauses. Each clause has the logic form:

∀ ~X(C ⇐ A1 ∧ A2 ∧ ... ∧ An)

where, C is called the head, A1 ∧A2 ∧ ...∧An is called the body, individual Ai’s are

called atoms and ~X represents the vector of variables present in the clause. If n = 0,

the clause is called a fact. A set of clauses with the same functor name in the head

and arity define a predicate.

A computation (or evaluation) of a logic program corresponds to the act of solving a

query, by searching for a proof (a sequence of logical deductions from the clauses and

facts) for all goals present in the body of the query and substitutions for all variables

present in the goals. Goals, have the following logic form:

∀ ~X(⇐ A1 ∧ A2 ∧ ... ∧ An)

where ~X denotes the vector (possibly empty) of variables present on the query.

2.2 The Prolog Language

One of the most popular Logic Programming languages is the Prolog language. Prolog

has its origins in a software tool implemented by Colmerauer in 1972 at the Université
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de Aix-Marseille, that was named PROgramation en LOGic [30].

Prolog is based on Horn clauses, which are defined as,

c( ~X) :−g1( ~X1), g2( ~X2), ..., gn( ~Xn).

for clauses with head and body (n ≥ 1), and

c( ~X).

for fact clauses (n = 0). The symbol :- represents the implication ⇐, the comma (,)

represents the conjunction symbol ∧. The ~X, ~X1, ~X2 and ~X3, represent the vectors of

the arguments on each goal.

Pure and sequential evaluations in Prolog systems consist then in traversing a search

tree in a depth-first left-to-right form. Next, using Figure 2.1 we introduce some key

terminology about the Prolog evaluation.

starting point

Figure 2.1: Depth-first search with backtracking in Prolog

Non-leaf nodes of the search tree represent stages of computation (choice points) where

alternative branches (clauses) can be explored, to satisfy program’s query, while leaf

nodes represent solution or fail nodes. When the computation reaches a non-leaf

node and can not advance any further, Prolog starts the backtracking mechanism,

which consists in restoring the computation up to the previous node and schedule

an alternative unexplored branch. A programmer can optimize the default search

procedure by pruning the search tree through the use of the cut operator (!). Cut

allows programs to use less memory and to be faster, because it reduces the allocation

of backtracking nodes and thus the search space [131].

Some major characteristics of Prolog systems can be resumed as follows:



2.2. THE PROLOG LANGUAGE 37

• It is a system oriented for symbolic processing;

• Presents a declarative semantic inherent to logic;

• Supports iterative and recursive programs;

• Represents programs and data with the same formalism;

• Allows different answers for the same query.

When comparing with imperative languages, we can see Prolog’s evaluation as a nat-

ural generalization of the execution of imperative languages, that can be summarized

as [4]:

Prolog = imperative language + unification + backtracking

As in imperative languages, the execution flow is left to right within a clause. The

goals in the body of a clause are called like procedures. When a goal is called, the

program clauses which match with it, are chosen in the top-bottom textual order.

Figure 2.2 resumes our view about the relation between concepts used in Prolog and

in imperative programming languages.

In general, the Prolog performance in the execution time and memory used is lower

than imperative languages, due to the extra control and structures required by the

unification and backtracking procedures, but the trade-offs are considered to be good

enough for a logical and efficient programming style to be possible [87].

Next, we present an example for the evaluation of a small program in a standard

Prolog system. To do so, we will use a well-known program which is the path problem

with a small graph. The path problem is typically defined by two predicates, a first

predicate that defines the transition of a graph and a second predicate that defines

how the graph is connected. Consider next the path/2 and edge/2 definitions that

illustrate in the Prolog language, the first and second predicates respectively.

path1 =

{
path(X,Z) :−edge(X, Y ), path(Y, Z).

path(X,Z) :−edge(X,Z).

edge1 =

{
edge(1, 2).

edge(2, 3).

Predicate path/2 has two clauses, the first defines the transitivity property of a graph,

which states that exists a path between two nodes X and Z, if exists an edge between
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 Prolog Language Imperative Programming Languages 

set of clauses program

predicate
procedure definition
nondeterministic case statement

clause
one branch of nondeterministic case statement
if statement
series of procedure calls

goal invocation procedure call

unification
parameter passing
assigment
dynamic memory allocation

backtracking
conditional branching
iteration
continuation passing

logical variable pointer manipulation

recursion iteration

Figure 2.2: Correspondence between concepts used in the Prolog language and in

imperative programming languages

the node X and a node Y and exists a path between the node Y and the node Z.

The second clause defines that exists a path between nodes X and Z, if exists an edge

between both nodes. Predicate edge/2 has also two clauses that define a direct acyclic

graph with three nodes, where the node 1 is adjacent to the node 2, and 2 is adjacent

to the node 3. For later reference in this chapter, we will name these definitions of the

path/2 and edge/2 as path1 and edge1, respectively.

Figure 2.3 uses this definition of the path problem with the clauses numbered with

c1, c2, c3 and c4 to show the evaluation tree for the top query call path(1, Z). The

evaluation tree sequence is numbered in steps and the top query begins with step 0.

The aim of the top query is to find all nodes that can be reachable from node 1, thus

the solution set is {{Z = 2}, {Z = 3}}.

Concerning the evaluation, the Prolog system begins at step 0, by using the first clause

from the path definition that matches the top query (clause c1) and unifies the variable

X to 1, calling in the continuation edge(1, Y ) (step 1). At this step, the Prolog system

uses the clause c3 to unify the variable Y to 2 and calls in continuation the subgoal

path(2, Z). For illustration purposes, we are showing each different call to the path/2

predicate as an independent sub-tree. Continuing with the depth-first left-to-right
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0: path(1,Z)

(c1)  path(X,Z):- edge(X,Y), path(Y,Z).
(c2)  path(X,Z):- edge(X,Z).

(c3)  edge(1,2).
(c4)  edge(2,3).

(c1: X=1)

1: edge(1,Y),path(Y,Z)

(c3: Y=2)

2: path(2,Z)

2: path(2,Z)

(c1: X=2)

3: edge(2,Y),path(Y,Z)

(c4: Y=3)

4: path(3,Z)

4: path(3,Z)

(c1: X=3)

5: edge(3,Y),path(Y,Z)

6: fail

7: edge(3,Z)

(c2: X=3)

10: Z=3
(answer found)

9: edge(2,Z)

(c2: X=2)

8: fail

12: Z=2
(answer found)

11: edge(1,Z)

(c2: X=1)

Figure 2.3: Evaluation of path1 with edge1

strategy, the evaluation continues using the clauses c1 with X = 2 and c4 with Y = 3

and the subgoal path(3, Z) is reached at step 4. At this step the evaluation proceeds

using the clause c1 with X = 3 and calls edge(3, Y ), but Y has no unification in

the edge predicate, so the Prolog system fails (step 6) and backtracks to the subgoal

path(3, Z) and evaluates then the second clause that matches the subgoal path(3, Z)

(clause c2 with X = 3), leading again to edge(3, Z) where the evaluation fails again

(step 8). The Prolog system backtracks again, evaluates the second matching call for

the subgoal path(2, Z) and this leads to the answer Z = 3 at the step 10. Finally, the
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Prolog system backtracks to the top unexploited clause matching subgoal path(1, Z)

(clause c2 with X = 1) and the evaluation reaches to the answer Z = 2 (step 12). As

there are no further unexploited clauses, all the answers were found and the Prolog

system finishes the evaluation. The result of the evaluation was correct since it equals

the solution set.

2.2.1 The Warren’s Abstract Machine

Most of the currently available Prolog systems are based on a sophisticated compilation

technique and abstract machine known as the Warren’s Abstract Machine (or simply

WAM). The WAM was originally proposed by David H. D. Warren [133, 134] and its

compiler correctness was later formally verified by Pusch in the work [96].

The tutorial book on the WAM [1], describes the WAM as a sequence of engines

that incrementally support the different functionalities of a pure Prolog system. This

division in incremental engines, benefits the presentation and comprehension of all

the small tasks involved in the complex problem which is the implementation of a

Prolog system. The minimal engine is the abstract machine M0, which is only capable

of determining whether a goal unifies with a given term. The abstract machine M1

extends M0, by allowing programs with more than one fact but with at most one fact

per predicate name. The machine M2, which is the next stage, is capable of compiling

Prolog with conjunction rules (that is, with the form a0 :−a1, ..., an). The machine M3,

allows disjunctive definitions (more that one rule for each predicate), by adding the

backtracking mechanism. Finally, the complete Prolog system is reached, by adding

support for cuts, constants, lists and anonymous variables. Different Prolog systems

employ also various design optimizations, such as swapping final instructions and/or

avoiding the allocation of environments in special cases. The main goal behind all

these optimizations is to reduce the computation’s execution time and/or use as less

memory as possible.

At the implementation level, the WAM is defined by a set of data structures, a set of

registers and a set of low-level instructions.

Regarding the memory organization of the WAM, it is divided in seven logical data

structures: one stack for data objects (the global stack), one stack for execution control

(the local stack), one stack to support the interaction between the unification and the

backtracking mechanism (the trail), one stack to support unification (the Push Down

List, or PDL), one stack for the code area, one stack for the table of symbols and one



2.2. THE PROLOG LANGUAGE 41

array to store argument registers. In more detail:

• Global stack (or heap). It is an array of data cells used to represent compound

data terms, such as lists and structures.

• Local stack. It holds environments and choice points. Environments (also

known as local frames) store the permanent variables for the current alternative

clause, i.e., the variables that appear in more than a body subgoal and the

continuation pointer. Choice points are used to store the current state of the

computation. This means that, whenever a predicate starts execution, a choice

point is allocated, with information of execution’s state up to that moment,

and with information about unexploited alternatives to be explored via the

backtracking mechanism.

• Trail. It is used to store the addresses of the variables which must be unbound

when backtracking occurs.

• Push-Down List (PDL). This stack is used by the unification process when

handling nested compound terms.

• Code area. This area contains the WAM compiled code of the programs loaded.

• Symbol table. Used to store information about the symbols, such as atoms or

structures. An example is the mapping between the internal representation of a

term and it’s printing name.

• Arguments array. Used to store the arguments of the calls made during the

evaluation.

The registers used to control WAM’s flow of execution are described in Figure 2.4.

The purpose of most registers is straightforward, but some can be not so obvious.

For example, the HB register caches the value of H stored in the most recent choice

point and is used to store the backtracking point in the heap structure. The S register

is used during unification of compound terms (terms with arguments) and points to

the argument being unified. The arguments are accessed one by one by successively

incrementing this register. Some instructions have different behaviors during read

and write mode unification, and the mode flag is used to distinguish between both

situations.

Figure 2.5 shows the correspondence between registers and stacks. It also shows the

information stored by choice points, environments and data terms. The choice points
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P
CP
E
B
A
TR
H
HB
S
Mode
A1,A2,...
Y1,Y2,...

Program Counter
Continuation Pointer        (top of return stack)
Current Environment Pointer (in local stack)
Most Recent Backtrack Point (in local stack)
Top of local stack          (max between E and B)
Top of Trail
Top of Heap
Heap Backtrack Point        (in heap)
Structure Pointer           (in heap)
Mode Flag                   (read or write)
Arguments
Permanent Variables

Figure 2.4: WAM’s registers

store all key registers needed to restore the computation and launch the alternative

clauses, which includes the continuation registers for the code area (BCP ), the envi-

ronment (BCE) and program counter (BP ), additionally with the H, TR, B registers

and the arguments of the present call (A1, ...,An). The environments store the previous

(or continuation) environment (CE), the continuation pointer (CP ) of the choice to

which the environment is associated and the permanent variables (Y 1, ...,Y n).

Regarding the low-level instruction set of the WAM, it can be divided into four major

groups. The most relevant instructions per group are:

• Choice point instructions. They allow the allocation/deallocation of choice

points and the recovery of the computation state stored on those choice points.

– try me else L: creates a choice point and sets the label L as the next

alternative for the choice point.

– retry me else L: recovers the computation’s state stored on the top-most

choice point and updates the next alternative for the choice point to be L.

– trust me: recovers the computation’s state stored on the top-most choice

point and removes the top-most choice point from the local stack.

– try L: creates a choice point, sets the next instruction as the next alterna-

tive for the choice point and moves the execution to L.

– retry L: recovers the computation’s state stored on the top-most choice

point, updates the next alternative for the choice point to be the next

instruction and moves the execution to L.
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Figure 2.5: WAM’s memory organization and registers

– trust L: recovers the computation’s state stored on the top-most choice

point, removes the top-most choice point from the local stack and moves

the execution to L.

• Control instructions. Used to allocate/remove environments and manage the

call/return sequence of subgoals.

– allocate/deallocate: used to create and remove environments, respec-

tively.

– call pred, N : calls the predicate pred and trims the current environment

size to N (N represents the number of permanent variables that should be

kept).

• Unification instructions. These instructions implement specialized versions

of the unification algorithm according to the position and type of the arguments.

– The get instructions are used for head unification with registers. Some

examples are get variable, get structure or get constant.
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– The unify instructions are used for head unification with structure argu-

ments. Some examples are unify variable or unify value.

– The put and set instructions are used for loading argument registers just

before a call. Some examples are put structure, put value and set value.

• Indexing instructions. These type of instructions accelerate the process of

determining which clauses unify with a given predicate. Depending on the first

argument of the call, they jump to specialized code that can directly index the

unifying clauses.

– The switch on term instruction is used to jump to specialized code ac-

cordingly to the type of term (being a variable, a constant, a list or a

structure).

– The switch on constant instruction indexes the clauses which match with

a constant term.

– The switch on structure instruction indexes the clauses which match

with a structure term.

2.2.2 Infinite Loops

The Prolog language is based on the combination of the SLD resolution mechanism

with linear top-down exploration of clauses defined in a program. This combination

can be incomplete for certain types of programs. The cause for this incompleteness

is the presence of recursive predicates during the evaluation of a program, which can

lead to the infinite exploration of the same search space.

We use again the path problem example to show a situation where the usage of the

SLD resolution is incomplete, but, for that, we introduce two new predicates, the

path2 and the edge2. The predicate path2 is logically equivalent to the previous path1

definition and edge2 defines a direct cyclic graph with two nodes.

path2 =

{
path(X,Z) :−path(X, Y ), edge(Y, Z).

path(X,Z) :−edge(X,Z).

edge2 =

{
edge(1, 2).

edge(2, 1).

Consider now that we would like to use both definitions of the path predicate (path1

and path2), to compute the nodes that we can reach on both graph definitions (edge1
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and edge2), starting from node 1 (i.e., we will use again the top query call path(1, Z)).

Since both path predicates are logically equivalent, we would expect to get successful

equal solutions. The solution set for edge1 and edge2 is {{Z = 2}, {Z = 3}} and

{{Z = 1}, {Z = 2}}, respectively. Next, we show the evaluation for the combination

of each path predicate against each edge graph definition.

Figure 2.6 shows the evaluation tree for path1 with edge2. The evaluation begins with

the first matching clause (the clause c1 with X = 1) for the subgoal path(1, Z) and

continues with the clause c3 with Y = 2, leading to a call to subgoal path(2, Z), which

then leads again to a call to subgoal path(1, Z) (steps 0-4). This recursive call to

path(1, Z), defines a positive loop, but the Prolog system can not detect it. Since it

is using SLD resolution, it will repeatedly begin another evaluation of path(1, Z) and

thus not finding any solution for this problem. The outcome of this evaluation would

then be an infinite evaluation of the same query call and the right branches of the

evaluation (marked with dots in Figure 2.6) would never be evaluated.

0: path(1,Z)

(c1)  path(X,Z):- edge(X,Y), path(Y,Z).
(c2)  path(X,Z):- edge(X,Z).

(c3)  edge(1,2).
(c4)  edge(2,1).

(c1: X=1)

1: edge(1,Y),path(Y,Z)

(c3: Y=2)

2: path(2,Z)

(c1: X=2)

3: edge(2,Y),path(Y,Z)

(c4: Y=1)

4: path(1,Z)

Positive 
Loop

Figure 2.6: Evaluation of path1 with edge2
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Figure 2.7 shows the evaluation tree of path2 with edge2. The Prolog system begins the

evaluation by using the first clause that matches the call path(1, Z) (step 1), leading

to a call to path(1, Y ), which is a similar call (also known as a variant1 call) to the

top query call path(1, Z). This then leads to the infinite repetition of the call, so the

Prolog system would enter in to a positive loop and would not find any solution for

the problem. One is able to observe that this behavior is independent of the edge

definition and that the same outcome would occur for any edge definition.

0: path(1,Z)

(c1)  path(X,Z):- path(X,Y), edge(Y,Z).
(c2)  path(X,Z):- edge(X,Z).

(c3)  edge(1,2).
(c4)  edge(2,1).

(c1: X=1)

1: path(1,Y),edge(Y,Z)

Positive 
Loop

Figure 2.7: Evaluation of path2 with edge2

Therefore, we have seen that, when a Prolog system does not find positive loops during

the evaluation, it returns the correct solutions, but when it finds a positive loop, it

evaluates the same sub-computation infinitely without reaching to any solution.

This raises some disadvantages for standard Prolog systems. Logically correct prob-

lems, such as the path problem, can not be evaluated correctly. The declarative

advantage of logic programs became dependent on the programmer’s capability of

designing his programs with clauses in the correct order and/or adding extra control

predicates to avoid programs entering in to infinite loops. Important applications such

as Datalog, which is a query language for deductive databases, can not be used because

the evaluation does not terminate [111].

The operational incompleteness of Prolog is a well known problem and several propos-

als to improve Prolog’s declarativeness exist. Next we will discuss one of such propos-

als, generically known as tabling (also known as tabulation or memoing) [84]. Tabling

1Variant calls of a subgoal are calls which differ only on variable renaming.
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is a kind of dynamic programming technique contextualized in a Prolog environment,

that has proved its viability for application areas such as deductive databases [111],

inductive logic programming [106], knowledge based systems [137], model checking [97],

parsing [61], program analysis [32], reasoning in the semantic Web [146], among others.

Currently, the tabling technique is widely available in systems like XSB Prolog [125],

Yap Prolog [118], B-Prolog [138], ALS Prolog [48], Mercury [120], Ciao Prolog [28]

and Picat [140].

2.3 Tabling in Prolog

The key idea of tabling is to use an auxiliary data space, the table space, to keep track

of the subgoal calls in evaluation and store, for each subgoal, the set of answers which

are found during program’s evaluation. Whenever a similar subgoal call appears, the

subgoal is resolved by consuming answers from table space instead of executing the

program clauses. This process is called answer resolution. In the meantime, as new

answers are found, they are added to their tables and later returned to all repeated

calls. By using answer resolution in this manner instead of program resolution as usual,

tabling based systems can avoid looping and redundant sub-computations reducing the

search space and ensuring termination for a wider group of programs [27].

The Ordered Linear Deduction with Tabling (OLDT) [126] was one of the first ap-

proaches used to supply the incompleteness of standard Prolog systems. It was

presented by Tamaki and Sato, and combines the use of Ordered Linear Deduction

(OLD) resolution with a tabling technique. The Selected Linear Goal-oriented (SLG)

resolution [27], is another tabling mechanism that has been gaining popularity, since

its implementation on the XSB Prolog system [100, 111].

The XSB Prolog design uses an adapted version of the standard WAM, called SLG-

WAM [110, 123], that extends SLD resolution with new tabling related structures.

The SLG-WAM defines nodes in a different way from the WAM. A node is defined as

Generator Node (GN) if it corresponds to first call of tabled subgoal (used to generate

answers for the tabled call), Consumer Node (CN) if it corresponds to a similar call

to tabled subgoal (used to consume the answers of the tabled call) and Interior Node

(IN) if it corresponds to non-tabled subgoals.

The YapTab system extends the Yap with a tabling engine similar to the XSB Prolog

engine [105]. In order to give a clear perspective about how YapTab works, we next

show on Figure 2.8, the tabled evaluation of the path1 definition with the edge2
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transition graph. Recall that the traditional Prolog would immediately enter an

infinite loop because the SLD resolution would lead the evaluation to a repeated

call to path(1, Z). In contrast, if tabling is applied then termination is ensured. The

declaration :− table path/2 in the program code indicates that predicate path/2 should

be tabled. Figure 2.8 illustrates the evaluation sequence when using tabling.

      :-table path/2.
 
(c1)  path(X,Z):- edge(X,Y), path(Y,Z).
(c2)  path(X,Z):- edge(X,Z).

(c3)  edge(1,2).
(c4)  edge(2,1).

(c1: X = 1)

1: edge(1,Y),path(Y,Z)

(c3: Y = 2)

(c1: X = 2)

3: edge(2,Y),path(Y,Z)

(c4: Y = 1)

0: path(1,Z)

2: path(2,Z)

4: path(1,Z)

5: edge(2,Z)

(c2: X = 2)

6: Z = 1
(answer found)

13: completion

8: edge(1,Z)

9: Z = 2
(answer found)

(c2: X = 1)

2: path(2,Z)

11: Z = 2
(answer found)

10: Z = 1
(fail)

7: Z = 1
(answer found)

12: Z = 2
(fail)

0: path(1,Z)

2: path(2,Z)
  6: Z = 1
 11: Z = 2
 13: complete

Subgoal Call Answers

  7: Z = 1
  9: Z = 2 
 13: complete

Figure 2.8: Tabled evaluation of path1 with edge2

At the top, the figure illustrates the program code and the state of the table space
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at the end of the evaluation. The main sub-figure shows the forest of SLG trees

for the original query. The top-most tree represents the original invocation of the

tabled subgoal path(1, Z). It thus computes all nodes reachable from node 1. As

before, computing all nodes reachable from 1 requires computing all nodes reachable

from node 2. The bottom-most tree represents the SLG tree path(2, Z), that is, it

computes all nodes reachable from node 2. Next, we describe in detail the evaluation

sequence presented in the figure. The numbering within the SLG tree denotes the

evaluation steps.

Whenever a tabled subgoal is first called, a new tree is added to the forest of trees

and a new entry is added to the table space and a new GN is created for the call

(nodes depicted by black oval boxes). In this case, execution starts with GN 0. The

evaluation thus begins by creating a new tree rooted by path(1, Z) and by inserting a

new entry in the table space for it. The second step is to resolve path(1, Z) against

the first clause for path/2 (clause c1 with X = 1), leading in the continuation to the

first call of path(2, Z) (clause c3 with Y = 2). Since this is the first call to path(2, Z),

we must create a new tree rooted by path(2, Z) (step 2) with a new GN, insert a new

entry in the table space for it, and proceed with the evaluation of path(2, Z), as shown

in the bottom-most tree.

The evaluation proceeds using the clause c1 with X = 2, leading in the continuation

(step 4) to a repeated call of path(1, Z). This creates a Strongly Connected Component

(SCC) [127], since both subgoal calls are now mutually dependent. We will represent

a SCC through its leader node. More precisely, the youngest GN node which does

not depend on older generators is called the leader node. A leader node is also the

oldest node for its SCC, and defines the next completion point. Consequently, in our

evaluation, the leader subgoal of the SCC is now path(1, Z)2.

Continuing with the evaluation, the repeated call to path(1, Z) is resolved using CN

4 (node depicted by a white oval box). At this point, the table does not have answers

for the call path(1, Z), therefore CN 4 must suspend execution. The evaluation then

backtracks to GN 2, which uses clause c2 with X = 2 to call edge(2, Z) and the

answer {Z = 1} is found for path(2, Z) and stored in the table space (step 6). Then,

we backtrack again to GN 2, but since path(2, Z) is not a leader node, the node

propagates its answers to the SCC, originating a new answer {Z = 1} for path(1, Z)

(step 7). Next, we backtrack to GN 1, evaluate the clause c2 with X = 1, and in the

continuation, in step 9, we find the answer {Z = 2} for path(1, Z).

2The reader can observe that table space remains unchanged. This happens because the subgoal

was already inserted in the first call (step 0).
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We backtrack again to GN 1, but the node cannot complete because it has a consumer

below (CN 4) with unconsumed answers. We thus try to complete by sending answers

to CN 4. The first consumed answer {Z = 1} leads to a repeated answer for path(2, Z)

(step 10). SLG resolution does not store duplicate answers in the table, instead,

repeated answers fail. This is how it avoids looping and even unnecessary computations

in some cases. The second consumed answer {Z = 2} leads to a new answer for

path(2, Z), which is stored in the table space (step 11) and later propagated by GN 2

leading to a repeated answer to path(1, Z) (step 12).

Finally, since we have fully evaluated all clauses and fully consumed all answers, we

can complete the evaluation of both calls within the table space (step 13). From this

point and on, if any of these calls happens to be called again in other evaluations, they

would be resolved using only a CN, which would work as a traditional choice point

but, instead of using program clauses, it would consume the answers that were stored

on the table space one by one through backtracking.

2.3.1 Compilation and Instruction Set

Concerning the compilation of tabled logic predicates, when a tabled predicate is

loaded in a Prolog system supporting tabling, the parsing phase will search for table p/n

declarations. These declarations indicate that calls to predicate p/n are to be executed

using tabled evaluation instead of the pure SLD resolution. For each one of these

declared predicates, the Prolog system creates a table entry structure in the table

space. If more than one predicate is declared as tabled, these table entry structures

are chained in a linked list thus that they can be accessed during the evaluation of

the tabled predicates. Besides the table entry structure on the table space, these

predicates are compiled with specific tabling instructions that will allow the tabling

component of the system to have extra control over the program’s flow of execution.

The most important tabling instructions are:

• Table Subgoal Call (TSC): checks if a call is the first call for a tabled subgoal.

If so, it allocates a generator node and adds a new entry to the table space

for the subgoal at hand. Otherwise, the subgoal is already in the table space,

meaning that it is not the first call, so this instruction allocates a consumer node

and resolves the subgoal by consuming the available answers. In the previous

example shown in Figure 2.8, this instruction would be called during the steps

0, 2, and 4.
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• Table New Answer (TNA): checks if an answer found for a particular subgoal

is new or repeated. If the answer is new, it is inserted in the table space and

the evaluation proceeds accordingly with the scheduling strategy (this will be

discussed in more detail in the Chapter 3). Otherwise, if the answer is repeated,

the evaluation simply fails. In the example shown in Figure 2.8, this instruction

would be called during the steps 6, 7, 9, 10, 11, and 12.

• Table Completion Check (TCC): determines whether a completion point

(also known as fix-point) was reached. A completion point is reached when no

unconsumed answers are available for consumers and generators have explored

all the available alternatives. When this is the case, all subgoals can be marked as

completed. As an optimization subgoals, completion detection is only performed

at leader nodes. In the example shown in Figure 2.8, this instruction would be

called three times, the first between steps 6 and 7, the second between steps 9

and 10 and the third in the step 13. The first time was called to mark the GN

as non leader, the second time was to schedule the SCC for a new re-evaluation

and the third was to complete the SCC since all answers were found.

The TSC instructions are an extension of the original WAM choice point instructions,

while the TNA and TCC instructions were created exclusively for tabling support.

Using this terminology, Figure 2.9 shows a generic transformation at the tabling engine

level of the original path1 program into a program using tabled evaluation.

path(X,Z):-edge(X,Y),path(Y,Z).
path(X,Z):-edge(X,Z).

  path(X,Z):-tsc(tpath(X,Z)).
 tpath(X,Z):-edge(X,Y),path(Y,Z),tna(path(X,Z)).
 tpath(X,Z):-edge(X,Z),tna(path(X,Z)).
 tpath(X,Z):-tcc(path(X,Z)).

:-table path/2.

Figure 2.9: Generic tabled transformation for the path1 program

After transformation, the path/2 predicate remains only on one clause, which works

as an entry point to the new auxiliary predicate tpath/2 representing the transformed
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predicate. This new predicate includes three clauses, the first two are the extension

of the original path/2 clauses with TNA instruction at the end (this will allow the

detection of all answers found on each clause) and the third clause implements the

completion check procedure.

2.3.2 Mode-Directed Tabling

In a traditional tabling system, all the arguments of a tabled subgoal call are considered

when storing answers into the table space. When a new answer is not a variant

of any answer that is already in the table space, then it is always considered for

insertion. Therefore, traditional tabling is very good for problems that require storing

all answers. However, often the goal of programs that use tabling is to dynamically

calculate optimal or selective answers as new results arrive. Writing tabled logic

programs can thus be a difficult task without further support.

Mode-directed tabling [49] is an extension to the tabling technique that supports the

definition of modes for specifying how answers are inserted into the table space. Within

mode-directed tabling, tabled predicates are declared using statements of the form

table p(m1, ...,mn), where the mi’s are mode operators for the arguments. The idea is

to define the arguments to be considered for variant checking (the index arguments)

and how variant answers should be tabled regarding the remaining arguments (the

output arguments). Implementations of mode-directed tabling are available in ALS-

Prolog [50], B-Prolog [142] and Yap Prolog [114], and a restricted form of mode-

directed tabling can also be reproduced in XSB Prolog by using answer subsump-

tion [124]. Mode-directed tabling has be used recently in the BPSolver program,

to apply a dynamic programming approach to the Sokoban problem [139], and in

application areas such as Machine Learning [142], Justification [90], Preferences [50],

Answer Subsumption [115], among others. YapTab implements mode-directed tabling

through argument indexing and modes. The index arguments are represented with

mode index, while arguments with modes first, last, min, max, sum and all represent

output arguments. After an answer is generated, the system tables the answer only

if it is preferable, accordingly to the meaning of the output arguments, than some

existing variant answer [116].

We use the shortest path problem to show how mode-directed tabling works. We

begin by defining the path/3 and edge/3 predicates, where both of them have a third

argument which is the cost C of the transition between two nodes inside the graph.



2.3. TABLING IN PROLOG 53

path3 =

{
path(X,Z,C) :−path(X, Y,C1), edge(Y, Z, C2), C is C1 + C2.

path(X,Z,C) :−edge(X,Z,C).

edge3 =



edge(1, 2, 1).

edge(2, 3, 1).

edge(2, 4, 4).

edge(3, 4, 1).

edge(4, 3, 1).

The path/3 predicate still has two clauses, the first defines the transitivity property of

a graph, which states that exists a path between two nodes X and Z with a cost C,

if exists a path between the node X and a node Y with a cost C1 and exists an edge

between the nodes Y and Z with a cost C2, such that the cost C is given by the sum

of both costs C1 and C2. The second clause defines that exists a path between nodes

X and Z, if exists an edge between both nodes with a cost C. Predicate edge/3 has

five clauses that define a direct weighted graph with four nodes.

To give a clear perspective about how mode-directed tabling works, we next show on

Figure 2.10, the evaluation of the path3 with edge3. The top left corner of the figure

shows the program code, where the declaration :- table path(index,index,min). indicates

to the Prolog system that the predicate path/3 is a mode-directed tabled predicate

and the first two arguments are indexed and the third argument is the minimum

mode. The bottom-left corner of figure shows the evaluation tree for the query goal

path(1,Z,C) and the right part of the figure shows the table space. The solution set

for the query goal path(1,Z,C) is {{Z = 2, C = 1}, {Z = 3, C = 2}, {Z = 4, C = 3}}.

Figure 2.10 shows that the execution tree follows the normal evaluation of a tabled

program and that the answers are stored as they are found, which happens at steps 3,

5 and 6. The most interesting part happens at steps 8 and 10. At step 8, a new answer

{Z = 4, C = 3} is found. This new answer is a variant of the answer {Z = 4, C = 5}
found at step 6 but since it is minimal for the third argument, it replaces the previous

variant answer (scratched answer in the table space). Finally, at step 10 the answer

{Z = 3, C = 4} is found, which is a variant of the answer {Z = 3, C = 2} found at

step 5, but since it is not minimal it does not replace the variant answer in the table

space.
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0: path(1,Z,C)

Subgoal Call Answers

 3: Z = 2, C = 1
 5: Z = 3, C = 2
 6: Z = 4, C = 5
 8: Z = 4, C = 3
11: complete

:-table path(index,index,min).

path(X,Z,C) :- path(X,Y,C1), edge(Y,Z,C2), 
               C is C1+C2.
path(X,Z,C) :- edge(X,Z,C).

edge(1,2,1). edge(2,3,1). edge(2,4,4). 
edge(3,4,1). edge(4,3,1).

1: path(1,Y,C1), edge(Y,Z,C2), C is C1+C2 2: edge(1,Z,C)

4: edge(2,Z,C2),
C is 1+C2

0: path(1,Z,C)

3: Z=2, C=1
(answer found)

7: edge(3,Z,C2),
C is 2+C2

9: edge(4,Z,C2),
C is 3+C2

5: Z=3, C=2
6: Z=4, C=5

(answers found)
10: Z=3, C=4

(fail)
8: Z=4, C=3

(answer found)

11: completion

Figure 2.10: Mode-directed tabled evaluation of the path3 with edge3

2.3.3 Scheduling Strategies

The decision about the evaluation flow is determined by the scheduling strategy.

Different strategies may have a significant impact on performance, and may lead to

a different ordering of solutions to the query goal. Arguably, the two most successful

tabling scheduling strategies are batched scheduling and local scheduling [42].

Batched scheduling schedules the evaluation of a program in a depth-first manner as

does the WAM. It favors the forward execution first instead of backtracking, leaving

the consumption of answers and completion for last. It thus tries to delay the need to

move around the search tree by batching the return of answers. When new answers

are found for a particular tabled subgoal, they are added to the table space and the

execution continues. For some situations, this results in creating dependencies to older

subgoals, therefore enlarging the current SCC [110] and delaying the completion point

to an older generator node.
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On the other hand, the local scheduling strategy schedules the evaluation of a program

in a breadth-first manner. It favors the backtracking first with completion instead of

the forward execution, leaving the consumption of answers for last. Thus, it only

allows a cluster of subgoals to return answers only after the completion point has

been reached [42]. In other words, the local scheduling tries to keep SCCs as minimal

as possible. When new answers are found, they are added to the table space and

the computation fails as consequence, tabled subgoals inside an SCC propagate their

answers to outside the SCC only after its completion point is found. Local scheduling

causes a sooner completion of subgoals, which creates less complex dependencies

between them.

The implementation of tabling engines on Prolog systems is actually based in two

major paradigms: linear-based tabling and suspension-based tabling. Linear tabling

mechanisms use iterative computations of tabled subgoals to compute completion

points. The basic idea of linear tabling is to maintain a single execution tree where

tabled subgoals always extend the current computation without requiring suspension

and resumption of sub-computations. Two different optimization proposals are the

Selected Linear Deduction with Tabling (SLDT) strategy of Zhou et al. [144], as

originally implemented in B-Prolog, and the Dynamic Reordering of Alternatives

(DRA) strategy of Guo and Gupta [48], as originally implemented in ALS Prolog. The

key idea of the SLDT strategy is to let repeated calls execute from the backtracking

point of the former call. The repeated call is then repeatedly re-executed, until all

the available answers and clauses have been exhausted, that is, until a completion

point is reached. Following versions of B-Prolog implemented an optimized variant

of this strategy which tries to avoid re-evaluation of looping subgoals [143]. The

DRA strategy is based on dynamic reordering of alternatives with repeated calls.

This strategy tables not only the answers to tabled subgoals, but also the alternatives

leading to repeated calls (looping alternatives). It then uses the looping alternatives to

repeatedly recompute them until reaching a completion point. A more recent proposal,

name Dynamic Reordering of Solutions (DRS), was implemented on top of the Yap

system [5]. Yap also supports the combination of the first two strategies with batched

scheduling and all the three strategies with local scheduling [5, 7, 9].

On the other hand, the suspension-based tabling mechanisms, which are the focus

of this work, suspend the execution stacks of the sub-computations corresponding to

consumer nodes, in order to resume them as new answers are found for the tabled

subgoals involved on those sub-computations. Since this mechanism avoids the re-

evaluation steps required to put the computation on the same state where those
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sub-computations were suspended (as it can directly restore the suspended stacks),

it has the advantage of reducing the execution time of a program. Since the first

implementation of a suspension based mechanism [110], different approaches of tabling

were implemented. The Mercury implementation [120] and two alternative XSB-based

models, the CAT [33] and the CHAT [34] models, copy the execution stacks to a

separate storage place. Two more recent approaches, implemented in Yap [107] and

in Ciao Prolog [28], feature a higher-level implementation of suspension-based tabling.

They apply source level transformations to a tabled program and then use external

tabling primitives to provide direct control over the search strategy.

2.3.4 Tabled Evaluations and the Table Space

The table space is a key component of a tabling engine. The overall performance

of a tabling system can be strongly affected if the basic operations that manipulate

the table space are not implemented efficiently. Typically, the table space can be

accessed to lookup for tabled subgoals, to lookup for tabled answers, to insert new

tabled subgoals and answers, and to consume answers present on each tabled subgoal.

Currently, there are two major implementations: the B-Prolog system uses hash

tables [144], and the YapTab and XSB Prolog systems use tries [105] based on the

proposal made by I. V. Ramakrishnan et al. [98, 99]. The hash tables are expected to

be slower than tries for complex terms, since tries provide a complete discrimination

of terms, permitting the lookup and possibly insertion to be performed in a single pass

through a term, but were shown to be more efficient in ground terms [141, 144].

Let us now analyze in more detail, how the tabling engine interacts with the table

space. When a tabled call is made, the first operation is to ground the call. This

grounding of the call makes it possible to distinguish between first calls and following

calls to the same predicate. Figure 2.11 shows some grounding examples for a p/3

predicate. The non-variable terms present on the predicate remain unchanged, but

the variables are abstracted and numbered by order of appearance. Thus, the first call

p(X,X,X) has only one variable, which is abstracted with VAR0 during the grounding

process3, the second call and third calls have two variable each, thus both variables are

grounded with VAR0 and VAR1, and finally the fourth call does not have any variable,

thus after the grounding process, the call is exactly the same as before the process.

Then, the next step is to integrate the grounded call on the table space. The inte-

3The notion of grounding suggests the usage of terms without variables. However we are using

VAR to show how the variables are represented internally by the tabling engine.



2.3. TABLING IN PROLOG 57

Original Tabled Call Grounded Tabled Call 

2. p(1,X,Y) p(1,VAR0,VAR1)

1. p(X,X,X) p(VAR0,VAR0,VAR0)

3. p(f(X),Y,X) p(f(VAR0),VAR1,VAR0)
4. p(1,2,3) p(1,2,3)

Figure 2.11: Grounding examples for a p/3 predicate

gration depends on whether the call is made via the TSC instruction or via the TNA

instruction. For the TSC instruction, the tabling engine performs a search over the

calls already in table space in order to check if the call is already there. If it is a first

call then a new entry is created. Otherwise, it is a similar call, so the call is scheduled

for answer consumption. For the TNA instruction, the tabling engine searches the

answers in the table space for the corresponding tabled call and if it is a new answer,

it is added to table space.

For table space implementation, XSB’s and YapTab’s original organization are based

on tries, which are known to be efficient, because they allow for a compact representa-

tion of subgoal calls and answers to be represented through a unique path within the

structure. A trie is a tree structure where each different path through the trie data

units, the trie nodes, corresponds to a term. Each root-to-leaf path represents a term

described by the tokens labeling the nodes traversed. Two terms with common prefixes

will branch off from each other at the first distinguishing token. Internally, the trie

nodes are 4-field data structures. One field stores the node’s token, one second field

stores a pointer to the node’s first child, a third field stores a pointer to the node’s

parent and a fourth field stores a pointer to the node’s next sibling. Each node’s

outgoing transitions may be determined by following the child pointer to the first

child node and, from there, continuing through the list of sibling pointers. Figure 2.12

shows an example for the table space organization starting from the tabled calls to

predicate p/3 represented in Figure 2.11.

At the entry point we have the Table Entry (TE) data structure. This structure stores

generic information about the predicates and is allocated when a tabled predicate is

being compiled, so that a pointer to the table entry can be included in the compiled

code. This guarantees that further calls to the predicate will access the table space

starting from the same point. The TE data structure connects to a Subgoal Trie (ST),

that is used to store tabled subgoal calls. On the ST, each different path corresponds

then to a term described by the tokens labeling the nodes traversed. For example,
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Subgoal Frame
 p(VAR0,VAR0,VAR0)

Subgoal Frame
 p(1,VAR0,VAR1)

Subgoal Frame
 p(1,2,3)

VAR0 1 f

VAR0

VAR0

2

3

VAR0

VAR1

Subgoal Frame
 p(f(VAR0),VAR1,VAR0)

Table Entry
 p/3

VAR0

VAR1

VAR0

Compiled Code
 p/3

1

3

2

4

true1

3 4

1 2

ATATATAT

ST

Figure 2.12: Table space representation using tries on the tabled predicate p/3

the tokenized form of the term p(1, X, Y ) is the sequence of 4 tokens p/3, 1, VAR0

and VAR1, where each variable is represented as a distinct VARi constant. Two terms

with common prefixes will branch off from each other at the first distinguishing token.

Consider, for example, a second term p(1, 2, 3). Since the main functor and the first

argument, tokens p/3 and 1, are common to both terms, only two additional nodes will

be required to fully represent this second term in the trie. Thus, each different tabled

subgoal call to the predicate at hand corresponds to a unique top-down path through

the ST structure, always starting from the table entry, passing by several subgoal trie

nodes until the leaf node is reached. The leaf nodes within the ST point to the Subgoal

Frame (SF) structure. The SF stores additional information about the execution of

subgoal calls and acts like an entry point to the Answer Trie (AT) structure.

The behavior of the AT structure is similar to the behavior of the ST structure when

the trie structure is accessed in a top-down fashion. The difference is that each path

corresponds now to a different answer to the tabled subgoal call. Moreover, ATs

only store the substitution factor, i.e., the answers to the variables (VARi) in the

corresponding call. Figure 2.12 shows some answers for the calls. For example, the
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subgoal call p(VAR0, VAR0, VAR0) has the answers 1 and 2, meaning that p(1, 1, 1) and

p(2, 2, 2) are answers for this subgoal call. For the subgoal call p(1, VAR0, VAR1), the

answers shown are p(1, 1, 3) and p(1, 1, 4). For the subgoal call p(1, 2, 3) the answer

is true 4 and for the subgoal call p(f(VAR0), VAR1, VAR0) the answers shown are

p(f(1), 3, 1) and p(f(2), 4, 2). An important difference for the ST structure is that the

AT structure can also be accessed in a bottom-up fashion. The bottom-up accesses

occur when the trie structure is accessed by a CN.

Consumer Node 
Call of 

p(1,VAR0,VAR1)

Subgoal Frame
 p(1,VAR0,VAR1)

1

VAR0

VAR1

Table Entry
 p/3

3 4

AT

ST

First Answer
Last Answer
Answer Trie

. . .

 Tabled 
Call of 

p(1,VAR0,VAR1)

Generator Node 
Call of 

p(1,VAR0,VAR1)

1

Compiled Code
 p/3

.
 
.
 
.

Local StackLocal Stack

First

Call

Repeated

Call

Figure 2.13: Accessing the table space

Figure 2.13 goes one step beneath and describes different types of accesses to the

4In subgoal calls that do not have variables, the answer true is stored in the AT structure if the

subgoal has proven to the true during its evaluation, otherwise the false answer is stores in the AT

structure.
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table space by giving some low-level details about how the SF structure is used to

provide bottom-up access to the AT structure. To do so, we will use the subgoal call

p(1, VAR0, VAR1) from the example in Figure 2.12.

Figure 2.13 shows then that a tabled call to the subgoal p(1, VAR0, VAR1) (left-most

black oval box) follows the pointer to the compiled code to access the corresponding

TE, and from there access the ST data structure. Next, it traverses the ST structure

in a top-down fashion. For the first call, the nodes are created and inserted in the

path as it traverses the ST structure, leading then to the insertion of the SF structure

after the leaf node. During the first call to a tabled predicate, a GN node is allocated

in the local stack with a pointer to the SF structure of p(1, VAR0, VAR1), allowing the

GN to access directly the AT structure in order to easily check/insert for new found

answers. Concerning the connections to the AT, the SF structure has three pointers:

• Answer Trie: points to the top of the AT structure, thus that it can be used by

the GN as the entry point to the top-down path that allows to check if a answer

is new or repeated.

• First Answer: points to the first answer found for the subgoal during the

evaluation. In the figure the first answer is (1, 4).

• Last Answer: points to the last answer found for the subgoal during the

evaluation and it is used to chain the new answers with the answers already

in the AT. In the figure the last answer is (1, 3).

For a repeated call to p(1, VAR0, VAR1) the tabled subgoal call operation allocates

a CN in the local stack. A CN accesses its AT in a bottom-up fashion. The leaf

nodes within the AT structure are chained so that the answers can be consumed by

the CN node. A CN uses the first answer pointer to mark the beginning of the chain

of answers to be consumed and the last answer to test on each round of evaluation if

it has consumed or not all answers in the AT. For each answer, the consumer node

begins by the leaf node and traverses the AT structure bottom-up (using the upper

arrows as in Figure 2.13 until the top of the trie is reached).

2.4 Multithreaded Tabling in Prolog Systems

The ISO Prolog multithreading standardization proposal [85] is currently implemented

in several Prolog systems including XSB [112], Yap [23], Ciao [23] and SWI-Prolog[136],
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providing a highly portable solution given the number of operating systems supported

by these systems. Yap implements a SWI-Prolog compatible multithreading library,

where each Prolog thread is an Operating System (OS) native thread running a

Prolog engine consisting in a set of stacks and the required state to accommodate the

engine. After being started from a goal, a thread proves this goal just like a normal

Prolog implementation [135]. Like in SWI-Prolog, Yap’s thread library is based on

the Portable Operating System Interface (POSIX) thread standard [24], where each

thread has its own execution stacks and only share the code area where predicates,

records, flags and other global non-backtrackable data are stored. Yap’s thread specific

predicates can be found in [117].

When multithreading is combined with tabling, one can have the best of both worlds,

since one can exploit the combination of higher procedural control with higher declar-

ative semantics. In a multithreaded tabling system, tables may be either private

or shared between threads. While thread-private tables are easier to implement,

shared tables have all the associated issues of locking, synchronization and potential

deadlocks. Here, the problem is even more complex because we need to ensure the

correctness and completeness of the answers found and stored in the shared tables.

Thus, despite the availability of both threads and tabling in Prolog compilers such as

XSB, Yap, and Ciao, the implementation of these two features such that they work

together seamlessly implies complex ties to one another and to the underlying engine.

To the best of our knowledge until this moment, the only systems that were able to

support the combination of tabling with multithreading are XSB and Yap.

XSB was the first system to combine tabling with multithreading. It support two

types of models for the combination: private tables and shared tables [76, 125]. On

the private tables model, each thread keeps its own copy of the table space. On one

hand, this avoids concurrency over the tables but, on the other hand, the same table

can be computed by several threads, thus increasing the memory usage necessary to

represent the table space.

For shared tables, the running threads store only once the same table, even if multiple

threads use it. This model can be viewed as a variation of the table-parallelism

proposal [41], where a tabled computation can be decomposed into a set of smaller

sub-computations, each being performed by a different thread. Each tabled subgoal is

computed independently by the first thread calling it, the generator thread, and each

generator is the sole responsible for fully exploiting and obtaining the complete set of

answers for the subgoal. Similar calls by other threads are resolved by consuming the

answers stored by the generator thread.
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Based on these two strategies, XSB supports two types of concurrent scheduling

strategies: concurrent local evaluation and concurrent batched evaluation. In the

concurrent local evaluation, similar calls by other threads are resolved by consuming

the answers stored by the generator thread, but a consumer thread suspends execution

until the table is completed. In the concurrent batched evaluation, new answers are

consumed as they are found, leading to more complex dependencies between threads.

In both scheduling strategies, when a set of subgoals computed by different threads

is mutually dependent, then a usurpation operation [77] synchronizes threads and a

single thread assumes the computation of all subgoals, turning the remaining threads

into consumer threads.

From our point of view, the usurpation operation restricts the potential of concurrency

to non-mutually dependent sub-computations. In problems that create mutual depen-

dent sub-computations, which can be executed in different threads, XSB is actually

unable to execute them in a concurrent fashion due to this operation. By other words,

even if we launch an arbitrary large number of threads on those programs, the system

would tend to use only one thread at the end to evaluate most of the computations.

In this thesis, we present an alternative view to XSB’s approach, implemented on top

of the Yap Prolog system, where each thread views its tables as private but, at the

engine level, we use a common table space, i.e., from the thread point of view, the

tables are private but, from the implementation point of view, the tables are shared

among all threads. We propose three designs for the common table space: NS, SS

and FS. The NS is similar to the XSB’s private tables model and the SS and the FS

designs are two new models that are aimed to be time and space efficient [8]. This

will be discussed in detail in the next chapter.

2.5 Chapter Summary

This chapter introduced several key concepts about Logic Programming and the imple-

mentation of Prolog systems. It discussed some well-known and important limitations

of Prolog systems in order to motivate for the appearance of tabling mechanisms. In

the continuation, we have described the key concepts in the implementation of a tabling

mechanism. The chapter concluded with the start-of-the-art about multithreading in

the context of tabling mechanisms.
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Concurrent Table Space Designs

This chapter presents three new concurrent designs for the support of multithreaded

tabling at the table space level and their implementation in the YapTab-Mt system.

The last part of the chapter is dedicated to the presentation and discussion of experi-

mental results using such designs.

3.1 General Idea

Multithreading in Prolog is the ability to concurrently perform multiple computations,

in which each computation runs independently but shares the database (clauses).

Yap is based on the POSIX thread standard [24], which defines a thread as an OS

native thread running inside a process. Native threads use the operating system’s

native ability to manage multithreaded processes. In particular, they use the pthread

library, which leaves to the OS kernel the ability to schedule and manage the various

threads that make up the process. Using native threads, the OS is able to switch

between threads preemptively, switching control from a running thread to a non-

running thread at any time. On multi-CPU machines, native threads can run more

than one thread simultaneously by assigning different threads to different CPUs. A

Yap Prolog thread consists then in a combination of an OS native thread with a set

of stacks and structures that are the required to accommodate the state of a Prolog

engine. The key idea is that after a thread starts from a goal, it proves this goal just

like a normal Prolog engine.

The current version of the Yap system incorporates by default the YapTab subcompo-

nent which provides to the user a complete and transparent Application Programming

63
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Interface (API) that gives the tools for the user to control as much as possible the

tabling engine. The user is able to define multiple features about the tabling engine,

such as defining the tabling scheduling strategy (batched or local), defining the table

space model to be used (local tries or global trie), defining the load answer mechanism,

or taking internal statistics about the execution. The YapTab-Mt system is the

multithreaded version of YapTab. The YapTab-Mt system is a framework that is

specially aimed to support the simultaneous usage of tabling and multithreading. The

user defines the problem and declares the predicates that have to be solved using

tabling and then uses a set of Prolog thread specific predicates to explicitly control

how the problem will be concurrently evaluated.

Figure 3.1 shows a small example of a Prolog program for the concurrent evalua-

tion of the path problem. The program has three parts. The first part is the

path problem using the previous path1 and edge2 definitions. The second part is

a naive thread scheduler. The scheduler is quite simple, it begins with the predicate

go scheduler(N), where N stands for the total number of threads to be launched by

the scheduler. The go scheduler(N) predicate uses then the go threads(N, T idList)

predicate to launch the concurrent evaluation of the path problem. The TidList

argument receives the list with the identifiers of the threads that were created, this is

used afterwards by the join threads(TidList) predicate to recursively join all threads.

The go threads(N, T idList) predicate is then defined by a recursion over the number

N of threads to be launched, using the current N during the recursion to create a

thread that will evaluate the go path(N) predicate. The go path(N) predicate simply

calls the path predicate with the N bounded in the first argument and fails at the end,

thus ensuring that all the nodes from the graph can be visited using the backtracking

mechanism provided by the Prolog engine. The third and last part is used to launch

the naive scheduler, in the example, with 2 threads.

The reader is encourage to compare the Prolog code of the single threaded version of

path problem described the Figure 2.8 with the multithreaded version of path problem

described in Figure 3.1. One will notice that the Prolog code of both path problems

is exactly the same. It is also important to notice that the multithreaded tabling

support is provided to the user in a completely transparent fashion. The high level

Prolog instruction table path/2 is actually abstracting the multithreaded framework

that is beneath the YapTab-Mt engine. On the next sections, will go step by step into

the engine level and make an exhaustive description about the infra-structure that was

implemented to pass from the YapTab engine to the YapTab-Mt engine.
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% t a b l i n g d e c l a r a t i o n

:− table path /2 .

% the path problem

path (X, Z) :− edge (X, Y) , path (Y, Z ) .

path (X, Z) :− edge (X, Z ) .

%graph c o n f i g u r a t i o n

edge (1 , 2 ) .

edge (2 , 1 ) .

% naive thread s c h e d u l e r

go s chedu l e r (N) :−
go threads (N, TidLis t ) ,

j o i n t h r e a d s ( TidLis t ) .

go threads (0 , [ ] ) .

go threads (N, [ Tid | TidList ] ) :−
t h r e a d c r e a t e ( go path (N) , Tid ) ,

N1 i s N − 1 ,

go threads (N1 , TidLis t ) .

go path (N) :− path (N, ) , f a i l .

j o i n t h r e a d s ( [ ] ) .

j o i n t h r e a d s ( [ Tid | TidList ] ) :−
j o i n t h r e a d s ( TidLis t ) ,

t h r e a d j o i n ( Tid , ) .

% launch ing a naive thread s c h e d u l e r wi th 2 t h r e a d s to

% c o n c u r r e n t l y e v a l u a t e the path problem with 2 nodes

:− go s chedu l e r ( 2 ) .

Figure 3.1: An example of a concurrent evaluation of the path problem

3.2 Concurrent Table Space Designs

YapTab-Mt’s key idea for multithreaded tabling is still based on the idea that each

computational thread runs independently. This means that each tabled evaluation

depends only on the computations being performed by the thread itself, i.e., there

isn’t the notion of being a consumer thread since, from each thread point of view, a

thread is always the generator for all of its subgoal calls. We propose three different

designs to accomplish this, the No Sharing (NS), the Subgoal Sharing (SS) and the Full

Sharing (FS) designs. We begin by introducing and analyzing the original YapTab’s
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sequential design and them we present the new concurrent designs by comparing them

with YapTab’s original design.

3.2.1 YapTab’s Memory Usage Analysis

We show now a detailed analysis of the memory used by the YapTab system on

the table space. This will be useful for the memory analysis of the multithreaded

designs that we will be presenting next. We begin by remembering the structure of

YapTab’s table space with multiple tabled predicates. Figure 3.2 shows the general

representation of a non multithreaded table space in YapTab.
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Figure 3.2: YapTab’s original table space organization

At the entry point we have the TE structures for each tabled predicate Pi. Remember

that, this structure is allocated when a tabled predicate is being compiled, so that

a pointer to the table entry can be included in the compiled code for predicate Pi.

The TE structure for each predicate is inside a chain, which in our example begins

with predicate P1 and ends with predicate Pn. Underneath each TE structure we

have the subgoal trie and subgoal frame data structures for each call Pi.j made to

the predicate. In the example, predicate P1 has x calls and predicate Pn has y calls.

Finally, underneath each subgoal frame structure we have the answer trie structure

with the answers.

We can now formalize the Total Memory Usage (TMU) of YapTab’s table space design.

For this, we assume that all tabled predicates are completely evaluated, meaning that
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the system does not allocate any further structures on the table space. Given NP

tabled predicates, Equation 3.1 presents the TMU of the YapTab system (TMUY T ).

TMUY T =
NP∑
i=1

MUY T (Pi)

where

MUY T (Pi) = TEY T + STY T (Pi) +

NC(Pi)∑
j=1

[SFY T + ATY T (Pi.j)]

(3.1)

The TMU of YapTab is given by the summatory of the memory used for each predicate,

i.e, the MUY T (Pi) value. The MUY T (Pi) value is then given by the sum of each

structure inside the table space for the corresponding predicate Pi. The TEY T ,

STY T (Pi), SFY T , ATY T (Pi) represent the amount of the memory used by predicate Pi

in its table entry, subgoal trie, subgoal frames and answer trie structures, respectively,

and NC(Pi) represents the number of subgoal calls created during the evaluation of

the predicate. In the example shown in Figure 3.2, the value of NC(P1) would be x

and the value of NC(Pn) would be y.

In what follows, we will be using MUY T (Pi) to make a performance analysis comparison

between the memory used by YapTab and the three new concurrent table space designs,

so that we can understand better the benefits that each model has in terms of memory

usage. For this performance analysis, we will not be considering any synchronization

mechanisms, such as lock fields, since several synchronization techniques exist that

do not require an actual lock field inside the table space structures1, and we will be

assuming that an arbitrary number of threads NT have completely evaluated the same

tabled predicate Pi in all of its subgoal calls NC(Pi).

3.2.2 No-Sharing Design

The No-Sharing (NS) design was the first design to be implemented and the starting

point of our work. We consider the eagerest design in terms of memory consumption

because the key idea is to give complete priority to the private information of the

threads. This means that each thread allocates private tables for each new subgoal

1Two examples that do not require lock fields are (i) a global array of locks outside the concurrent

structures and (ii) the usage of the low level Compare-And-Swap (CAS) operation that is widely

available in the current hardware architectures.
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called during its computation, regardless of the behavior of the remaining threads

working in the system. In this design, only the TE structure is shared among threads.

Figure 3.3 shows the configuration of a table space using the NS design on a table

space with n predicates. As before, the TE structures of all predicates are chained.

For the sake of simplicity, in the figure we are only showing the configuration of the

NS design for a particular predicate Pi and a particular subgoal call Pi.j.
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Figure 3.3: Table space organization for the NS design

In this design, the TE structure still stores the common information for the predicate

(such as the predicate’s arity or the predicate’s evaluation strategy), but it is extended

with a Bucket Array of Entries (BAE). Each thread t has its own cell Tt inside the

BAE, which points to the private data structures of the thread. The ST, the SF and

the AT structures are thus private to each thread and they can be removed when the

thread finishes execution. As one can observe, only the TE is shared among threads.

Since this structure is created by the main thread, when a program is being compiled,

we can assume that, no synchronization or concurrent writing points exist.

Given NT threads, Equation 3.2 shows the memory usage analysis of the predicate Pi

using the NS design (MUNS(Pi)) and the conditions that determine the size of every

structure in the design.
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MUNS(Pi) =

TENS + NT ∗ [STNS(Pi) +

NC(Pi)∑
j=1

[SFNS + ATNS(Pi.j)]]

cond.


TENS = TEY T + BAE

STNS(Pi) = STY T (Pi)

SFNS = SFY T

ATNS(Pi.j) = ATY T (Pi.j)

(3.2)

The value is given by the sum of the sizes of the structures that are used by the NS

design, i.e., the size of table entry structure (TENS) plus the sum of the sizes of the

structures that are multiplied by the NT number of threads. The structures in the

multiplication are the sum of the memory used in the subgoal trie structures(STNS(Pi))

with the summatory of the memory used in the subgoal frame (SFNS) and answer

trie (ATNS(Pi)) structures in the NC subgoal calls of the predicate Pi (NC(Pi)).

Concerning the conditions that describe the size of the structures, the TENS size is

given by the size of the table entry structure in YapTab (TEY T (Pi)) added with the

size of the bucket array of entries (BAE). The size of the remaining structures within

the NS design, the subgoal trie (STNS(Pi)), answer trie (ATNS(Pi.j)) and subgoal

frame (SFNS) structures is equal to the size of the same structure type used in the

original YapTab, the STY T (Pi), ATY T (Pi.j) and SFY T , respectively.

When comparing the memory equations of the NS design and YapTab, the extra

memory cost of the NS design to support concurrency is given by

NP∑
i=1

[BAE + [NT − 1] ∗ [STNS(Pi) +

NC(Pi)∑
j=1

[SFNS + ATNS(Pi.j)]]].

This formula shows that the amount of memory spent by the design in ST, AT and

SF is directly affected by the number of threads NT . Thus, for a particular NT = 1,

the extra memory cost would be

NP ∗BAE.

The ST and AT structures can be considered to be the backbone of the table space,

since often tabled evaluations can grow their size significantly and the Prolog system



70 CHAPTER 3. CONCURRENT TABLE SPACE DESIGNS

spends most of its time in the table space on these two structures. This dependency

over the NT value motivated us to create new designs that would decrease or remove

this dependency, thus in the next two subsections we will be presenting two alternative

designs that are aimed to be more efficient in the memory usage.

3.2.3 Subgoal-Sharing Design

In this second design, the threads share part of the table space. Figure 3.4 shows the

configuration of a table space using the SS design on a table space with n predicates.

As before, the TE structures of all predicates are chained. For the sake of simplicity,

we are considering in the figure the configuration of the SS design for a particular

predicate Pi and a particular subgoal call Pi.j. The ST structure is shared among the

threads and the leaf data structures in each subgoal trie path, instead of referring to

a SF, they point now to a BAE. Each thread t has its own cell Tt inside the bucket

array which then points to private SF and AT structures.
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Figure 3.4: Table space organization for the SS design

In this design, concurrency among threads is restricted to the allocation of new entries

on the ST structure. Whenever a thread finishes the execution, its private structures

are removed, but the shared part remains present as it can be in use or be further

used by other threads.

Given NT threads, Equation 3.3 shows the memory usage analysis of the predicate Pi

using the SS design (MUSS(Pi)) and the conditions that determine the size of every
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structure in the design.

MUSS(Pi) =

TESS + STSS(Pi) +

NC(Pi)∑
j=1

[BAE + NT ∗ [SFSS + ATSS(Pi.j)]]

cond.


TESS = TEY T

STSS(Pi) = STY T (Pi)

SFSS = SFY T

ATSS(Pi.j) = ATY T (Pi.j)

(3.3)

The memory usage for the SS design is given by the sum of the size of table entry struc-

ture (TESS) with the size of the subgoal trie structure (STSS(Pi)) plus the summatory

of the memory used in bucket array of entries (BAE) added with the multiplication

of NT threads by the subgoal frame (SFNS) and answer trie (ATNS(Pi)) structures in

the NC subgoal calls of the predicate Pi (NC(Pi)). Concerning the conditions that

describe the size of the structures, Equation 3.3 shows that all structures in the SS

design have the same size as the ones used in YapTab.

Lemma 3.2.1 shows the conditions where the SS design uses less memory than the

NS design for an arbitrary number of threads NT ≥ 1 and an arbitrary number of

calls made to predicates, NC(Pi) ≥ 1. To prove it, we begin by reducing both NS

and SS designs to the canonical base, which is the YapTab with its structures, and

then we proceed with the memory analysis to understand the structures that influence

the behavior of the models. This analysis is useful to formalize the intuitive notions

about the designs and whenever we want to know beforehand, which would be the

best multithreaded design to be used on a particular tabled predicate.

Lemma 3.2.1. If NT ≥ 1 and NC(Pi) ≥ 1 then the SS design uses less or equal

memory than the NS design on a predicate Pi, i.e., MUSS(Pi) ≤ MUNS(Pi) if and

only if the formula [NC(Pi)− 1] ∗BAE ≤ [NT − 1] ∗ STY T (Pi) holds.

Proof. The proof consists in two parts. On the first part we show the value of

MUSS(Pi) − MUNS(Pi), and then on the second part we use it to make the final

statement of the proof.

Assume that all subgoal calls of the predicate Pi were completely evaluated using the

SS and the NS designs.
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For the SS design we have:

MUSS(Pi) =

TESS + STSS(Pi) +
NC(Pi)∑
j=1

[BAE + NT ∗ [SFSS + ATSS(Pi.j)]] =SS cond. 1,2,3,4

TEY T + STY T (Pi) + NC(Pi) ∗BAE + NT ∗
NC(Pi)∑
j=1

[SFY T + ATY T (Pi.j)]

For the NS design we have:

MUNS(Pi) =

TENS + NT ∗ STNS(Pi) + NT ∗
NC(Pi)∑
j=1

[SFNS + ATNS(Pi.j)] =NS cond. 1,2,3,4

TEY T + BAE + NT ∗ STY T (Pi) + NT ∗
NC(Pi)∑
j=1

[SFY T + ATY T (Pi.j)]

The value of MUSS(Pi)−MUNS(Pi) is given by:

MUSS(Pi)−MUNS(Pi) =

TEY T︸ ︷︷ ︸
a

+STY T + NC(Pi) ∗BAE + NT ∗
NC(Pi)∑
j=1

[SFY T + ATY T (Pi.j)]︸ ︷︷ ︸
b

−[TEY T︸ ︷︷ ︸
−a

+BAE +

NT ∗ STY T (Pi) + NT ∗
NC(Pi)∑
j=1

[SFY T + ATY T (Pi.j)]︸ ︷︷ ︸
−b

] =

[NC(Pi)− 1] ∗BAE − [NT − 1] ∗ STY T (Pi).

Now for the second and final part of the proof.

MUSS(Pi) ≤MUNS(Pi)⇔

MUSS(Pi)−MUNS(Pi) < 0⇔

[NC(Pi)− 1] ∗BAE − [NT − 1] ∗ STY T (Pi) < 0⇔

[NC(Pi)− 1] ∗BAE ≤ [NT − 1] ∗ STY T (Pi)

Lemma 3.2.1 shows that the comparison between NS and the SS designs depends on

the number of calls made to a predicate, the sizes of the BAE and ST structures, and

on number of threads in evaluation. The NS design grows in the size of ST structures

as we increase the number of threads in execution. The SS design grows in the size of

BAE structures proportionally to the total number of the subgoal calls made to the

predicate. The number of subgoal calls and the size of the ST structure is dependent
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of the evaluation of the predicates, while the size of the BAE structures is fixed by

the implementation provided by the YapTab-Mt and the number of threads is user-

dependent. For the number of threads NT = 1 the following corollaries can be taken

from the lemma:

Corollary 3.2.1. If NT = 1 and NC(Pi) = 1 then MUSS(Pi) = MUNS(Pi).

Proof. From Lemma 3.2.1 we have:

MUSS(Pi) ≤MUNS(Pi)⇔

[NC(Pi)− 1] ∗BAE ≤ [NT − 1] ∗ STY T (Pi)⇔NT=1,NC(Pi)=1

[1− 1] ∗BAE ≤ [1− 1] ∗ STY T (Pi)⇔ 0 = 0

This means that MUSS(Pi) = MUNS(Pi) must be true.

Corollary 3.2.2. If NT = 1 and NC(Pi) > 1 then MUSS(Pi) > MUNS(Pi).

Proof. From Lemma 3.2.1 we have:

MUSS(Pi) ≤MUNS(Pi)⇔

[NC(Pi)− 1] ∗BAE ≤ [NT − 1] ∗ STY T (Pi)⇔NT=1

[[NC(Pi)− 1] ∗BAE ≤ 0

Since NC(Pi) > 1 then [[NC(Pi)− 1] ∗BAE > 0, thus MUSS(Pi) > MUNS(Pi).

The conclusion for the comparison in the memory usage between the SS and the NS

designs is that for one thread the SS is worst than or equal to the SS design. For a

number of threads higher than one, the SS design performs better than the NS design

when the formula presented in Lemma 3.2.1 is true. The best scenarios for the SS

design are in predicates that have a small number of subgoal calls and ST structures

that uses larger amounts of memory. In these scenarios the difference between both

designs increases in proportion to the number of threads NT .

3.2.4 Full-Sharing Design

The FS design is the last design to be presented and is the most sophisticated among

the three. Figure 3.5 shows the configuration of a table space using the FS design

on a table space with n predicates. As before, the TE structures of all predicates are

chained. For the sake of simplicity, we are considering in the figure the configuration
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of the FS design for a particular predicate Pi and a particular subgoal call Pi.j. In this

design, part of the subgoal frame information, the Subgoal Entry (SE) data structure,

and the AT structure are now also shared among all threads. The previous SF data

structure was split into two: the SE stores common information for the subgoal call

(such as the pointer to the shared AT structure) and the BAE structure; the remaining

information (the SF data structure) stores the private information about execution of

the subgoal on each thread.

Table Entry P
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Subgoal Trie Structure
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Sg_Entry Sg_Entry Sg_Entry
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Figure 3.5: Table space organization for the FS design

The SE includes a BAE, in which each cell Tt points to the private subgoal frame of

each thread t. The private subgoal frames include an extra field which is a back pointer

to the common SE. This is important because, with that, we can keep unaltered all the

tabling data structures that point to subgoal frames. To access the private information

on the subgoal frames there is no extra cost (we still use a direct pointer), and only

for the common information on the SE we pay the extra cost of following the indirect

pointer. In this design, concurrency among threads includes then the access to the SE

data structure and the allocation of new entries on the AT structures. However, this

latest design has two major advantages. First, memory usage is reduced to a minimum.

The only memory overhead, when compared with a single threaded evaluation, is the

BAE associated with each subgoal entry, and apart from the split on the SF data

structure, all the remaining structures remain unchanged. Second, since threads are

sharing the same AT structures, answers inserted by a thread for a particular subgoal

call are automatically made available to all other threads when they call the same

subgoal.
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Given NT threads, Equation 3.4 shows the memory usage analysis of the predicate Pi

using the FS design (MUFS(Pi)) and the conditions that determine the size of every

structure in the design.

MUFS(Pi) =

TEFS + STFS(Pi) +

NC(Pi)∑
j=1

[SEFS + BAE + NT ∗ [SFFS + BPFS] + ATFS(Pi.j)]

cond.


TEFS = TEY T

STFS(Pi) = STY T (Pi)

SEFS + SFFS = SFY T

ATFS(Pi.j) = ATY T (Pi.j)

(3.4)

The memory usage for the FS design is given by the sum of the size of table entry

structure (TEFS) with the size of the subgoal trie structure (STFS(Pi)) plus the

summatory of the memory used in the subgoal entry (SEFS(Pi)) added with bucket

array of entries (BAE), with the multiplication of the sum of the NT threads of

the subgoal frame (SFFS) and the back pointer size (BPFS) and with the answer

trie (ATFS(Pi)) structures in the NC subgoal calls of the predicate Pi (NC(Pi)).

Concerning the conditions that describe the size of the structures, Equation 3.4 shows

that the size of the TE, ST and AT structures is the same as the YapTab original

structures, and, the third condition shows that the sum of the size of the subgoal

entry with the size of the subgoal frame is equal to the size of the subgoal frame

structure used by the YapTab.

The FS is a refinement of the SS and next we use Lemma 3.2.2 to make a comparison

in terms of memory usage between both designs. To prove it, we begin by reducing

both FS and SS designs to the canonical base, which is the YapTab with its structures,

and then we proceed with the memory analysis to understand the structures that most

influences the behavior of the designs.

Lemma 3.2.2. If NT > 1 and NC(Pi) ≥ 1 then the FS design uses always less

memory than the SS design on a predicate Pi, i.e., MUFS(Pi) < MUSS(Pi) always

holds.

Proof. The proof consists in two parts. On the first part we show the value of

MUFS(Pi) − MUSS(Pi), and then on the second part we use it to make the final
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statement of the proof.

Assume that all subgoal calls of the predicate Pi were completely evaluated using the

FS and the SS designs.

For the FS design we have:

MUFS(Pi) =

TEFS+STFS(Pi)+
NC(Pi)∑
j=1

[SEFS+BAE+NT∗[SFFS+BPFS]+ATFS(Pi.j)] =FS cond. 1,2,4

TEY T +STY T (Pi)+
NC(Pi)∑
j=1

[SEFS+BAE+NT ∗[SFFS+BPFS]+ATY T (Pi.j)] =FS cond. 3

TEY T +STY T (Pi)+
NC(Pi)∑
j=1

[SFY T−SFFS +BAE+NT ∗ [SFFS +BPFS]+ATY T (Pi.j)] =

TEY T +STY T (Pi)+
NC(Pi)∑
j=1

[SFY T +[NT−1]∗SFFS+BAE+NT ∗BPFS+ATY T (Pi.j)] =

TEY T + STY T (Pi) + NC(Pi) ∗BAE + NC(Pi) ∗NT ∗BPFS +
NC(Pi)∑
j=1

[SFY T + [NT −

1] ∗ SFFS + ATY T (Pi.j)]

For the SS design we have:

MUSS(Pi) =Lemma 3.2.2

TEY T + STY T (Pi) + NC(Pi) ∗BAE + NT ∗
NC(Pi)∑
j=1

[SFY T + ATY T (Pi.j)]

The value of MUFS(Pi)−MUSS(Pi) is given by:

MUFS(Pi)−MUSS(Pi) =

TEY T + STY T (Pi) + NC(Pi) ∗BAE︸ ︷︷ ︸
a

+NC(Pi) ∗ NT ∗ BPFS +
NC(Pi)∑
j=1

[SFY T + [NT −

1] ∗ SFFS +ATY T (Pi.j)]− [TEY T + STY T (Pi) + NC(Pi) ∗BAE︸ ︷︷ ︸
−a

+NT ∗
NC(Pi)∑
j=1

[SFY T +

ATY T (Pi.j)]] =

NC(Pi)∗NT ∗BPFS+
NC(Pi)∑
j=1

[SFY T +[NT−1]∗SFFS+ATY T (Pi.j)]−[NT ∗
NC(Pi)∑
j=1

[SFY T +

ATY T (Pi.j)]] =

NC(Pi) ∗NT ∗BPFS +
NC(Pi)∑
j=1

[SFY T + [NT − 1] ∗ SFFS + ATY T (Pi.j)−NT ∗ SFY T −

NT ∗ ATY T (Pi.j)] =
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NC(Pi)∗NT ∗BPFS+
NC(Pi)∑
j=1

[[1−NT ]∗SFY T +[NT−1]∗SFFS+[1−NT ]∗ATY T (Pi.j)] =

NC(Pi)∗NT ∗BPFS+NC(Pi)∗[NT−1]∗[SFFS−SFY T ]−[NT−1]∗
NC(Pi)∑
j=1

ATY T (Pi.j) =

NC(Pi) ∗ [[NT − 1] ∗ [SFFS + BPFS − SFY T ] + BPFS]− [NT − 1] ∗
NC(Pi)∑
j=1

ATY T (Pi.j)

Now for the second and final part of the proof.

MUFS(Pi) < MUSS(Pi)⇔

MUFS(Pi)−MUSS(Pi) < 0⇔

NC(Pi)∗[[NT−1]∗[SFFS+BPFS−SFY T ]+BPFS]−[NT−1]∗
NC(Pi)∑
j=1

ATY T (Pi.j) < 0⇔

NC(Pi) ∗ [[NT − 1] ∗ [SFFS + BPFS − SFY T ]︸ ︷︷ ︸
<0

+BPFS]

︸ ︷︷ ︸
<0

< [NT − 1] ∗
NC(Pi)∑
j=1

ATY T (Pi.j)︸ ︷︷ ︸
>0

Lemma 3.2.2 shows that the FS design uses always less memory than the SS design if

the number of threads NT is higher than one. The proof has two parts, on the first

part we prove the memory used by each design on each predicate and on the second

part we compare both designs. Since the value of

[[NT − 1] ∗ [SFFS + BPFS − SFY T ] + BPFS]

is always lower than zero and the value of ATY T (Pi.j) is always positive (all tabled

subgoal call have always an AT structure), the difference between both is always

negative, which represents the fact that the memory used by the FS is always lower

than the SS. The difference is multiplied by the number of subgoal calls and the number

of threads. The difference between both designs occurs in two types of structures, on

the subgoal frames and the answer tries. On the subgoal frames, the difference is that

the size of the subgoal frames used by the FS design added with the back pointer is

lower that the ones used by the SS design. For the answer trie structures, the FS design

simply does not allocate as many of theses structures has the SS design. Remember

from the previous subsection that the SS behavior was dependent on the amount of

memory spent in BAE. The FS maintains this dependency, since this structure is co-
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allocated inside the subgoal entry structure. For the number of threads NT = 1 the

following corollary can be taken from the lemma:

Corollary 3.2.3. If NT = 1 and NC(Pi) ≥ 1 then MUFS(Pi) > MUSS(Pi).

Proof. From Lemma 3.2.2 we have:

MUFS(Pi) < MUSS(Pi)⇔

NC(Pi)∗[[NT−1]∗[SFFS+BPFS−SFY T ]+BPFS] < [NT−1]∗
NC(Pi)∑
j=1

ATY T (Pi.j)⇔NT=1

NC(Pi) ∗ [[1− 1] ∗ [SFFS + BPFS − SFY T ] + BPFS] < [1− 1] ∗
NC(Pi)∑
j=1

ATY T (Pi.j)⇔

NC(Pi) ∗ BPFS < 0, which is false and NC(Pi) ∗ BPFS = 0 is also false, because

NC(Pi) ≥ 1 and we know that BPFS > 0. Thus, MUFS(Pi) < MUSS(Pi) and

MUFS(Pi) = MUSS(Pi) can not be true, which means that MUFS(Pi) > MUSS(Pi)

must be true.

The conclusion for the comparison in the memory usage between the FS and the SS

designs is that, for one thread, the FS is always worst than the SS design and the

difference increases in the proportion of the number of subgoal calls. For a number

of threads higher than one, the FS design performs always better than the SS design

(Lemma 3.2.2) and the difference increases as the number of threads NT and the

number of subgoal calls increases.

3.3 Implementation Details

In this section, we discuss some low level details regarding the implementation of the

three designs. We begin by describing the most important tabling operations and how

they were extended for multithreaded tabling support. Next, we show how the BAE

structure was implemented. We conclude with the discussion about the alternative

locking schemes used to ensure mutual exclusion over the table space.

3.3.1 Tabling Operations

YapTab programs using tabling are compiled to include tabling operations that enables

the tabling engine to properly schedule the evaluation process. In this subsection, we
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revise the extensions involved in the two key tabling operations, in order to extend

YapTab to YapTab-Mt.

We begin with the tabled subgoal call operation. As described in the previous chapter

this operation inspects the table space looking for a subgoal similar to the current

subgoal being called. If a similar subgoal is found, then the corresponding subgoal

frame is returned. Otherwise, if no such subgoal exists, it inserts a new path into the

subgoal trie structure, representing the current subgoal, and allocates a new subgoal

frame as a leaf of the new inserted path. Algorithm 3.1 shows how we have extended

the tabled subgoal call operation for multithreaded tabling support.

Algorithm 3.1 tabled subgoal call(table entry TE, subgoal call SC, thread id TI)

1: root← get subgoal trie root node(TE, TI)

2: leaf ← subgoal trie check insert(root, SC)

3: if NS design then

4: sg fr ← get subgoal frame(leaf)

5: if sg fr = Null then . sg fr does not exist

6: sg fr ← new subgoal frame(leaf)

7: return sg fr

8: else if SS design then

9: bucket← get bucket array(leaf)

10: if bucket = Null then . BAE does not exist

11: bucket← new bucket array(leaf)

12: else if FS design then

13: sg entry ← get subgoal entry(leaf)

14: if sg entry = Null then . SE does not exist

15: sg entry ← new subgoal entry(leaf)

16: bucket← get bucket array(sg entry)

17: sg fr ← get subgoal frame(bucket, T I)

18: if sg fr = Null then . sg fr does not exist

19: sg fr ← new subgoal frame(bucket)

20: return sg fr

Algorithm 3.1 receives three arguments: the table entry for the predicate at hand

(TE ), the current subgoal being called (SC ), and the id of the working thread (TI ).

The NS design, SS design and FS design macros define which table design is enabled.

The algorithm begins with the get subgoal trie root node() procedure, that receives as

arguments a TE structure and a thread identifier TI (line 1). The aim of the procedure
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is to return the root trie node for the subgoal trie structure that matches with the

given thread identifier TI. Internally the procedure is quite simple. If the NS design is

enabled, then it uses a get bucket entry() procedure to get the reference to the bucket

of the thread with identifier TI within the BAE structure (we will give more details

about this procedure in the next subsections). Then, if the bucket is empty, it creates

and returns a root node for the bucket. Otherwise, the reference exists, and it simply

returns the root node reference. Now, if the NS design is not enabled, then one of the

other two designs is enabled (SS or FS). Since for both designs, only one root node is

required, it creates a new root node or simply returns the node if it already exists.

At line 2, the tabled subgoal call operation calls the subgoal trie check insert() proce-

dure to check/insert a given SC into the subgoal trie structure whose path begins in the

root node at hand. The procedure returns the leaf node for the path representing the

SC. Internally, the subgoal trie check insert() procedure calls a trie node check insert()

procedure to check/insert each token of the subgoal call SC within the subgoal trie

structure.

In the continuation, if the NS design is enabled, the tabled subgoal call operation uses

the leaf node to obtain the corresponding subgoal frame (line 4). If the subgoal call is

new, no subgoal frame still exists and a new one is created (line 6). Then, the procedure

ends by returning the subgoal frame (line 7). This code sequence corresponds to the

standard tabled subgoal call operation.

Otherwise, for the SS design, the tabled subgoal call operation follows the leaf node

to obtain the bucket array (line 9). If the subgoal call is new, no bucket exists and

a new one is created (line 11). On the other hand, for the FS design, it follows the

leaf node to obtain the subgoal entry (line 13) and, again, if the subgoal call is new,

no subgoal entry exists and a new one is created (line 15). From the subgoal entry, it

then obtains the bucket array (line 16).

Finally, for both SS and FS designs, the bucket array is then used to obtain the subgoal

frame (line 17). To do so, it calls the get subgoal frame() procedure. The procedure

receives a bucket array reference and a thread identifier TI, and returns a subgoal

frame reference, if it exists. Internally, the procedure uses the get bucket entry()

procedure to get the reference in the bucket for the thread with identifier TI. In

the continuation, the tabled subgoal call operation checks if the subgoal frame exists

(line 18) and, if the given subgoal call is new, a new subgoal frame needs to be created

(line 19). The operation ends by returning the subgoal frame (line 20). Note that, for

the sake of simplicity, we omitted some of the low level details in manipulating the
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bucket arrays and internal manipulation of the trie. On the next subsections we will

give more details about both features.

Another important tabling operation is the tabled new answer. This operation checks

whether a newly found answer is already in the corresponding answer trie structure

and, if not, it inserts it. Remember from Subsection 2.3.3 that, with local evaluation,

the new answer operation always fails, regardless of the answer being new or repeated,

and that, with batched evaluation, when new answers are inserted the evaluation

should continue, failing otherwise. With the FS design, the answer trie structures are

shared. Thus, since several threads can be inserting answers in the same trie structure,

when an answer exists in the trie, it is not possible to determine if the answer is new or

repeated for a certain thread. This is the reason why at this stage we will discuss the

FS design only for local evaluation. On the next sections, we will show one technique

to efficiently bypass this constraint and allows the YapTab-Mt system to support the

FS design with batched scheduling. Algorithm 3.2 shows how we have extended the

tabled new answer operation to support multithreading.

The operation receives two arguments: the new answer found during the evaluation

(ANS ) and the subgoal frame which corresponds to the call at hand (SF ). The

NS design, SS design and FS design macros define again which table design is enabled.

The operation begins by checking/inserting the given ANS into the answer trie struc-

ture, which will return the leaf node for the path representing ANS (line 1). In line 2,

it then tests whether the answer ANS already existed in the trie, i.e., if it was inserted

or not by the current check/insert operation in line 1 and if the already answer existed,

then it returns failure. Then, if one of the two NS or SS designs is enable (lines 5 to

10), it uses the leaf node to mark the answer as found and inserts the answer in the

consumer chain, so that the answer can be consumed by the consumer nodes of the

call, and returns accordingly to the current scheduling mode.

Otherwise, the FS design is enabled (lines 12 to 17), and the operation implements a

critical region, for marking the answer as found and inserting it in to the consumer’s

chain. At the end (line 17), the operation simply fails (remember that at this stage

we are only considering the local scheduling mode for the FS design).

3.3.2 Bucket Array of Entries

In the previous sections, we introduced the BAE structure. For the NS design, we

included the BAE structure in the table entry (see Figure 3.3), for the SS design, the
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Algorithm 3.2 tabled new answer(answer ANS, subgoal frame SF)

1: leaf ← check insert answer trie(ANS, SF )

2: if is answer marked as found(leaf) = True then . the answer already exists

3: return failure

. the answer is new

4: if NS design or SS design then

5: mark answer as found(leaf)

6: consumer chain insert(leaf, SF )

7: if local scheduling mode(SF ) then

8: return failure

9: else . batched scheduling mode

10: return proceed

11: else . FS design

12: enter critical region(SF) . critical region - begin

13: if is answer marked as found(leaf) = False then

14: mark answer as found(leaf)

15: consumer chain insert(leaf, SF )

16: exit critical region(SF) . critical region - end

17: return failure . local scheduling mode

BAE follows a subgoal trie path (see Figure 3.4), and for the FS design, the BAE is part

of the new subgoal entry data structure (see Figure 3.5). The BAE structure is then

a key structure that allows multiple threads to use concurrently the multithreaded

table space. The BAE structure was presented as containing as much entry cells

as the maximum number of threads (Yap’s current version supports 1024 threads).

However, in practice, this solution is highly inefficient and memory consuming, as we

must always allocate this huge bucket array even when only few threads will be used.

To solve this issue, we introduce a kind of inode pointer structure, where the bucket

array is split into direct bucket cells and indirect bucket cells. The direct bucket cells

are used as before and the indirect bucket cells are only allocated as needed. This

new structure applies to all BAE structures in the three designs. Figure 3.6 shows an

example on how this new structure is used in the FS design.

A BAE structure has now two operating modes. If it is being used by a thread with an

identification number TI lower than a default starting size DirectBuckets (32 in our

implementation), then the buckets are used as before, meaning that the entry cell TTI

still points to the private information of the corresponding thread. But now, if a thread

with an identification number equal or higher than DirectBuckets appears, the thread
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Figure 3.6: Using direct and indirect bucket cells in the FS design

is mapped into one of the u undirected buckets (entry cells B0 until Bu−1 marked with

gray in Figure 3.6), which becomes a pointer to a second level bucket array that will

now contain the entry cells referring to the private thread information. The second

level buckets contains direct bucket entries. Given a thread TI (TI ≥ DirectBuckets),

its index in the first and in the second level bucket arrays is given by the division and

the remainder of (TI −DirectBuckets) by direct buckets, respectively.

Algorithm 3.3 shows the pseudo-code for the check and insert procedure for the BAE

structures using directed and undirected buckets. The procedure is used by the three

multithreaded designs. For the moment, we are considering 32 direct buckets and 31

undirected buckets that expand to other BAE structures with 32 buckets, performing

the total number of 1024 threads supported by Yap.

The procedure receives two arguments: the main bucket array of entries at hand (BAE )

and the identifier of the working thread (TI ). The procedures begins by checking

whether the thread identifier TI is lower that the DirectBuckets threshold and if so,

the procedures ends by returning the correspondent bucket (lines 1-2). Otherwise, the

TI is in the undirect side, and the procedure follows by getting the undirect bucket

position in the main BAE (line 3) and by getting the secondary BAE (line 4). If the

secondary BAE does not exists (line 5), then the procedure creates a new secondary

BAE (line 6) and enters in the critical region (line 7) of the main BAE structure, until

line 13. While the procedure is in the critical region, it checks again if the undirect

bucket is still empty and, if so, it updates the undirect bucket with the new secondary

BAE (lines 8-9). Otherwise, the undirect bucket is no longer empty, meaning that

other thread has inserted another secondary BAE in the meantime. In this case the

procedure frees the new secondary BAE and gets the BAE that is in the undirect
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Algorithm 3.3 get bucket entry(bucket array BAE, thread id TI)

1: if TI < DirectBuckets then

2: return BAE + TI

3: UndirBkt← BAE + DirectBuckets + (TI −DirectBuckets)/DirectBuckets

4: UndirBAE ← get BAE(UndirBkt)

5: if UndirBAE = Null then . bucket is empty

6: UndirBAE ← NewBAE(DirectBuckets)

7: enter critical region(BAE) . critical region - begin

8: if get BAE(UndirBkt) = Null then . bucket still is empty

9: set BAE(UndirBkt) = UndirBAE

10: else . failed to insert

11: FreeBAE(UndirBAE)

12: UndirBAE ← get BAE(UndirBkt)

13: exit critical region(BAE) . critical region - end

14: return UndirBAE + (TI −DirectBuckets)%DirectBuckets

bucket (line 11-12). Finally, the procedure ends by returning the bucket that is in the

secondary BAE.

In this subsection, we have discussed the implementation of BAE structures. Our

purpose was to switch from a BAE structure without concurrent writes but using a

huge amount of memory, to a BAE structure where part of the buckets are shared

among threads. Maintaining a trade-off between both concurrency and memory usage

is always a key to achieve an efficient concurrent system. On the next subsection, we

discuss the table locking mechanisms that were implemented in the initial version of

the YapTab-Mt.

3.3.3 Table Locking Schemes

Remember that the SS and FS designs introduce concurrency among threads when

accessing shared resources of the table space. Here, we discuss how we use locking

schemes to ensure mutual exclusion when manipulating such shared resources.

We can say that there are two critical issues that determine the efficiency of a locking

scheme. One is the lock duration, that is, the amount of time a data structure is

locked. The other is the lock grain, that is, the amount of data structures that are

protected through a single lock request. It is the balance between lock duration and
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lock grain that compromises the efficiency of different locking schemes.

The or-parallel tabling engine of Yap [109] already implemented four alternative lock-

ing schemes to deal with concurrent table accesses: the Table Lock at Entry Level

(TLEL) scheme, the Table Lock at Node Level (TLNL) scheme, the Table Lock at

Write Level (TLWL) scheme, and the Table Lock at Write Level - Allocate Before

Check (TLWL-ABC) scheme. Currently, the first three are also available on our

multithreaded engine. Figure 3.7(a) shows the TLEL scheme and Figure 3.7(b) shows

the TLNL/TLWL schemes. The gray areas represent the areas that are locked by each

lock. In the TLEL scheme, one can observe that the two lock fields (the Lock L1 in

the table entries and Lock L2 in the subgoal frames) fully lock the complete access

to the subgoal and answer trie structures, respectively. In the TLNL/TLWL schemes,

the access to the subgoal and answer tries is locked per trie level and we use the parent

trie nodes to lock the access to the list of sibling nodes. In Figure 3.7(b), Lock L1 and

Lock L2 lock the sibling nodes for a common parent node.
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Figure 3.7: Table Locking Schemes : (a) TLEL vs (b) TLNL/TLWL

The TLNL/TLWL schemes allow a single writer per chain of sibling nodes that

represent alternative paths from a common parent node. This means that each node in

the subgoal/answer trie structures is expanded with a locking field that, once activated,

synchronizes updates to the chain of sibling nodes, meaning that only one thread at a



86 CHAPTER 3. CONCURRENT TABLE SPACE DESIGNS

time can be inserting a new child node starting from the same parent node.

In what follows, we will focus our attention on the TLWL locking scheme, since its

performance showed to be clearly better than the other two [108]. With the TLWL

scheme, the process of check/insert a token T in a chain of sibling nodes works as

follows. Initially, the working thread starts by searching for T in the available child

nodes (the non-critical region) and only if the token is not found, it will enter the

critical region in order to insert it on the chain. At that point, it waits until the lock

be available, which can cause a delay proportional to the number of threads that are

accessing the same critical region at the same time.

In order to reduce the lock duration to a minimum, we have improved the original

TLWL scheme to use trylocks instead of traditional locks. With trylocks, when a

thread fails to get access to the lock, instead of waiting, it returns to the non-critical

region, i.e., it traverses the newly inserted nodes, if any, checking if T was, in the

meantime, inserted in the chain by another thread. If T is not found, the process

repeats until the thread get access to the lock, in order to insert T, or until T be

found. Algorithm 3.4 shows the pseudo-code for the implementation of this procedure

using the TLWL scheme with trylocks.

Initially, the algorithm traverses the chain of sibling nodes, that represent alternative

paths from the given parent node P, and checks for one representing the given token

T. If such a node is found (line 6) then execution is stopped and the node returned

(line 7). Otherwise, this process repeats (lines 3 to 10) until the working thread gets

access to the lock field of the parent node P. In each round, the last child auxiliary

variable marks the last node to be checked. It is initially set to Null (line 1) and then

updated, at the end of each round, to the new first child of the current round (line 9).

Whenever, the thread gets access to the lock, it enters the critical region (lines 11 to

19). Here, it first checks if T was, in the meantime, inserted in the chain by another

thread (lines 12 to 16). If this is not the case, then a new trie node representing T

is allocated (line 17) and inserted in the beginning of the chain (lines 18 and 19).

The procedure then unlocks the parent node (line 20) and ends returning the newly

allocated child node (line 21).

Another feature that we have implemented to improve the TLWL scheme was the

usage of an external global array of locks that is shared among threads instead of

using a lock field per trie node. The key idea is to save memory by reducing the size

of the nodes inside the subgoal and answer tries, by removing the lock field from the

nodes and pass it to an external fixed-size structure that is shared between all threads.
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Algorithm 3.4 trie node check insert(token T, parent trie node P)

1: last child← Null . used to mark the last child to be checked

2: repeat . non-critical region

3: first child← TrNode first child(P )

4: child← first child

5: while child 6= last child do . traverse the chain of sibling nodes ...

6: if TrNode term(child) = T then . ... searching for T

7: return child

8: child← TrNode sibling(child)

9: last child← first child

10: until (trylock(TrNode lock(P )) = True) . critical region, get lock

11: child← TrNode first child(P )

12: while child 6= last child do . traverse the chain of sibling nodes ...

13: if TrNode entry(child) = T then . ... searching for T

14: unlock(TrNode lock(P )) . unlocking before return

15: return child

16: child← TrNode sibling(child)

17: child← new trie node(T ) . create a new node to represent T

18: TrNode sibling(child)← TrNode first child(P )

19: TrNode first child(P )← child

20: unlock(TrNode lock(P )) . unlocking before return

21: return child

Thus, whenever a thread wants to lock a particular level of the trie, it uses the value

of the parent node of the trie level to feed a hash function that maps afterwards that

value in to a bucket in the global array of locks. The bucket has then the lock to be

used by the thread to lock the level, Figure 3.8 illustrates this idea. The correctness

of usage of the global array of locks feature is ensured by the fact that the input

value and the hash value is the same for all the threads that want to lock the same

particular level of the trie. In our implementation, the size of the global array of locks

is 512 buckets, which was the value that had the best performance results in terms of

runtime. On the next subsections, we will give mode details about this performance

analysis.
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3.4 Experimental Results

In this section, we present some experimental results obtained for the NS, SS and

FS designs using the TLWL scheme with traditional locks, global locks and trylocks.

The environment for our experiments was a machine with 32-Core AMD Opteron

(TM) Processor 6274 (2 sockets with 16 cores each) with 32G of main memory, each

processor with caches L1, L2 and L3 respectively with the sizes of 64K, 2048K and

6144K, running the Linux kernel is the 3.16.7-200.fc20.x86 64, with Yap 6.3 compiled

with gcc 4.8.

3.4.1 Benchmark Programs

We used five sets of benchmarks. The Large Joins and WordNet sets were obtained

from the OpenRuleBench project [73]; the Model Checking set includes three different

specifications and transition relation graphs usually used in model checking applica-

tions; the Path Left and Path Right sets implement two recursive definitions of the

well-known path/2 predicate, that computes the transitive closure in a graph, using

several different configurations of edge/2 facts. Figure 3.9 shows an example for each

configuration. We experimented the BTree configuration with depth 17, the Pyramid

and Cycle configurations with depth 2000 and the Grid configuration with depth 35.

All benchmarks find all the solutions for the problem.

In order to have a deeper insight on the behavior of each benchmark, and therefore

clarify some of the results that are presented next, we first characterize the bench-

marks. The columns in Table 3.1 have the following meaning:
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• calls: is the number of different calls to tabled subgoals. It corresponds to the

number of paths in the subgoal tries.

• trie nodes: is the total number of trie nodes allocated in the corresponding

subgoal/answer trie structures.

• trie depth: is the minimum/average/maximum number of trie node levels

required to represent a path in the corresponding subgoal/answer trie structures.

Trie structures with smaller average values are more amenable to higher lock

contention.

• unique: is the number of different tabled answers found. It corresponds to the

number of paths in the answer tries.

• repeated: is the number of redundant tabled answers found. With the TLWL

locking scheme, redundant answers do not lock the table space.

• NS: is the average execution time, in seconds, of ten runs for 1 thread with

the NS design. In what follows, we will use these times as the base times when

computing the overhead ratios for the other designs.

By observing Table 3.1, the Mondial benchmark, from the Large Joins set, and the

three Model Checking benchmarks seem to be the benchmarks least amenable to lock

contention since they are the ones that find less unique answers and that have the

deepest trie structures. In this regard, the Path Left and Path Right sets correspond

to the opposite case. They find a huge number of answers and have very shallow trie

structures. On the other hand, the WordNet and Path Right sets have the benchmarks

with the largest number of different subgoal calls, which can reduce the probability of

lock contention because answers can be found for different subgoal calls and therefore

be inserted with minimum overlap. On the opposite side are the Join2 benchmark,
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Table 3.1: Characteristics of the benchmark programs

Bench
Tabled Subgoals Tabled Answers Time (sec)

calls trie nodes trie depth unique repeated trie nodes trie depth NS

Large Joins

Join2 1 6 5/5/5 2,476,099 0 2,613,660 5/5/5 2.85

Mondial 35 42 3/4/4 2,664 2,452,890 14,334 6/7/7 0.84

WordNet

Clusters 117,659 235,319 2/2/2 166,877 161,853 284,536 1/1/1 0.83

Holo 117,657 235,315 2/2/2 74,838 54 192,495 1/1/1 0.75

Hyper 117,657 235,315 2/2/2 698,472 8,658 816,129 1/1/1 1.42

Hypo 117,657 117,659 2/2/2 698,472 20,341 816,129 1/1/1 1.53

Mero 117,657 117,659 2/2/2 74,838 13 192,495 1/1/1 0.74

Tropo 117,657 235,315 2/2/2 472 0 118,129 1/1/1 0.66

Model Checking

IProto 1 6 5/5/5 134,361 385,423 1,554,896 4/51/67 2.70

Leader 1 5 4/4/4 1,728 574,786 41,788 15/80/97 3.51

Sieve 1 7 6/6/6 380 1,386,181 8,624 21/53/58 18.50

Path Left

BTree 1 3 2/2/2 1,966,082 0 2,031,618 2/2/2 1.53

Cycle 1 3 2/2/2 4,000,000 2,000 4,002,001 2/2/2 3.52

Grid 1 3 2/2/2 1,500,625 4,335,135 1,501,851 2/2/2 1.93

Pyramid 1 3 2/2/2 3,374,250 1,124,250 3,377,250 2/2/2 3.08

Path Right

BTree 131,071 262,143 2/2/2 3,801,094 0 3,997,700 1/2/2 2.33

Cycle 2,001 4,003 2/2/2 8,000,000 4,000 8,004,001 1/2/2 3.55

Grid 1,226 2,453 2/2/2 3,001,250 8,670,270 3,003,701 1/2/2 2.32

Pyramid 3,000 6,001 2/2/2 6,745,501 2,247,001 6,751,500 1/2/2 3.17

from the Large Joins set, and the Path Left benchmarks, which have only a single

tabled subgoal call. On the next subsection we will present the performance analysis

that we have done using these five sets of benchmarks.

3.4.2 Performance Analysis on Worst Case Scenarios

For the performance analysis, we used the three multithreaded tabling designs that

were presented in the previous sections, the NS, the SS and the FS. To deal with

the concurrency in the SS and FS designs, we have used the standard TLWL scheme

and the modified version of the TLWL using trylocks, using global locks and using the

combination of both. For the global locks strategies, we used a global array of 512 lock

entries with a hash function that maps trie nodes to lock entries in the global array.

Note that for the moment our goal is to evaluate the robustness of our implementation

when exposed to worst case scenarios. We will leave for later chapters the discussion

that the system is scalable and able to speedup the execution of multithreaded tabled



3.4. EXPERIMENTAL RESULTS 91

programs. By focusing on worst case scenarios, we show the lowest bounds in terms of

performance that each design might achieve when applied/used with other real world

applications/programs. Moreover, by testing the framework with worst case scenarios,

we avoid the peculiarities of the program at hand and we try to focus on measuring

the real value of our designs.

Thus, we will follow a common approach to create worst case scenarios and we will

run all threads starting with the same query goal. By doing this, it is expected that all

threads will access the table space, to check/insert for subgoals and answers, at similar

times, thus causing a huge stress on the same critical regions. To put the results in

perspective, we experimented with 1, 8, 16, 24 and 32 threads (the maximum number

of cores available in our machine) with local scheduling, for the combination of the

multithreaded tabled designs with the trylocks and global locks on the five sets of

benchmarks presented in the early subsection.

Table 3.2 shows the overhead ratios for the five sets of benchmarks, where each

benchmark was executed ten times. The columns in the table have the following

meaning: NS (NS design), SS (SS design without global locks and trylocks), SSG (SS

design with global locks), SST (SS design with trylocks), SSGT (SS design with global

locks and trylocks), FS (FS design without global locks and trylocks), FSG (FS design

with global locks), FST (FS design with trylocks) and FSGT (FS design with global locks

and trylocks). The rows in the table show the minimum (Min), the average (Avg), the

maximum (Max ), and the standard deviation (StD) overhead values when comparing

with the NS design with one thread as presented in Table 3.1. The values marked

with bold represent the best overhead (the lowest value) by row and by design. For

example, for one thread the best maximum overhead with the SS design was 1.26, using

the global locks scheme, while with the FS design was 1.49, using the combination of

global locks with try locks.

In order to give a fair weight to each benchmark, the overhead ratio is calculated as

follows. We begin by running ten times each benchmark B for each design D with T

threads. Then, we calculate the average of those ten runs and use that value (DBT )

to put it in perspective against the base time, which is the average of the ten runs

of the NS design with one thread (NSB1). For that, we use the following formula for

the overhead ODBT = DBT/NSB1. After calculating all the overheads ODBT for a

certain design D and number of threads T corresponding to the several benchmarks

B, we calculate the respective minimum, average, maximum and standard deviation

overhead ratios.
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Table 3.2: Overhead ratios, when compared with the NS design with 1 thread, for the

NS, SS, SSG, SST , SSGT , FS, FSG, FST and FSGT designs, when running 1, 8, 16, 24

and 32 threads with local scheduling on the five sets of benchmarks (best ratios by

row and by design for the Minimum, Average and Maximum are in bold)

Threads NS
SS FS

SS SSG SST SSGT FS FSG FST FSGT

1

Min 1.00 0.99 0.99 0.99 0.99 1.05 1.01 1.01 1.03

Avg 1.00 1.11 1.09 1.09 1.09 1.39 1.22 1.38 1.24

Max 1.00 1.40 1.26 1.42 1.35 1.73 1.56 1.75 1.49

StD 0.00 0.14 0.10 0.14 0.12 0.17 0.16 0.18 0.14

8

Min 1.07 1.00 0.99 1.01 0.99 1.07 1.02 1.06 1.04

Avg 2.35 2.50 2.44 2.46 2.53 3.58 3.35 3.68 3.43

Max 5.06 5.37 5.00 5.23 5.11 7.12 6.50 7.49 6.48

StD 1.23 1.29 1.23 1.28 1.28 1.81 1.68 1.93 1.67

16

Min 1.02 1.09 1.05 1.10 1.01 1.06 1.02 1.07 1.11

Avg 5.13 5.01 5.03 5.06 5.14 4.48 4.29 4.46 4.18

Max 11.17 11.19 11.31 11.50 11.43 9.30 8.23 9.32 7.56

StD 3.12 3.11 3.17 3.14 3.20 2.43 2.23 2.40 2.02

24

Min 1.24 1.22 1.08 1.16 1.13 1.27 1.22 1.22 1.24

Avg 8.42 8.02 7.91 8.19 8.08 5.13 4.96 5.18 4.86

Max 18.33 18.50 17.89 19.01 18.38 10.56 9.30 10.33 8.83

StD 5.24 5.31 5.27 5.37 5.33 2.69 2.43 2.62 2.19

32

Min 1.33 1.32 1.18 1.25 1.21 1.36 1.34 1.34 1.36

Avg 12.94 11.43 11.16 12.07 12.05 5.88 5.72 6.46 5.92

Max 26.67 25.96 25.91 25.97 26.24 12.32 10.87 11.92 10.02

StD 7.52 7.98 7.72 7.50 8.06 3.15 2.83 3.04 2.59

By observing Table 3.2, we can see that, for one thread, on average, the SS and the

FS designs perform worst than the NS design. For the SS design, we have an average

between 1.09 and 1.11 and, for the FS the average is between 1.22 and 1.39. These

overheads are a consequence of the extra complexity required to support concurrency,

in particular, the cost incurred with the extra code necessary to implement the TLWL

locking scheme that, even with a single working thread, has to be executed. For one

thread, the usage of global locks shows lower overheads. The reason is that, with

global locks, the number of lock fields is fixed to the size of the array, and thus not

dependent on the number of nodes inside the tries. As the memory size of the trie
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nodes is kept unaltered, the total amount of memory required do not increases as we

allocate more trie nodes, which is not the case without global locks.

As we scale the number of threads, one can observe that, on average, the NS and SS

designs show very poor results when compared with the FS. In particular, these bad

results are more clear in the benchmarks that allocate a higher number of trie nodes.

The explanation for this is the fact that we are using Linux’s default memory allocator

malloc, which can be a problem, when making a lot of memory requests, since these

requests require synchronization at the low level implementation.

For the FS design, the results are significantly better and, in particular for FSGT ,

the results show that the trylocks and global lock implementation is quite effective in

reducing contention for 16 and 24 threads. For 32 threads, the global locks design alone

(FSG) is the best design. This can be explained by the fact that trylocks are known

to have poor performances when the number of threads is equal or higher than the

number of cores available in the hardware architecture. Thus, concerning the usage of

trylocks and global locks, we can say that both of them have a positive impact in the

designs and in some situations combining both of them shows to be the best option.

But in the general picture, the global locks used solely seems to be the best option.

In summary, we can say that there are two main reasons for the good results of the

FS design. The first, and most important, is that the FS design can effectively reduce

the memory usage of the table space, almost linearly in the number of threads, which

confirm the memory usage formulas introduced on Section 3.2. having the collateral

effect of also reducing the impact of Yap’s memory allocator. The second reason is

that, since threads are sharing the same answer trie structures, answers inserted by a

thread are automatically made available to all other threads when they call the same

subgoal. We observed that this collateral effect can also lead to reductions on the

execution time.

3.5 Chapter Summary

This chapter presented three new designs to multithreaded tabled evaluation of logic

programs and their implementation on the YapTab-Mt framework. The chapter

presented also several locking techniques that were aimed to improve the performance

of the designs. The chapter concluded with a performance analysis of the designs in

worst case scenarios.
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Chapter 4

Concurrent Memory Allocation

This chapter describes TabMalloc, which is an efficient and scalable user-level memory

allocator specially aimed for environments with the characteristics of multithreaded

tabled evaluation of logic programs. TabMalloc is the current default YapTab-Mt’s

memory allocator.

4.1 Introduction

After the initial implementation of the YapTab-Mt system, we used the profiling tools

Intel VTune [60], Valgrind [86] and OProfile [72], in order to better understand the

performance results initially obtained. We observed that there is still considerable

space for improvements in the concurrent memory allocation of our YapTab-Mt. In

this chapter, we will present a new memory allocator, whose key idea is to implement

strategies that pre-allocate bunches of memory in order to minimize the performance

degradation that the YapTab-Mt framework showed, when exposed to simultaneous

memory requests made by multiple threads.

Using the profiling tools, we detected some problems related to Yap’s memory alloca-

tor, mainly, when running programs that allocated a higher number of data structures

in the table space. Yap’s memory allocator is based on the operating system’s default

memory allocator, which can be a problem when making a lot of memory requests,

since such requests may require synchronization at the low-level implementation.

TabMalloc memory allocator was designed aiming to be a more efficient and scalable

memory allocator for multithreaded tabled evaluation of logic programs [6]. It is

95
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based on local and global pages, to split memory among specific data structures and

different threads, together with a strategy where data structures of the same type are

pre-allocated within a page, so the goal is to minimize the performance degradation

that YapTab-Mt suffers when it is exposed to simultaneous memory requests made by

multiple threads.

In order to avoid memory contention, TabMalloc follows the general approach of the

current state-of-the-art user-level memory allocators, such as PtMalloc [46], Hoard [20],

TcMalloc [44] and JeMalloc [38], but instead of using thread caches, local and global

heaps with different block sizes, we use proper local and global pages, to split memory

among specific data structures and different threads, together with a kind of slab

allocation [22] mechanism where tabled data structures of the same type are pre-

allocated within a page. When a page P is made local to a thread T , this means

that T has exclusive permission to allocate and deallocate data structures from P .

On the other hand, global pages have no owners and, thus, they are free from allo-

cate/deallocate operations. In both cases, all threads can access (for read or write

operations) the data structures on local or global pages. This is very important since

it allows to significantly reduce memory contention without introducing any overhead

for multithreaded tabled evaluation.

Experimental results showed that TabMalloc can effectively reduce the execution time

and scale better, when increasing the number of threads, than the original allocator [6].

Due to the good performance shown, TabMalloc became the current default memory

allocator of the YapTab-Mt system for multithreaded tabled programs using the NS,

SS or FS designs. We describe next its most important key ideas and implementation

details.

4.2 Related Work

The performance of User-level Memory Allocator (UMA) can be crucial and can limit

the application. Many UMA subsystems were written in a time when multiprocessor

systems were rare. They use memory efficiently but are highly serial and constitute

an obstacle to throughput for parallel applications. Evidence of the importance of

UMA comes from the wide array of aftermarket UMA replacement packages that are

currently available. Thus, the efficient usage of memory has an important impact in

the development of complex frameworks such has the YapTab-Mt, because it requires

the multiple allocation and deallocation of different sized chunks of memory. In a
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conceptual level, there are two categories of memory managers: the kernel level and the

user level memory managers. The kernel level memory managers are responsible for

managing memory inside the protected sub-systems/resources of the OS while the user

level memory managers are responsible for managing memory inside the applications.

TabMalloc fits in the second category, i.e., TabMalloc is a UMA.

4.2.1 UMA Memory Management

The main goal of a UMA is to manage the heap area, which is an area that is inside the

addressing space of each process where the dynamic allocation of memory is directly

done. In a multithreaded environment, all threads share the same heap, thus the

allocation and deallocation of objects on this area of memory must be executed in a

concurrent fashion. UMA implementations exist in a wide spectrum. At one extreme

we find a single global heap protected by one mutex. The default UMA in the Solaris

Operating Environment is of this design. This type of allocator can organize the

heap with little wastage, but operations on the heap are serialized, so this type of

design might not scale well. At the other extreme, a UMA can provide a private heap

for each thread. UMA operations that can be satisfied from a thread’s private heap

do not require synchronization and have low latency. When the number of threads

grows large, however, the amount of memory reserved in per-thread heaps can become

unreasonable. Various solutions have been suggested, such as adaptive heap sizing or

trying to minimize the number of heaps in circulation by handing off heaps between

threads as they block and unblock [37].

UMA can be seen as an interface between a process and an OS. Different UMAs have

different interactions with an OS, but in a nutshell the activity of a UMA begins upon

the creation of a process within a OS. At this stage, the UMA connected to the process

sends a request to the OS, asking for an area of memory. After the memory request

be satisfied by the OS, the UMA creates and initializes a header for the heap’s area 1.

Typically, a header is a structure that has meta-information about the area of memory,

such as for example the size of the blocks that are within the area of memory, or the

number of blocks that are available in the heap. Now, when a memory allocation

request is done within the process, the UMA satisfies the request using the memory in

the heap. If the memory in the heap is not sufficient, then the UMA does a memory

request for the OS and satisfies the memory allocation request within the process,

1As described in the previous paragraph, a UMA might have more than one heap. In this cases it

creates the headers for all the heaps that is using.
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increasing this way the amount of dynamic memory that can be allocated. Upon a

request for the deallocation of chunk memory within a process, depending again of the

UMA’s approach, it might choose between the integration of the chunk of memory in

its heap (to satisfy other memory allocation requests) or free immediately the chunk

of memory to the OS.

The process of managing the heap is important to address problems in the area

of memory management. An important optimization goal of a good UMA is to

minimize fragmentation, i.e., minimize the amount of free memory that cannot be used

(allocated) by the process. Fragmentation is classified as either internal or external.

Internal fragmentation is free memory wasted when the allocator gives to the process a

larger memory block than the process requested. External fragmentation is free mem-

ory that have been split into non-contiguous blocks too small to be used to satisfy the

requests from the process. Moreover, multithreaded programs add more complications

to the UMA. Obviously some kind of synchronization has to be added to protect the

heap during concurrent requests. There are also other problems which have significant

impact on application performance when the application is run on a multiprocessor,

such as heap blowup, false sharing or memory contention [20, 19, 79, 45].

The heap blowup problem consists in an overconsumption of memory by a process.

This occurs in situations where the memory in use is not being recycled or exists chucks

of memory that were requested to the OS but are simply not being used. When the

process has multiple threads, if the memory allocator fails to make memory deallocated

by threads running on one processor available to threads running on other processors

the consumption of memory can blowup. A typical source of heap blowup is a process

that has producer and consumer threads, where the producers allocate memory and

pass it to the consumers which in turn free the memory. If the memory blocks freed

by the consumers are not made available to the producers the heap blowup problem

can occur.

The false sharing problem occurs when different parts of the same cache-line end up

being used by threads running on different processors. This will put a potentially

large and completely unnecessary load on the cache-coherence mechanism. False-

sharing can never be avoided completely since application threads may pass allocated

memory between themselves but a memory allocator should avoid to actively induce

false-sharing by satisfying memory requests from different processors with memory

from the same cache-line [45]. A practical example of the false sharing problem would

be two threads running in two different processors. A thread reads a memory position

and another thread writes to a memory position that shares the same line of cache.
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In this case, the first thread would be forbidden to access the corresponding chunk

of memory until the cache line be completely updated. This is a practical example

using just two threads, but one can easily understand that this might become a huge

problem in environments with an arbitrary number of threads.

Finally, the memory contention problem occurs whenever multiple threads using the

same heap to allocate or deallocate memory, thus requiring some sort of synchroniza-

tion mechanism. If one thread accesses the heap then the remaining threads would

be forbidden to access the heap due to mutual execution, because no more than one

request can be done simultaneously in the same heap. Thus, a UMA has to ensure

efficiency and scalability. For a memory allocator to be scalable, its performance

has to scale well with the number of processors, threads and the load in the system.

In terms of speed, the concurrent memory allocator should be about as fast as a

good sequential one in order to ensure good performance even when a multithreaded

program is executed on a single processor [45].

4.2.2 Concurrent Memory Allocators

In this section, we describe some of the state-of-the-art concurrent user-level memory

allocators that were the base for our proposal.

The PtMalloc [46] memory allocator, developed by Wolfram Gloger and based on

Doug Lea’s dlmalloc sequential allocator [68], is used in most modern distributions of

Linux that use glibc. Lea’s memory allocator had several goals, including improving

portability, space and time utilization, and adding tunable parameters to control

allocation behavior. Gloger’s update to Lea’s original allocator retains these desirable

behaviors, and adds the multithreading ability. PtMalloc memory allocator uses arenas

with different bins for small and large objects requested by the threads. All arenas

are shared by all threads. The allocation and deallocation of objects is always done

inside the arenas. Whenever a thread needs to allocate memory and all the arenas are

completely full, then a new arena is created and it becomes immediately available to

all threads. The current version 3 of Ptmalloc improves the previous version, mainly

because it adopts a different method to meet memory requests for larger blocks, by

keeping small bins in a linked list and the large bins in a binary tree, thus that the

search for a large bin can run in a logarithmic time using the binary tree.

The Hoard [20] memory allocator, developed by Emery Berger, uses multiple processor

heaps in addition to a global heap. Each heap contains zero or more superblocks, and
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each superblock contains one or more blocks of the same size. Statistics are maintained

individually for each superblock as well as collectively for the superblocks of each heap.

When a processor heap is found to have too much available space, one of its superblocks

is moved to the global heap. When a thread finds that its processor heap does not

have available blocks of the desired size, it checks if any superblocks of the desired size

are available in the global heap. Threads use their thread identifiers to decide which

processor heap to use for a memory request. When a thread frees a memory block,

it returns the block to its original superblock and updates the fullness statistics for

the superblock as well as the heap that owns it. Typically, allocating and deallocating

memory requires one and two lock acquisitions, respectively.

The TcMalloc [44] memory allocator, developed by Google, uses a thread cache for

small objects and a global heap for larger objects. The requests for small objects

within the thread cache are done without synchronization, while requests for larger

objects are done using fine grained spinlocks. A key feature of the system is to allow

the threads to execute their own garbage collection over their thread cache structures.

The garbage collection operation is activated by a thread whenever its thread cache

reaches an adjustable threshold, i.e., to face with different memory demands by each

thread, the threshold of the garbage collection of each thread is adjustable by itself.

Finally, the JeMalloc [38] memory allocator, developed by Jason is used in many well

known applications (for example, FreeBSD, Firefox and Facebook), has a thread cache

for small objects and arenas with different bins for small and large objects. Also it

uses bin locking for small objects and arena locking for larger objects. The allocation

and deallocation of objects is also done inside the same arena. A key feature of the

system, is that it uses red-black trees to improve the execution time on the allocation

and deallocation of objects.

In general we can resume, some of the common characteristics that memory allocators

use to address the heap blowup, false sharing and memory contention problems, as

follows:

• Separate handling of thread-local allocations. It is advantageous to distinguish

between thread-local allocations and allocations of memory that is to be shared

between threads. In particular, the thread-local memory allocator might not

need any synchronization.

• Avoid contention and false sharing through the usage of private and shared heaps

or other structures such as arenas.
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• Avoid to actively inducing false-sharing by satisfying memory requests from

different processors with memory from the same cache-line.

• Use chunks of memory which are multiples of the cache line size.

• Avoid heap blowup through the migration of chunks of memory between heaps.

4.3 Our Proposal

In this section, we show the details of the TabMalloc memory allocator and how we

have integrated it in the YapTab-Mt system. Our TabMalloc [6] proposal has local

and global page heaps per object type. In addition it uses global and local void heaps

for the allocation of objects when the local heaps run empty. Each global heap has its

own locking mechanism and the deallocation of shared objects is done on global page

heaps. TabMalloc takes advantage of running inside the YapTab-Mt engine, i.e., the

allocation and deallocation of objects is always done via local page heaps, except for

the main thread that performs garbage collection on the global page heaps.

4.3.1 Key Ideas

Modern computer architectures use pages to handle memory. Pages are fixed size

blocks of contiguous memory cells. Based on this characteristic, we adopted an

allocation scheme based also on pages, where each memory page only contains data

structures of the same type. In order to split memory among different threads, in our

approach, a page can be considered a local page, if owned by a particular thread, or

a global page, otherwise. Figure 4.1 gives an overview of the new memory allocator

based on pages.

Memory

Pages

local page

thread 1

type X data

structures

local page

thread 2

type Y data

structures

local page

thread 2

type Y data

structures

local page

thread 1

free

global page

type X data

structures

Figure 4.1: Using pages as the basis for the new memory allocator

A thread can own any number of pages of the same type, of different types and/or free

pages. Any type of page (including free pages) can be local to a thread or global, and
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each particular page only contains data structures of the same type. When a page P is

made local to a thread T , this means that T has exclusive permission to allocate and

deallocate data structures from P . On the other hand, global pages have no owners

and, thus, they are free from allocate/deallocate operations. To allocate/deallocate

data structures on global pages, first the corresponding pages should be moved to a

particular thread. All running threads can access (for read or write operations) the

data structures allocated on a page, independently of being a local or global page.

Access to the chain of available pages for a given data type is synchronized by a

page entry data structure. For each different data type, there is a global page entry

and a local page entry per thread. For example, for the subgoal frames, there is

a GB PG sg fr global page entry and a LC PG sg fr local page entry per thread.

Access to free pages (i.e., pages with all data structures unused) is also synchronized

by proper global/local page entries, named GB PG void and LC PG void, respectively.

Full pages (i.e., pages with all data structures in use) are not accessed from any local or

global page entry. A page entry data structure includes a PgEnt first and a PgEnt last

field that point, respectively, to the first and last page in the chain of pages. For the

global pages, an extra PgEnt lock field implements a lock mechanism that synchronizes

access to the respective chain of pages.

The management of pages and data structures within pages is achieved by allocating a

special page header structure at the beginning of each page and by uniformly dividing

the remaining space in equal-size data structures of the data type being handled.

Figure 4.2 shows an example that better illustrates how page entries and page headers

work together. A page header consists of four fields. The PgHd next and PgHd prev

fields point, respectively, to the next and previous pages in the chain of pages. The

PgHd strs in use field stores the number of data structures in use within a page. When

it reaches zero the page is freed and moved to the LC PG void page entry of the thread

at hand. The PgHd first field points to the first unused data structure within a page

and the remaining unused data structures are linked through their next fields. When

all data structures are in use (i.e., when a page is full and PgHd first is Null), the

page is simply released from the respective chain.

Allocating and freeing data structures are constant-time operations, all we have to

do is to move a structure to or from a list of free structures. Whenever a thread T

requests to allocate memory for a data structure of type S, it can instantly satisfy the

request by returning the first unused slot on the first available local page with type S.

If there are no available local pages with type S, then a new page must be requested.

If there are free local pages in LC PG void, then the first one is made to be of type S.
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Figure 4.2: Page entries and page headers in the new memory allocator

Otherwise, thread T must synchronize with the other threads in order to access the

shared resources. Then, it first tries the GB PG void chain of free global pages and,

if no free page exists there, it asks for new memory pages from the operating system’s

memory allocator (such pages are then chained in the GB PG void page entry).

Deallocation of a data structure of type S does not free up the memory, but only

opens an unused slot on the chain of available local pages for type S. Further requests

to allocate memory of type S will later return the now unused memory slot. When

all data structures in a page are unused, the page is moved to the chain of free local

pages. A free local page can be reassigned later to a different data type. This process

eliminates the need to search for suitable memory space and greatly alleviates memory

fragmentation. The only wasted space is the unused portion at the end of a page when

it cannot fit exactly with the size of the corresponding data structures.

When a thread finishes execution, it deallocates all its private data structures and then

moves its local pages to the corresponding global page entries. Shared structures are

only deallocated when the last running thread (usually thread 0) abolish the tables.
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Thus, if a thread T allocates a data structure D, then it will be also responsible for

deallocating D, if D is private to T , or D will remain live in the tables, if D is shared,

even when T finish execution. In the latter case, D can be only deallocated by the

last running thread L. In such case, D is made to be local to L and the deallocation

process follows as usual.

In general, TabMalloc follows the common characteristics of the other memory allo-

cators to address the heap blowup, false sharing and memory contention problems. It

separates local and shared memory allocation, and uses local and global heaps with

pages that are formatted in blocks with the sizes of the structures that are used by

the YapTab-Mt. The page formatting ensures also that TabMalloc avoids to actively

inducing false-sharing, because different threads in different processors do not share

the same cache line and the heap blowup problem is avoided through the migration of

pages between local and global heaps.

4.3.2 Implementation Details

In this section, we present in more detail the algorithms that implement the key aspects

of the new memory allocator.

Algorithm 4.1 shows the pseudo-code for allocating a new data structure given the

corresponding local page entry PE. Initially, it checks for available pages and, if no

page exists, a new one is requested through a call to the alloc page() procedure (lines

1–3). Next, it increases the number of structures in use in the page (line 4) and gets

the first unused structure from the page obtained and updates the page header to

point to the next unused structure (lines 5–6). If no more unused structures exist then

the page is full and the page entry at hand is updated to point to the next available

page (lines 8–12).

Algorithm 4.2 shows the pseudo-code for the alloc page() procedure. Initially, the

procedure checks for free local pages (lines 1–2). If there is at least one such page,

it updates the chain of free local pages (lines 3–5) and returns it. Otherwise, it

locks the free global pages and tries to get a page from there (lines 7–15) and, if

no free page exists, it asks the operating system for new memory pages (procedure

alloc init new pages from OS()).

Algorithm 4.3 shows the pseudo-code for the free struct() procedure given a data

structure DS and the corresponding local page entry PE. Initially, it determines the

corresponding page pg for DS (line 1) and checks if pg contains other structures in
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Algorithm 4.1 alloc struct(local page entry PE)

1: pg ← PgEnt first(PE)

2: if pg = Null then . no available pages

3: pg ← alloc page()

4: PgHd strs in use(pg) + +

5: str ← PgHd first(pg)

6: PgHd first(pg)← struct next(str)

7: if PgHd first(pg) = Null then . page is full

8: if PgHd next(pg) = Null then

9: PgEnt last(PE)← Null

10: else

11: PgHd prev(PgHd next(pg))← Null

12: PgEnt first(PE)← PgHd next(pg)

13: return str

use (lines 2–3). If so, DS is chained in the list of unused structures within the page

(lines 10–11), and if DS is the first structure being made available, then pg is also

inserted in the chain of available pages of that type (lines 4–9). Otherwise, if pg does

not contain other structures in use, the page stops being of the current type and is

moved to the chain of free local pages (lines 13–25). The free page() procedure inserts

a page into the chain of available free pages.

4.4 Performance Analysis on Worst Case Scenarios

We now present experimental results about the usage of the TabMalloc memory

allocator on the NS, SS and FS designs. For the sake of simplicity, for the designs SS

and FS, we will be presenting only the results for the designs with global locks (SSG

and FSG), since they were the ones that presented the lowest overheads in the previous

chapter. Yet, the reader can keep the idea that TabMalloc affects all designs presented

in the previous chapter similarly. Concerning the benchmarks, we will be using the

same five sets of benchmarks presented also in Subsection 3.4.1 with the same number

of runs per benchmark and the same formula to calculate the metric of overhead ratios.

Thus, we will be using again the worst case scenarios, where all threads start with the

same query goal. By doing this, it is expected that all threads will access the table

space, to check/insert for subgoals and answers, at similar times, thus causing a huge

stress on the same critical regions. To put the results in perspective, we experimented
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Algorithm 4.2 alloc page()

1: pg ← PgEnt first(LC PG void)

2: if pg 6= Null then

3: PgEnt first(LC PG void)← PgHd next(pg)

4: if PgEnt last(LC PG void) = pg then

5: PgEnt last(LC PG void)← Null

6: else . no free local pages

7: lock(PgEnt lock(GB PG void))

8: pg = PgEnt first(GB PG void)

9: if pg = Null then . no free global pages

10: alloc init new pages from OS()

11: pg = PgEnt first(GB PG void)

12: PgEnt first(GB PG void)← PgHd next(pg)

13: if PgEnt last(GB PG void) = pg then

14: PgEnt last(GB PG void)← Null

15: unlock(PgEnt lock(GB PG void))

16: return pg

with 1, 8, 16, 24 and 32 threads (the maximum number of cores available in our

machine) with local scheduling.

Table 4.1 shows the overhead ratios for the NS design alone and combined with

TabMalloc for the five sets of benchmarks using underneath, at the OS level, the

PtMalloc 3 (column PtMa), Hoard 3.10 (column Hoard), TcMalloc 4.2 (column TcMa)

and JeMalloc 3.6 (column JeMa) memory allocators. PtMalloc 3 is the default memory

allocator and is already installed in the glib library of the OS, thus no special procedure

was used for enable it. In this regard, please observe that the first column of the table

(PtMa with the NS design) is equal to the first column of Table 3.2 presented in the

previous chapter, which means that the results presented on the previous chapter were

already obtained using PtMalloc.

For the Hoard, TcMalloc and JeMalloc, first we have downloaded them from the

respective sites [18, 39, 44], then we compiled them, using the gnu compiler gcc version

4.8 in the machine where we executed the benchmarks and finally, when running each

benchmark, we used the LD PRELOAD instruction to use each one instead of the

default memory allocator. The rows in the table show the minimum (Min), the average

(Avg), the maximum (Max ), and the standard deviation (StD) overhead values when

comparing with the NS design with one thread as presented in Table 3.1. Again, the
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Algorithm 4.3 free struct(data structure DS, local page entry PE)

1: pg ← get page(DS)

2: PgHd strs in use(pg)−−
3: if PgHd strs in use(pg) 6= 0 then

4: if PgHd first(pg) = Null then . first unused struct

5: PgHd next(pg)← Null

6: PgHd prev(pg) = PgEnt last(PE)

7: if PgHd prev(pg) 6= Null then

8: PgHd next(PgHd prev(pg))← pg

9: PgEnt last(PE)← pg

10: struct next(DS)← PgHd first(pg)

11: PgHd first(pg)← DS

12: else . no other structures in use

13: if PgHd prev(pg) 6= Null then

14: if PgHd next(pg) = Null then

15: PgEnt last(PE)← PgHd prev(pg)

16: else

17: PgHd prev(PgHd next(pg))← PgHd prev(pg)

18: PgHd next(PgHd prev(pg))← PgHd next(pg)

19: else

20: if PgHd next(pg) = Null then

21: PgEnt last(PE)← Null

22: else

23: PgHd prev(PgHd next(pg))← Null

24: PgEnt first(PE)← PgHd next(pg)

25: free page(pg, LC PG void)

best overheads by row and by design are marked with bold. For example, for one

thread, the best value for the minimum overhead, found for the NS design was 0.74

obtained with the TcMalloc memory allocator, while for the NS design combined with

the TabMalloc was 0.53, again obtained with the TcMalloc.

The results on Table 4.1 clearly show that TabMalloc has a big impact in reducing

the overheads of the NS design. When comparing the values of the PtMa columns

with and without TabMalloc, one can observe that for one thread, TabMalloc reduces

on average the overhead in 0.14. As we scale the number of threads, the difference

between both overheads increases significantly, ending for 32 threads with the result
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Table 4.1: Overhead ratios, when compared with the NS design with 1 thread, for the

NS design alone and combined with TabMalloc, using the PtMalloc 3, Hoard 3.10,

TcMalloc 4.2 and JeMalloc 3.6 memory allocators, when running 1, 8, 16, 24 and 32

threads with local scheduling on the five sets of benchmarks (best ratios by row and

by design for the Minimum, Average and Maximum are in bold)

Threads
NS NS + TabMalloc

PtMa Hoard TcMa JeMa PtMa Hoard TcMa JeMa

1

Min 1.00 0.96 0.74 0.94 0.61 0.54 0.53 0.54

Avg 1.00 1.02 0.91 0.99 0.86 0.80 0.78 0.78

Max 1.00 1.19 1.19 1.16 1.08 1.11 1.06 1.06

StD 0.00 0.06 0.12 0.06 0.14 0.16 0.15 0.15

8

Min 1.07 1.15 0.90 1.02 0.85 0.68 0.66 0.67

Avg 2.35 4.24 1.19 1.18 0.99 0.92 0.85 0.87

Max 5.06 9.41 1.89 1.46 1.32 1.11 1.12 1.21

StD 1.23 2.52 0.26 0.14 0.14 0.12 0.13 0.16

16

Min 1.02 1.15 1.04 1.09 0.88 0.91 0.85 0.78

Avg 5.13 13.29 2.09 1.39 1.61 1.18 0.98 0.95

Max 11.17 33.49 5.16 1.84 3.19 1.76 1.16 1.20

StD 3.12 9.87 1.10 0.23 0.78 0.24 0.09 0.12

24

Min 1.24 1.28 1.24 1.16 0.95 1.07 0.91 0.90

Avg 8.42 28.79 3.16 1.79 2.37 1.54 1.15 1.18

Max 18.33 80.99 8.64 2.65 5.43 2.82 1.72 1.96

StD 5.24 23.31 1.98 0.48 1.50 0.54 0.20 0.26

32

Min 1.33 1.43 1.35 1.23 1.24 1.15 1.05 1.05

Avg 12.94 47.06 4.40 1.92 3.45 2.11 1.51 1.56

Max 26.67 121.39 13.11 3.00 8.24 4.32 2.52 2.73

StD 7.52 36.08 3.08 0.50 2.36 0.93 0.45 0.52

of 12.94, on average for the NS design used solely and 3.45 for the NS design with

TabMalloc.

Comparing now the best combination with alternative memory allocators, both Tc-

Malloc and JeMalloc showed good performances, but the best combination seems to

be the usage of TabMalloc with the TcMalloc memory allocator since, as we scale the

threads up to 32, the overheads remain quite low, ending with an average of 1.51 for

32 threads, which is a quite significant achievement.
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Table 4.2 shows the impact of the TabMalloc in the YapTab-Mt for the SSG design.

We use the same metrics and the same memory allocators.

Table 4.2: Overhead ratios, when compared with the NS design with 1 thread, for the

SSG design alone and combined with TabMalloc, using the PtMalloc 3, Hoard 3.10,

TcMalloc 4.2 and JeMalloc 3.6 memory allocators, when running 1, 8, 16, 24 and 32

threads with local scheduling on the five sets of benchmarks (best ratios by row and

by design for the Minimum, Average and Maximum are in bold)

Threads
SSG SSG + TabMalloc

PtMa Hoard TcMa JeMa PtMa Hoard TcMa JeMa

1

Min 0.99 0.95 0.71 0.86 0.54 0.53 0.54 0.54

Avg 1.09 1.14 0.93 1.07 0.86 0.88 0.84 0.86

Max 1.26 1.44 1.06 1.24 1.11 1.18 1.03 1.11

StD 0.10 0.12 0.11 0.11 0.19 0.21 0.17 0.20

8

Min 0.99 0.97 0.99 0.88 0.84 0.73 0.66 0.72

Avg 2.44 3.05 1.30 1.30 1.17 1.15 0.99 1.04

Max 5.00 11.59 1.99 1.74 1.62 1.82 1.36 1.54

StD 1.23 2.87 0.23 0.24 0.26 0.37 0.22 0.28

16

Min 1.05 1.07 1.16 0.97 0.98 0.93 0.81 0.80

Avg 5.03 7.78 2.13 1.52 1.84 1.48 1.13 1.15

Max 11.31 32.77 5.30 1.87 3.21 2.74 1.50 1.73

StD 3.17 9.70 1.07 0.26 0.72 0.55 0.21 0.29

24

Min 1.08 1.14 1.19 1.02 1.15 1.05 1.02 0.99

Avg 7.91 15.85 3.10 1.91 2.62 1.78 1.34 1.37

Max 17.89 80.65 8.77 2.68 5.56 2.76 1.77 1.92

StD 5.27 23.01 2.04 0.45 1.39 0.57 0.23 0.27

32

Min 1.18 1.33 1.24 1.06 1.24 1.14 1.07 1.07

Avg 11.16 25.13 4.18 2.05 3.64 2.43 1.71 1.72

Max 25.91 120.79 13.14 3.03 8.28 3.98 2.61 2.74

StD 7.72 35.48 3.18 0.48 2.22 0.95 0.45 0.46

The results on Table 4.2 show again that for the SSG design using the TabMalloc is al-

ways better than not using it. Remember that, on the one hand, the SS design requests

less trie nodes for the subgoal tries (thus reducing synchronization when requesting

memory for the memory allocator) but, on the other hand, we are introducing a new

cost when synchronizing the insertion of nodes into the shared subgoal trie structures.

This cost is more clear for the benchmarks that allocate an higher number of subgoal
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trie nodes. However in general, the TabMalloc always decreases the overhead ratios,

and its impact is more significant as we scale the number of threads. As for the NS

design, the combination that has the best results is the one that uses TabMalloc with

the TcMalloc memory allocator.

Finally, Table 4.3 shows the same study for the FSG design. Remember that the FS

design also has the answer tries shared among threads. On one hand, it requests less

trie nodes for the answer tries (thus reducing synchronization when requesting memory

for the memory allocator) but, on the other hand, it introduces an extra cost when

synchronizing the insertion of nodes into the shared answer trie structures. Again,

the results show that, in general, TabMalloc always decreases the overhead ratios, and

its impact is more significant as we scale the number of threads. As for the previous

designs, the combination that has the best results is the one that uses again TabMalloc

with TcMalloc memory allocator.

In conclusion, our experimental results clearly show that the TabMalloc memory allo-

cator performs always better than the equivalent implementation not taking advantage

of it and that, it can achieve significant reductions on the execution time on all the

YapTab-Mt designs. The experiments also show that the new memory allocator scales

better when we increase the number of threads and if combined with the TcMalloc

memory allocator, it can improve even further the execution times.

4.5 Chapter Summary

In this chapter, we have presented TabMalloc which is a novel, efficient and scalable

memory allocator for multithreaded tabled evaluation of logic programs. TabMalloc is

based on local and global pages, that splits memory among specific data structures and

different threads, together with a page based mechanism, where data structures of the

same type are pre-allocated within a page. Our experimental results showed that we

were successful in our goal of minimizing the performance degradation that YapTab-Mt

suffered, when exposed to simultaneous memory requests made by multiple threads.
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Table 4.3: Overhead ratios, when compared with the NS design with 1 thread, for

the FSG design alone and combined with TabMalloc, using PtMalloc 3, Hoard 3.10,

TcMalloc 4.2 and JeMalloc 3.6 memory allocators, when running 1, 8, 16, 24 and 32

threads with local scheduling on the five sets of benchmarks (best ratios by row and

by design for the Minimum, Average and Maximum are in bold)

Threads
FSG FSG + TabMalloc

PtMa Hoard TcMa JeMa PtMa Hoard TcMa JeMa

1

Min 1.01 1.02 0.98 0.93 0.84 0.81 0.85 0.83

Avg 1.22 1.30 1.10 1.25 1.01 1.01 0.99 1.01

Max 1.56 1.63 1.29 1.58 1.14 1.17 1.10 1.12

StD 0.16 0.17 0.08 0.16 0.09 0.11 0.08 0.08

8

Min 1.02 1.05 0.99 1.08 0.99 1.10 1.09 1.11

Avg 3.35 3.15 2.93 3.14 2.47 2.49 2.46 2.47

Max 6.50 6.11 5.83 6.03 4.50 4.35 4.48 4.51

StD 1.68 1.48 1.51 1.54 1.07 1.04 1.08 1.05

16

Min 1.02 1.14 1.17 1.04 1.01 1.10 1.14 1.14

Avg 4.29 3.80 3.60 3.89 2.90 2.92 2.89 2.89

Max 8.23 7.18 7.21 7.97 5.63 5.53 5.67 5.62

StD 2.23 1.76 1.95 2.15 1.39 1.37 1.40 1.40

24

Min 1.22 1.26 1.24 1.22 1.23 1.27 1.23 1.24

Avg 4.96 4.37 4.03 4.40 3.18 3.16 3.15 3.16

Max 9.30 8.23 8.17 8.95 6.32 6.26 6.34 6.37

StD 2.43 2.02 2.27 2.46 1.58 1.54 1.58 1.59

32

Min 1.34 1.36 1.36 1.37 1.36 1.37 1.37 1.38

Avg 5.72 5.12 4.78 5.02 3.63 3.58 3.51 3.61

Max 10.87 10.41 9.92 10.50 7.48 7.42 7.47 7.51

StD 2.83 2.56 2.82 2.90 1.89 1.85 1.85 1.89
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Chapter 5

Lock-Free Data Structures

In this chapter, we present two proposals for lock-free data structures that address

concurrency within the ST data structure of the SS design and within the ST and AT

data structures of the FS design. For each proposal, we will discuss the implementation

of the concurrent search and insert operations, the correctness of the proposal and its

efficiency in the context of the YapTab-Mt framework.

5.1 YapTab-Mt Table Space Data Structures

A critical component in the design of an efficient concurrent tabling system is the

implementation of the data structures and algorithms that manipulate tabled data.

As observed in the previous chapters, YapTab-Mt implements a two-level trie data

structure, where one trie level stores the tabled subgoal calls and the other stores

the computed answers. Recall that a trie is a tree structure where each different path

corresponds to a term described by the tokens labeling the nodes traversed. Figure 5.1

shows an example for the tabled predicate p/3 presented in the previous sections.

On the ST data structure, each different path corresponds to a subgoal call described

by the tokens labeling the nodes traversed. For example, the tokenized form of the

subgoal call p(1, X, Y ) is the sequence of 3 tokens 1, VAR0 and VAR1. Two terms

with common prefixes will branch off from each other at the first distinguishing token.

Consider, for example, a second subgoal call p(1, 2, 3). Since the first argument, the

token 1, is common to both terms, only two additional nodes will be required to fully

represent this second call in the trie. On the AT structure, the behavior is similar

to the ST structure when the trie structure is accessed in a top-down fashion. The

113
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Subgoal Frame
 p(1,VAR0,VAR1)

Subgoal Frame
 p(1,2,3)

1

2
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VAR0

VAR1

true1

3 4

ATAT

ST

Table Entry
 p/3

Figure 5.1: Trie hierarchical levels overview

difference is that each path corresponds to a different answer to the tabled subgoal call.

For the subgoal call p(1, VAR0, VAR1), the answers shown are p(1, 1, 3), i.e., VAR0 = 1

and VAR1 = 3, and p(1, 1, 4), i.e., VAR0 = 1 and VAR1 = 4, while for the subgoal

call p(1, 2, 3) the answer is true. Internally, each particular ST and AT data structure

has as many trie levels as the number of parent/child relationships. For example in

Figure 5.1, ST data structure has 3 levels, and the AT data structure for the subgoal

calls p(1, VAR0, VAR1) and p(1, 2, 3) have 2 and 1 levels, respectively.

On both ST and AT data structures, the trie nodes are 4-field data structures. One

field stores the node’s token, one second field stores a pointer to the node’s first child,

a third field stores a pointer to the node’s parent and a fourth field stores a pointer

to the node’s next sibling. Whenever a level of the trie becomes saturated, i.e., the

chain of sibling nodes with a common parent node becomes larger than a predefined

threshold value, a hash mechanism is used to provide direct node access and therefore

optimize the search for the node’s token. Figure 5.2 shows a hashing mechanism for a

trie level within the ST and AT data structures.
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hash

Subgoal/Answer Trie

Table Entry

Subgoal Trie
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Subgoal Frame

Figure 5.2: The hashing mechanism within a trie level

Several approaches for hashing mechanisms exist. The most important aspect of a

hashing mechanism is its behavior in terms of hash collisions, i.e., when two keys

collide and occupy the same hash table location. Multiple solutions exist that address

the collision problem. Among these are the open addressing and closed addressing

approaches [128, 63].

In open addressing, the hash table stores the objects directly within the hash table

internal array. The term open indicates that the index (also known as address) at which

the object is stored in the array is not completely determined by its key. Instead, the

index varies depending on what’s already in the hash table. A hash collision is resolved

by probing, or searching through alternate locations in the array (the probe sequence)

until either the target object is found, or an unused entry is found, which indicates

that there is no such key in the hash table.

In closed addressing, every object is stored directly at an index in the hash table’s

internal array. The term closed guarantees that the index at which the object is

stored in the array is completely determined by its key. This means that collisions are

resolved by storing potentially several objects at the same index. In closed addressing,

collisions are solved by using other arrays or linked lists. One well known mechanism to

solve hash collisions is the separate chaining [63]. In the separate chaining mechanism,

the hash table is implemented as an array of linked lists. The basic idea of separate

chaining techniques is to apply linked lists for collision management, thus in case of a

conflict a new key is appended to the linked list. Each hash table entry has its own

list for collision resolution. The advantage of chaining techniques rely in the ability to

easily resolve collisions since new keys can be always inserted without resizing the hash



116 CHAPTER 5. LOCK-FREE DATA STRUCTURES

table, thus they are not dependent on choosing beforehand a proper hash table size.

Multiple optimizations exist that improve the behavior of the hashing mechanism,

such as move to the front and exact fit [80], but for the moment we will not consider

them in this work. For more details about these mechanisms and others please consult

[63, 145].

YapTab-Mt is a general-purpose framework, which means that a user can use it for

any kind of tabled logic program. The best option for our framework is thus the

hashing mechanism with separate chaining, since we can not know the proper size of a

hash table in advance, and no fixed size suits all system configurations and workloads.

Additionally, since the framework’s needs may change at runtime and the performance

of the hash mechanism depends heavily on the number of hash buckets1, we use a

dynamic resizing support over the hash table to improve the behavior of the hashing

mechanism whenever it becomes saturated. We will give more details about this in

what follows.

Using Figure 5.3, we go one step deeper in YapTab-Mt’s trie internals and pinpoint

the operations that occur on each trie level. We will be showing the operations for

one level only, since all levels have the same behavior.

(a) (b) (c)
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Figure 5.3: Hash tables inside the trie levels

Figure 5.3 shows how starting from a common parent node P , the trie is adapted to

the insertion of child nodes with distinguish keys K1, K2, K3 and K4. Figure 5.3(a)

shows the trie level representation after the insertion of K1 and Figure 5.3(b) shows

the trie representation after the insertion of K2. Note that new nodes are inserted on

the head for the level. Whenever the number of nodes in a level reaches a predefined

threshold value MAX NODES, the trie level is extended to include a hash mechanism

with separate chaining. For simplicity of illustration, in this example, we are using a

MAX NODES value of 2. Figure 5.3(c) shows the trie level representation using the

1Making a hash table too small might lead to excessively long hash chains and poor performance.

Making a hash table too large might consume too much memory, increasing hardware requirements

and reducing performance-improving caches.
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hashing mechanism. Each hashing mechanism includes two data structures, a specific

node HN that contains generic information about the trie level, such as the total

number of nodes in the level, and a structure that contains a value S and a bucket

array with a size of S entries. Then, using a hash function Hash(S, key) = key mod S

over the keys K1 and K2 the respective nodes with keys K1 and K2 are mapped into

the bucket array of entries. In this example, the keys K1 and K2 do not collide, thus

they are mapped into two different entries. From this point on, the access to the

child nodes of the parent node P is done through the hashing mechanism. Finally,

Figure 5.3(d) shows the trie level representation after the insertion of keys K3 and K4.

In our hashing mechanism, new nodes are inserted in the head of the bucket entries of

the array. In this example, the hash function resulted in the collision of keys K3 and

K4 with keys K1 and K2, respectively.

When the number of nodes in a bucket entry exceeds the MAX NODES value and the

total number of nodes exceeds S, we consider that the hash bucket array is saturated

and in such cases we expand the hash by doubling the number S of entries of the bucket

array. Figure 5.4 shows more details about the expansion procedure. Figure 5.4(a)

shows the trie level representation after the bucket array expansion to a new one with

the double number of entries (2 ∗ S in this case) followed by the adjustment process

of nodes with keys K1, K2, K3 and K4 to the new bucket array of entries. The hash

function is now called as Hash(2∗S, key) and the nodes are now mapped in the range

of 0 to 2 ∗ S − 1. In this example, we are assuming that the keys K1 and K3 do not

collide, thus they are mapped into two different entries, and that the keys K2 and K4

collide in the same entry.
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Figure 5.4: Expanding the hash tables inside the trie levels

Figure 5.4(b) shows the trie level representation after the insertion of new nodes with

keys K5 and K6. In the example, we are assuming that they collide with the keys K1

and K3, respectively. Finally, Figure 5.4(c) shows a situation where the hash bucket
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array becomes saturated again and, as consequence, the bucket array is expanded to

a new one, this time with 4 ∗ S entries, and the hash expansion process continues to

be executed as long as it is necessary.

5.2 Concurrent Data Structures

To address concurrency inside the ST and AT data structures, our initial approach,

was to use lock-based data structures. Our lock-based approach allowed a single writer

per chain of sibling nodes that represent alternative paths from a common parent node,

meaning that only one thread at a time can be inserting a new child node starting

from the same parent node. To implement locking, we used either a locking field per

trie node or a global array of lock entries [6]. To reduce the lock duration, we also tried

with trylocks instead of traditional locks. However, in the context of multithreading,

the lock-based data structures have their performance restrained by multiple problems,

such as:

• Priority inversion. A lower-priority thread is preempted while holding a lock

needed by higher-priority threads.

• Convoying. A thread holding a lock is descheduled, perhaps by exhausting its

scheduling quantum, by a page fault, or by some other kind of interrupt. When

such an interruption occurs, other threads capable of running may not be able

to do so, due to the thread holding the lock.

• Deadlock. Threads attempt to lock the same set of objects in different orders.

Deadlock avoidance can be awkward if threads must lock multiple data objects,

particularly if the set of objects is not known in advance.

• Mutual exclusion. Can needlessly restrict parallelism by serializing non-

conflicting updates. This can be greatly mitigated by using fine-grained locks,

but lock convoying and cache performance may then become an issue, along with

the extra cost of acquiring and releasing those locks.

• Contention. Even when an operation does not modify shared data, the required

lock manipulations can cause memory coherency conflicts, and contribute to

contention on the memory interconnect. This can have enormous impact on

system performance: In the work [88], Larson and Krishnan observed that

reducing the frequency of access to shared, fast-changing data items is critical to
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prevent cache ping-pong effects from limiting system throughput. Cache ping-

pong effects occur when a cache line with exclusive ownership moves rapidly

among a set of processors.

5.2.1 Compare-And-Swap Operations

YapTab-Mt’s framework supports the evaluation of tabled programs according to

the semantics of SLG resolution [27]. The practical significance of this is that, in

general, we know that a concurrent tabled program will only execute search and insert

operations over the table space shared data structures and no delete operations are

performed, thus the size of the shared trie data structures always grow monotonically

during an evaluation. YapTab-Mt’s shared data structures are only removed when the

last running thread abolishes the tables.

To deal with concurrency within the shared trie data structures, we are interested

in taking advantage of the fact that, no concurrent delete operations are performed

in YapTab-Mt’s framework, and combine it with the low-level CAS operation, that

nowadays can be widely found on many common architectures. CAS is a fine grained

and fully synchronized operation that dates back to the IBM System 370 and it

is still available on many modern processors including Intel IA-64 (x86) and Sun

SPARC architectures. Processors, like the IBM PowerPC that do not support the

CAS operation, often support directly Load-Linked and Store-Conditional (LL/SC)

operation instead, which is sufficient to implement the CAS operation [83].

The CAS operation is an atomic instruction that compares the contents of a memory

location to a given value and, if they are the same, updates the contents of that

memory location to a given new value. The atomicity guarantees that the new value

is calculated based on up-to-date information, i.e., if the value had been updated

by another thread in the meantime, the write would fail. The CAS result indicates

whether it has successfully performed the substitution or not. Internally, the CAS

operation uses a UPDATE procedure that receives two arguments: a reference (also

known as address) to a memory position and a value. Then, the UPDATE procedure

writes the value in the memory position. For the sake of clarity, we distinguish

the UPDATE procedure from a standard attribution procedure. The UPDATE

procedure updates a memory position which is shared among threads, while a stan-

dard attribution procedure updates a memory position which is private to a thread2.

2We will use this notion later, when we prove the correctness of our proposals using linearization.
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Algorithm 5.1 shows the pseudo-code of a Boolean CAS operation.

Algorithm 5.1 CAS(memory reference M, expected value E, new value N)

1: if V al(M) = E then

2: UPDATE(M,N) . updates the value of memory position M to N

3: return True

4: else

5: return False

The CAS operation receives three arguments: the reference of the memory location

M , the expected value E in the memory location and the new value N to replace

the expected value E. Then, the CAS operation atomically checks if the value in M

has the expected value E (line 1) and if so, it replaces E with the new value N (line

2). Otherwise, M remains unchanged. At the end, the operation returns the Boolean

result of True or False, whether the operation succeed or not (lines 3 and 5).

5.2.2 Lock-Freedom and Linearization

Besides reducing the granularity of the synchronization, the CAS operation is at the

heart of many lock-free (also known as non-blocking) data structures [56]. Non-

blocking data structures offer several advantages over their blocking counterparts,

such as being immune to deadlocks, tolerant to priority inversion, kill-tolerant avail-

ability (threads are immune to the dead of other threads during the execution) and

preemption-tolerant (which ensures the performance regardless of the arbitrary thread

scheduling), and convoying. Additionally, they have been shown to work well in

practice in many different settings [130, 122]. They have been included in Intel’s

Threading Building Blocks Framework [103], the NOBLE library [122] and the Java

concurrency package [69].

A data structure is lock-free if it can be accessed by multiple threads concurrently

without using any type of standard locking mechanism, such as spinlocks, mutexs

or semaphores. Lock-freedom allows individual threads to starve but guarantees

system-wide throughput. A shared object is lock-free if it guarantees that whenever

a thread executes some finite number of steps, at least one operation on the object

by some thread must have made progress during the execution of these steps. In

the work [55], Herlihy and Shavit presented a novel grand unified explanation for the

progress properties, using linearizability which is an important correctness condition

for the implementation of concurrent data structures [57]. Linearizability ensures
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the correctness of concurrent data structures by proving that semantically consistent

(non-interfering) operations may execute in parallel. An operation is linearizable if

it appears to take effect instantaneously at some moment of time tLP between its

invocation and response. The literature often refers to tLP as a Linearization Point

(LP) and, for lock-free implementations, a linearization point is typically a single

instant where its effects become visible to all the remaining operations. Linearizability

guarantees that if all operations individually preserve an invariant, the system as a

whole also will. Thus, linearizability is a local property, and is therefore independent

of any underlying scheduling policy or interaction between objects. Locality improves

the portability and modularity of large concurrent systems, and can simplify reasoning

about concurrent data structures.

The progress is seen as the number of steps that threads take to complete methods

within a concurrent object, i.e., the number of steps that threads take to execute

methods between their invocation and their response. The execution of a concurrent

object is then modeled by a history H, a finite sequence of method invocation and

response events, a subhistory of H is a sub-sequence of the events of H and an interval

is a subhistory consisting of contiguous events. Progress conditions are placed in a

two-dimensional periodical table, where one of the axis defines the assumptions of the

OS scheduler, which might be scheduler independent or scheduler dependent, and the

other axis defines the maximal progress and minimal progress provided by a method in

a history H. Since we will be using this notion of progress later when we present the

proof of correctness of our proposals, we analyze next using Figure 5.5, the periodic

table of progress conditions defined by Herlihy and Shavit [55].

Non-Blocking
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Non-Blocking
Dependent

Blocking
Dependent

Every thread
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Dependency on the operating system scheduler

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

Level 
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Blocking
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Non-Blocking
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Minimal
Lock-FreeSome thread

make progress

Dependency
vs

Progress

Figure 5.5: The Periodic Table of progress conditions

For the assumptions about the OS scheduler, a scheduler independent assumption,
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guarantees progress as long as threads are scheduled and no matter how they are

scheduled. A scheduler dependent assumption, means that the progress of threads

rely on the OS scheduler to satisfy certain properties. For example, the deadlock-free

(threads cannot delay each other perpetually) and starvation-free (a critical region

cannot be denied to a thread perpetually) properties guarantee progress, however,

they depend on the assumption that the OS scheduler will let each thread within a

critical region to be able to run a sufficient amount of time, so that it can leave the

critical section. The obstruction-free property [54] (a thread runs within a critical

region in a bounded number of steps) requires the OS scheduler to allow each thread

to run in isolation for a sufficient amount of time.

In a nutshell, the progress conditions are divided in to blocking, if a thread blocks

all remaining threads during a access to critical region and non-blocking, otherwise.

Herlihy and Shavit define the progress conditions as the level of progress provided

by methods within objects. A method provides the minimal progress in H, if in

every suffix of H, some pending active invocation has a matching response. In other

words, there is no point in the history where all threads that called the method take

an infinite number of concrete steps without returning. An abstract method provides

maximal progress in a history H if in every suffix of H, every pending active invocation

has a matching response. In other words, there is no point in the history where

a thread that calls the abstract method takes an infinite number of concrete steps

without returning. The lock-free data structures are mapped in the periodical table

as scheduler independent and providing minimal progress.

5.2.3 Related Work

We next briefly describe some of the state-of-the-art approaches for concurrent trie

data structures and for lock-free hash tables using linked lists. Historically, a number

of so-called universal methods [56, 92, 16, 58] for constructing non-blocking data

structures of any type have been discussed in the literature. In the work [58], Herlihy

presented the first widely accepted universal method. He maintains a write-ahead

log of operations for each shared data structure. The order of entries in the log

determines the serialization order. Private copies of structures, built by applying a

sequential reconstruction algorithm to the operations in the log, are updated and then

finally added to the log itself. Check-pointing the log is used to decrease the cost of

state reconstruction.

The first non-blocking linked list proposal was introduced by Valois [132]. In Valois



5.2. CONCURRENT DATA STRUCTURES 123

proposal, the consistency is maintained by using auxiliary nodes which are defined as

nodes that did not store values. Every list node has an auxiliary node that is used

during concurrent insertions and deletions to help maintain the consistency of the list.

Each auxiliary node consists of a single pointer to the next regular node in the list and

every normal node in the list is required to have an auxiliary node as its predecessor

and its successor. Thus, in this proposal, the consistency of the lock-free linked list is

maintained at the cost of a two times storage overhead. One of the major drawbacks

of Valois proposal was that it suffered from the ABA problem3, since the proposal

used the CAS operation, but the concurrent delete of a node operation, required

two simultaneous atomic operations. Greenwald [47] suggested a stronger Double-

Compare-And-Swap (DCAS) operation that atomically updates two memory locations

after confirming that both of them contained the expected values. But, until now the

DCAS operation is not commonly available in multiprocessor architectures. Later,

Harris [52] presented the first correct CAS-based lock-free list-based set proposal.

Harris proposal does not use the auxiliary nodes proposed by Valois, instead, it uses

a two stage approach to deal with deletion of nodes. Whenever a list node is to be

deleted, in the first stage the node is marked as logically deleted and only on the second

stage the node is physically deleted. Thus, the delete operation, first marks a node as

deleted using CAS to prevent new nodes from being linked to it, and then removes it

from the list by swinging the next pointer of the previous node to the next node in

the list, also using CAS.

Michael [81] presented an improved proposal for lock-free list-based sets and hash

tables. In the work [81], Michael improves Harris work by presenting the first CAS-

based lock-free list-based set proposal that was compatible with all lock-free memory

management methods and Michael uses this proposal has the building block for lock-

free hash tables. Thus, the proposal used fixed sized arrays for the hashing operations

and list-based sets to deal with the collisions in the hash. The proposal allowed the

search, insert and delete operation of nodes in the lists, so in that sense the proposal

was dynamic, but the size of the arrays was fixed. Nevertheless, experimental results

showed that the lock-free implementation outperformed, by significant margins, the

best lock-based implementations, both under low and high contention.

Michael’s work was latter extended by Shalev and Shavit [119], when they presented

their lock-free algorithm for expandable hash tables. The algorithm is based in split-

ordered lists and allows the number of hash buckets to vary dynamically according to

the number of nodes inserted or deleted, preserving the read-parallelism. Later, both

3We will give more details about this problem in the next section.
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Gao el al. [43] and Purcell and Harris [95] presented lock-free open address hash tables.

More recently, Triplett et al. presented a set of algorithms that allow concurrent wait-

free4, linear scalable searches while shrinking and expanding hash tables [129]. The

experimental results showed a good performance even when the hash table is under

resizing.

Regarding concurrent trie data structures, recently Prokopec et al. presented recently

the Concurrent Hash Tries (CTries) [94]. CTries can be used to implement, efficient

concurrent, lock-free maps and sets. They have the lock-freedom property and support

lookup, insert and delete operations based on CAS instructions and the support of a

constant time, linearizable, lock-free snapshot operation. The snapshot operation

provides a consistent view of a data structure at a single point in time. Snapshots can

be used to implement operations requiring global information about the data structure

- in this case, the performance of the data structure is limited by the performance of

the snapshot. The CTries snapshot operation is used to parallelize CTries operations

without the need for quiescence. Its aim is to improve the performance of the CTrie

through the usage of Generation-Compare-And-Swap (GCAS) operations. At the

structural level, CTries are trees composed by multiple types of data structures . Some

of the most relevant nodes are the following: The indirection node contains a reference

to a single node called a main node and there are several types of main nodes. The

tomb node which is a special node used to ensure proper ordering during removals. The

list node which is a leaf node used to handle hash code collisions by keeping such keys

in a list. The CTries node which is an internal main node containing a bitmap and

the array with references to branch nodes. A branch node is either another internal

node or a singleton node, which contains a single key and a value. Singleton nodes are

leaves in the CTries. For more information about the CTries please consult [93]. All

these types of data structures are mostly used for the support of the delete concurrent

operation. Since our proposals do not require the support for this operation, we were

able to reduce the number of required data structures to two, bucket arrays of entries

for hashing and chain nodes for values.

4In the periodical table, the wait-free data structures are mapped as independent of the operating

system scheduler and as providing maximal progress.
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5.3 Motivation

Although state-of-the-art approaches exist and are well documented, to the best

of our knowledge, none of them is specifically aimed for an environment with the

characteristics of the SS and FS designs. One reason for that is the complexity of the

tabling engine, which integrates trie structures with generator and consumer evaluation

nodes. Recall from Figure 2.13 that these evaluation nodes access the table space

(and the trie data structures) in different fashions, some of them top-bottom and

others bottom-up. For our multithreaded tabling framework, this means that nodes

inside the trie data structure cannot be replaced by new nodes with the same key

(and respective information), since replacing a trie node would imply to visit all the

generator and consumer evaluation nodes for all threads under execution and update

their information with the new node, for the ones referring the older node. Such

procedure, would cause an huge overhead in a multithreaded tabling framework. Thus,

some of the state-of-the-art approaches, such as CTries could not be used because, to

update the trie state, they use techniques that require making a private copy of nodes

inside the trie and replace them with new nodes.

Another reason for not using the state-of-the-art approaches is that, in general, the

evaluation of a tabled program is deterministic, finite and only executes lookup and

insert operations over the table space data structures. In YapTab-Mt, the table

space is recovered when the last running thread abolishes a table. Since no delete

operations are performed, the size of the tables always grows monotonically during an

evaluation. Therefore, since the nodes inside the ST and AT are persistent during a

tabled evaluation, the SS and FS designs do not require any support for concurrent

delete operations. Concurrent delete operations often require extra computational

steps. For example, in Harris’s work for lock-free linked lists [52], the delete operation

requires two CAS operations, the first to mark the node to be deleted as logically deleted

and the second to physically delete the node. In trees, several practical examples exist

where the concurrent delete operation interferes with lookup and insert operations.

Examples are the approaches of lock-free binary trees [26] and Bw-Trees [71].

With both reasons in mind, we have created two fresh proposals for lock-free lin-

earizable data structures aimed to be as effective as possible in the search and insert

operations, by exploiting the full potentiality of lock-freedom on those operations, to

minimize the bottlenecks and performance problems mentioned in Section 5.2 and

without introducing significant overheads in the sequential execution. Figure 5.6

resumes the architecture of our lock-free proposals. The proposals have two types
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of data structures, the chain nodes and the bucket arrays and one algorithm that

implements the search/insert key operation. The external operation (or method)

that is callable (the call and the return back arrows in figure) by the threads is

the search/insert key operation which is lock-free and linearizable. In order to keep

the efficiency in accessing the chain nodes, during the search/insert key operation a

thread might be elected to optimize (or expand) a bucket array data structure if it

becomes saturated (shown in gray in the figure). The elected thread is chosen through

a single atomic CAS operation, that chooses the elected thread and blocks the election

procedure simultaneously. Thus, after CAS operation only one thread is elected for

doing the optimization. The elected thread proceeds as follows: first it expands the

bucket arrays, then it adjusts the chain nodes to the expanded bucket arrays, and

finally it unblocks the election procedure. As we will be proving in the next sections,

the lock-freedom property will hold in all instants of the execution of the search/insert

key operation, once either the elected and the non-elected threads will be proven to

be doing their work in a lock-free fashion.

Call

Search/Insert
Key

(on Proposals)

Callable Operation 
(or Method)

Proposals

Chain Node

Bucket Array

Data
Structure

Chain Node

Search/Insert
Key

Expand

Bucket Array

Algorithm

Return

Lock-Free 
Linearizable

Call
Ret.

Figure 5.6: Architecture of the lock-free proposals

To resume the search/insert key operation in the proposals, a thread calls this oper-

ation to search for a key in the chain nodes. If the key is present then the operation
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returns the chain node with the key, otherwise it inserts the key in a new chain node

and returns the new chain node. During the operation, a thread might be elected to

do some extra work, such as optimizing the bucket arrays and adjusting chain nodes.

For the elected thread the time between the call and the return of operation increases

in the proportion of the extra amount of work that the elected thread has to do.

In all instants of the execution of the operation, the search, insert and optimization

procedures, will guarantee that at least one threads does progress in their execution.

To support concurrency within the proposals we use the CAS operation. The usage of

the CAS operation must be properly measured, since it can lead to multiple problems.

Arguably, one of the best-known is the ABA problem5. The ABA problems occurs

when the fact that a memory location has not changed between two readings is used to

assume that nothing has changed during the period of time from the first to the second

reading. Although, this is a common assumption when using the CAS operation, in

some cases, it can lead to the ABA problem. An example of that would be: a thread

T reads a value V1 from a memory location L, uses V1 to do some work, updates L

to a new value V2 and, at the end of the work, changes the value of L again to V1.

In such case, if another thread has read the memory location L before and after the

work done by T , then it will be deceived by the fact that the memory location has

not changed. In our trie data structures, a practical consequence of this would be to

insert more than once the same value on the same level of the trie. To address the

ABA problem, several techniques already exist, such as version tagging [35], hazard

pointers [82] or value semantics [53]. In general, these kind of techniques rely on the

fact that a writing over a memory position always cause a transition from the current

state of the system to a uniquely new different state. Both our proposals will be proved

to be correct using linearization, which ensures that they are ABA-free. One of the

property in both proposals is the fact that every concurrent memory location L that

is used to insert new structures (chain nodes and bucket arrays) refers only once to

the same value V1, i.e., if L is updated from V1 to V2 than L will never refer to V1

again. Next, we describe our first lock-free trie data structure proposal.

5.4 Lock-Free Trie - LF1

The LF1 proposal is aimed to deal with concurrency inside the trie data structures

in a lock-free fashion. In what follows, we describe the key ideas of this proposal, we

5Note that we have already mentioned this problem in Valois’s approach.
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discuss important implementation details and we present a proof of correctness. At

the end of the section, we draw some conclusions about the proposal and motivate for

the creation of a second proposal.

In Figure 5.3, we observed that to maintain an efficient performance on accessing nodes

inside a trie level, each trie level is expanded with a hashing mechanism whenever it

reaches a predefined threshold of nodes. The hashing mechanism is composed by a

bucket array of S entries and a hash function that maps the nodes into the entries of

the bucket array. Whenever the hash bucket array becomes saturated, i.e., when the

number of nodes in a bucket entry exceeds the threshold value and the total number

of nodes exceeds S, then the bucket array is expanded to a new one with 2 ∗S entries.

Our LF1 proposal maintains this constraints. The difference is that it implements all

insert operations inside the trie structure using a CAS. In particular, the search and

insert operations of nodes is done in a lock-free fashion. The expansion of the bucket

arrays of entries of the hashing mechanism is also done using the CAS operation, that

whenever is successfully executed by one thread, the expansion is blocked to all of

the remaining threads. This means that no more than one expansion can be done at

a time, and if the thread that is doing the expansion suspends by some reason (for

example, the OS scheduler), then all the remaining threads can still be searching and

inserting keys in the trie level that is being expanded in a lock-free fashion, but no

other thread will be able to expand the same trie level.

Figure 5.7 shows the progress stages that a thread passes by in the search and insert key

operation, according with the decisions (oval boxes) that it has to do while executing

the operation in the LF1 proposal. We define three types of stages that specify the

type of progress that a thread can make:

• The private stages that do not change the configuration of data structures (white

rectangular boxes). A thread progresses in a private fashion, searching for keys

in chain nodes or returning from the operation;

• The public stage where a thread might or might not change the configuration

of data structures (gray rectangular box). In this stage a thread progresses if it

successfully inserts a key in the data structure;

• The public stages that must change the configuration of data structures (black

rectangular boxes). A thread progresses in this stage whenever it changes suc-

cessfully the configuration of data structures.

The search/insert key operations of the LF1 proposal begin with a search key stage.
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Figure 5.7: Progress stages of a thread in the search/insert key operation of the LF1

proposal

In this stage, the thread searches for a key in the chain of nodes and if the key is found

then the procedure ends the algorithm and moves to the return stage. Otherwise,

the key is not found and the thread passes to the insert stage. In the insert stage, if

the key is not inserted, then the thread moves again to the search stage. Otherwise,

the key was inserted, thus the thread leaves the insert stage and checks whether it is

elected for optimizing the data structure or not. If elected, then the thread passes to

the optimization stage where it expands the current bucket array to a new one and

adjusts all nodes to the new bucket array. Otherwise, if the thread is not elected, then

it simply moves to the return stage and exits from the operation.

5.4.1 Our Proposal By Example

This section presents our LF1 proposal to support the concurrent search, insertion,

hash creation and expansion inside the ST and AT data structures. We begin with

Figure 5.8 showing a small example that illustrates how the concurrent insertion of

nodes in the new lock-free trie structure is done. Again, for the sake of simplicity, we

are only considering one level of the trie data structure.

Figure 5.8(a) shows the trie configuration after the insertion of the child nodes K1
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Figure 5.8: Concurrent insertion of nodes in a trie level using LF1

and K2 in the parent node P . At this stage, the search/insert operation for a node

with a key is straightforward. Initially, a thread follows the pointer of P to access the

next level of the trie. Then, the chain of sibling nodes is searched for the key at hand.

If no such node exists, the pointer of P is used in a CAS operation to guarantee the

synchronization of the insertion of the key in the chain. During the search, a local

counter is used to count the number of nodes on the level which, in the case of a node

insertion, is then used to verify if the trie level has reached the predefined threshold

value required for hash creation. For this count, no synchronization is required, since

only one thread will be able to have its local counter equal to the threshold value.

Figure 5.8(b) shows then the trie configuration in the case where a thread has started

the hash creation process for a trie level. The thread first creates the special node

HN , the initial bucket array with size S and initializes all entries in the bucket array

referring to a special marking node M . The node M is then used to implement a

synchronization point with the first child node of P (node K2 in the figure) that,

whenever both are synchronized, will correspond to a successful CAS operation on P

that updates it to HN . This means that, from this point on, the access to the trie

level will be done through the new hash node HN . If a thread has accessed the trie

level before the hash creation, which means that it has not seen HN , in such case,

when trying to insert a new node, the CAS operation on P will fail because P is now

refering to HN .

In the continuation, Figure 5.8(c) and Figure 5.8(d) show the adjustment process of
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placing the child nodes in the correct bucket entries. To ensure lock-free synchroniza-

tion, we need to guarantee that, at any time, all threads are able to read the correct

values (starting from any bucket entry) and insert new values without any delay from

the adjustment process. To guarantee both properties, we use M as a way to mark

the beginning of the nodes not yet adjusted and we execute the adjustment process in

reverse order. Figure 5.8(c) shows the case where node K1 is first adjusted to be in the

bucket entry Bn and Figure 5.8(d) shows the case where node K2 is then adjusted to

be in the bucket entry Bm. Concurrently with the adjustment process, other threads

can be inserting nodes in the same bucket entries. In Figure 5.8(c), a new node K3 is

inserted after K1 in entry Bn and, in Figure 5.8(d), a new node K4 is inserted before

K2 in entry Bm. To ensure that the nodes not yet adjusted (after M) can always be

accessed from any bucket entry, the adjustment process may lead to cycles between

the nodes. For example, in Figure 5.8(c), node K1 is made to point to node M and

since M is referring to K2 and K2 is still referring to K1, we have a temporary cycle

between these nodes.

At the end of the adjustment process, all bucket entries still access M . To complete

the hash creation process, the last operation is thus to remove M from all entries. For

each bucket entry B, if M is on the head of B, then a CAS operation updating M

to Null is necessary. Otherwise, if M is not on the head of B, then we can simply

mark as Null the pointer of the node that is referring to M (nodes K1 and K4 in

Figure 5.8(d)). This can be safely done without any CAS operation since no other

thread can write on those nodes.

We complete the presentation of the LF1 proposal with the description about how a

hash table with a bucket array of size S is expanded to a new one with size 2 ∗S. The

decision of performing hash expansion is similar to the hash creation process. During

the search, a local counter is used to count the number of nodes on a bucket entry

which, in the case of a node insertion, is then used to verify the conditions for hash

expansion (please refer to Section 5.1). In order to ensure that only one thread gains

access to the hash expansion operation, we use a CAS operation to tag a specific field

on HN . Figure 5.9 illustrates the hash expansion of Figure 5.8(d) after the insertion

of a new node K5 on the bucket entry Bn.

The thread that gains access to the hash expansion operation starts by creating a

new hash H ′ of size 2 ∗ S entries. Next, for each old bucket entry Bn, it recomputes

the hash function for the nodes on Bn and redistributes them on H ′ accordingly to

the new hash values. In particular, for our hash function, this means that a node

on the nth entry of the old bucket array B (Bn on Figure 5.9) will be assigned to
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Figure 5.9: Expanding the hash tables in a trie level using LF1

the nth or (n + K)th entry of H ′ (entries B′n and B′m on Figure 5.9). As before,

we use again a marking node M to implement a synchronization point between the

old bucket entry Bn and the new bucket entries B′n and B′m that, whenever both

are synchronized, will correspond to a successful CAS operation that updates Bn

to H ′ (situation illustrated on Figure 5.9). In the continuation, we follow the same

adjustment process as before and, at the end, we remove M from B′n and B′m. When

the process of bucket expansion is completed for all S bucket entries, we update HN

to point to the new hash H ′ (and remove simultaneously - same memory position - the

tagging mark for hash expansion).

5.4.2 Implementation Details

We now present in more detail the algorithms that implement the key aspects of

the LF1 proposal. We begin with Algorithm 5.2 that shows the pseudo-code for the

search/insert operation of a given key K in a hash node HN .

In a nutshell, the algorithm executes in a loop until one of the following situations

occurs: (a) the search operation is successful, meaning that there is already a node

in the trie level with the same key K (lines 19–21); or (b) a newNode with key K is

successfully inserted in the trie (lines 30–32).

In more detail, the algorithm starts by allocating a new node with the key K (lines

1–2), then it gets the hash H from the hash node HN , the size of the hash S and

the bucket entry B in the hash where the key should be stored (lines 3-5). Then, the

algorithm reads the reference R on B (line 9) and checks whether it references a chain

node or a second hash. If the bucket entry B is referencing another hash (this happens

when another thread is doing hash expansion). In such case, it moves to the new hash

(variable H at line 11) and updates B (by recomputing the hash function using the key

K), oldF irst, R and markingNodeV isited accordingly (lines 13–16). The auxiliary
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Algorithm 5.2 search insert key on hash(key K, hash node HN)

1: newNode← AllocNode()

2: Key(newNode)← K

3: H ← GetHash(HN)

4: S ← Size(H)

5: B ← GetHashBucket(H,Hash(S,K)) . get the bucket entry

6: markingNodeV isited← False

7: oldF irst← Null

8: repeat . critical region only when CAS is executed

9: R← EntryRef(B)

10: while IsHash(R) do . R references a second hash

11: H ← GetHash(R)

12: S ← Size(H)

13: B ← GetHashBucket(H,Hash(S,K)) . get the next bucket entry

14: markingNodeV isited← False

15: oldF irst← Null

16: R← EntryRef(B)

17: chain← R . get the first node in the chain

18: while chain 6= Null and chain 6= oldF irst do . traverse chain nodes

19: if Key(chain) = K then . key already exists

20: FreeNode(newNode)

21: return chain

22: else if IsMarkingNode(chain) then

23: if markingNodeV isited then . second time in the marking node

24: break

25: else . first time in the marking node

26: markingNodeV isited← True

27: chain← NextRef(chain)

28: if not IsMarkingNode(R) then . mark the last node visited

29: oldF irst← R

30: NextRef(newNode)← R

31: until CAS(EntryRef(B), R, newNode)

32: return newNode

variable oldF irst marks the beginning of the chain of nodes on B that were already

searched in a previous round and the auxiliary variable markingNodeV isited denotes

if the marking node was already visited.
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On the second part of the algorithm, it then searches if there is a node with the

same key K already in the chain (lines 17–27). Note that this search is done while

the nodes in the chain were not yet searched in a previous round (while condition at

line 18) and while the marking node was not visited twice (lines 22–26). This second

condition allows to break any potential cycle between the nodes, as a result of a hash

creation/expansion operation being done by another thread. Finally, if K is not found,

the algorithm tries to insert newNode on the bucket entry B by using a CAS operation

that updates R to newNode (line 31). In case of failure, this means that the head of

B has changed in the meantime, thus leading to a new round.

Next, Algorithm 5.3 shows the pseudo-code for the hash expansion operation given

a hash node HN (since it is quite similar, we will leave aside the algorithm for hash

creation). Please remember that to ensure that only the elected thread executes the

hash expansion operation for HN , we use a CAS operation to tag a specific field on

HN (not shown here for the sake of simplicity).

The algorithm begins by initializing a set of local variables and by allocating a new

bucket array (lines 1–5). Next, for each old bucket entry oldB, it redistributes the

chain of nodes on oldB to the corresponding bucket entries on the hash newH (lines

7–20). At line 9, it executes a CAS operation on oldB trying to update a value of

Null to newH. A successful CAS operation means that oldB was empty and thus

no redistribution is necessary (it just becomes a reference to the new hash). An

unsuccessful CAS operation means that oldB has nodes to be expanded. In such case,

the algorithm then computes the entries on newH in which the nodes from oldB will

fall (entries newB1 and newB2) and initializes them to refer to the marking node

M (lines 10–13). The marking node M is then used to implement a synchronization

point between the old bucket entry oldB and the new bucket entries newB1 and

newB2 that, whenever both are synchronized, will correspond to a successful CAS

operation that updates oldB to newH (lines 14–16). In the continuation (lines 17–

19), the algorithm proceeds by adjusting the nodes on the old chain (Algorithm 5.4

below) and by removing M from the newB1 and newB2 chains (Algorithm 5.5 below).

At the end, when the process of bucket expansion is completed for all entries in oldH,

HN is updated to point to the new bucket array newH (line 21).

Algorithm 5.4 shows the pseudo-code for the process of adjusting a chain of nodes,

starting from a given node N , into a given hash H. One can observe that the algorithm

traverses the chain of nodes recursively and that the base case for recursion is the last

node on the chain (lines 1–3). For each chain node, it then calculates the bucket entry

B in which it will fall (lines 4–5). The bucket entry B is then used in repeated CAS
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Algorithm 5.3 hash expansion(hash node HN)

1: M ← GetMarkingNode(HN)

2: oldH ← GetHash(HN)

3: oldS ← Size(oldH) . get the size of the old bucket array

4: newS ← 2 ∗ oldS . double the size for the new bucket array

5: newH ← AllocInitHash(newS)

6: i← 0

7: while i < oldS do . traverse all entries in the old bucket array

8: oldB ← GetHashBucket(oldH, i)

9: if not CAS(EntryRef(oldB), Null, newH) then . the entry is not empty

10: newB1← GetHashBucket(newH, i)

11: newB2← GetHashBucket(newH, i + oldS)

12: EntryRef(newB1)←M

13: EntryRef(newB2)←M

14: repeat . chain the head of the old entry with the marking node

15: NextRef(M)← EntryRef(oldB)

16: until CAS(EntryRef(oldB), NextRef(M), newH)

17: adjust chain nodes(M,newH)

18: remove marking node(M,newB1)

19: remove marking node(M,newB2)

20: i← i + 1

21: UPDATE(HashRef(HN), newH) . set the hash node with the newH

22: return

Algorithm 5.4 adjust chain nodes(node N, hash H)

1: chain← NextRef(N)

2: if NextRef(chain) 6= Null then . N is not the last node in the chain

3: adjust chain nodes(chain,H)

4: S ← Size(H)

5: B ← GetHashBucket(H,Hash(S,Key(chain)))

6: repeat . insert the chain node in the head of the entry

7: UPDATE(NextRef(chain), EntryRef(B))

8: until CAS(EntryRef(B), NextRef(chain), chain)

9: return

operations until successfully insert the chain node on the head of B (lines 6–8).

Finally, Algorithm 5.5 shows the pseudo-code for the operation of removing a given
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marking node M from a given bucket entry B.

Algorithm 5.5 remove marking node(marking node M, bucket entry B)

1: if not CAS(EntryRef(B),M,Null) then . M is not in the head of the chain

2: chain← EntryRef(B)

3: next← NextRef(chain)

4: while (next 6= M) do . traverse the chain until M is found

5: chain← next

6: next← NextRef(chain)

7: UPDATE(NextRef(chain), Null) . remove M from the chain

8: return

Initially, Algorithm 5.5 executes a CAS operation on B trying to update an expected

value M to Null. A successful CAS operation means that no nodes were adjusted to

be on B (and B just becomes a reference to Null). An unsuccessful CAS operation

means that at least one node was adjusted to be on B. In such case, the algorithm

then follows the chain of nodes on B until reaching M and updates the node previous

to M to point to Null (thus removing M from the chain). This can be safely done

without any CAS operation, because at this stage no other thread can be writing at

this node.

5.4.3 Proof of Correctness

In this section, we discuss the correctness of the LF1 proposal. For the sake of

simplicity, we will keep the discussion in a particular trie level with a hash node HN

already in place (the starting point will be Figure 5.8(b)), since, as described earlier,

all trie levels and all chains of nodes have the same behavior. The proof consists in

two parts: first we prove that the LF1 proposal is linearizable and then we prove that

the proposal is lock-free for the search and insert operations.

Linearizability is an important correctness condition, since it guarantees that if every

operation within every algorithm that manipulates a concurrent data structure individ-

ually preserve an invariant (or a set of invariants), then the system as a whole also will.

A operation is linearizable if it appears to take effect instantaneously at some moment

of time tLP between its invocation and response. The literature often refers to tLP as a

linearization point and, for lock-free implementations, a LP is typically a single instant

where its effects become visible to all the remaining operations. The linearization proof

has then three parts. On the first part, we enumerate the linearization points of the
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proposal. On the second part, we describe the set of invariants that define a correct

state of the concurrent trie data structure within the LF1 proposal. On the third part,

we prove that every linearization point preserves the set of invariants. We thus start

by enumerating, the linearization points in the algorithms of the LF1 proposal which

are:

LP1 Algorithm 5.2 (search insert key on hash) is linearizable at successful CAS in

line 31.

LP2 Algorithm 5.3 (hash expansion) is linearizable at successful CAS in line 9.

LP3 Algorithm 5.3 (hash expansion) is linearizable at successful CAS in line 16:

LP4 Algorithm 5.3 (hash expansion) is linearizable at the UPDATE in line 21.

LP5 Algorithm 5.4 (adjust chain nodes) is linearizable at the UPDATE in line 7.

LP6 Algorithm 5.4 (adjust chain nodes) is linearizable at successful CAS in line 8.

LP7 Algorithm 5.5 (remove marking node) is linearizable at successful CAS in line 1.

LP8 Algorithm 5.5 (remove marking node) is linearizable at the UPDATE in line 7.

Next, we describe the set of invariants that must be preserved on every state of the

LF1 data structures:

Inv1 The hash node HN refers always to a bucket array of entries H.

Inv2 A bucket entry B must comply with the following semantics: (i) its initial

reference refers to the marking node M ; (ii) after an update, it must be referring

to one of the following: Null, a node N or a hash H.

Inv3 A node N1 in a chain of nodes starting from a bucket entry B belonging to a

bucket array of entries H must be referring always to one of the following: Null,

another node N2 or a marking node M .

Inv4 A chain of nodes must always end with one of the following references: Null

or the marking node M .

Inv5 The value of every concurrent memory location L that is used for insertion

of new structures (nodes and bucket array of entries) refers only once to the

same value V1. Once it changes to another value V2 it will never refer again to

V1.
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Finally, on the third part of the linearization proof, we prove that every linearization

point preserves the set of invariants.

Lemma 5.4.1. In the initial state of the data structure the set of invariants hold.

Proof. In the initial state the hash already have some chain nodes (please check

Figure 5.8(b)). The hash node HN refers to a hash H, so Inv1 holds, and all entries

of H are referring to the marking node M , so Inv2 also holds. The Inv3 holds because

the chain node K2 is referring to the chain node K1 and K1 is referring to Null. The

Inv4 holds because the last node in the chain is K1 which is referring to Null. The

Inv5 is not affected.

Lemma 5.4.2. The linearization point LP1 preserves the set of invariants.

Proof. After a successful CAS operation in the linearization point LP1, a bucket entry

B is updated to a new node newNode. Algorithm 5.2 shows that the node newNode

was allocated in the line 1, thus Inv2 and Inv5 hold. The Inv4 also holds because if

newNode is the only node in the chain then it must be referring to Null or to the

marking node M (given by line 30), otherwise if newNode is not the only node in the

chain and since it was inserted in the entry of the chain, newNode can not be at the

end of the chain. The remaining invariants are not affected.

Lemma 5.4.3. The linearization point LP2 preserves the set of invariants.

Proof. After a successful CAS operation in the linearization point LP2, a bucket entry

oldB is updated from Null to a hash newH. Algorithm 5.3 shows that the newH is

allocated in the line 5, thus Inv2 and Inv5 hold. The remaining invariants are not

affected.

Lemma 5.4.4. The linearization point LP3 preserves the set of invariants.

Proof. After a successful CAS operation in the linearization point LP3, a bucket

entry oldB is updated from the node referred by the marking node to a hash newH.

Algorithm 5.3 shows that the newH is allocated in the line 5, thus Inv2 and Inv5

hold. The remaining invariants are not affected.

Lemma 5.4.5. The linearization point LP4 preserves the set of invariants.

Proof. After the UPDATE operation in the linearization point LP4, the hash node

HN is updated from an old hash to a new one newH. Algorithm 5.3 shows that the
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newH is allocated in the line 5, thus Inv1 and Inv5 hold. The remaining invariants

are not affected.

Lemma 5.4.6. The linearization point LP5 preserves the set of invariants.

Proof. After the UPDATE operation in the linearization point LP5 the reference in a

node chain is updated to refer to EntryRef(B), which is necessarily another node or

a marking node M , thus Inv3 and Inv4 hold. The Inv5 holds because chain, where the

reference is being updated, is not a memory location used for concurrent insertions of

new data structures (remember that concurrent insertions are done only in the bucket

entries). The remaining invariants are also not affected.

Lemma 5.4.7. The linearization point LP6 preserves the set of invariants.

Proof. After a successful CAS operation in the linearization point LP6, a bucket entry

B is updated from the reference given by NextRef(chain) to the reference of node

chain, thus Inv2 holds. The Inv5 also holds, because B was never referring to node

chain before the update. This is ensured because only the elected thread (remember

the election process in the beginning of this section using Figure 5.7) can be doing

the adjustment process. In the adjustment process, each node is adjusted only once,

and since B belongs to a new hash created by the elected thread, then B could not

have referred to chain before the CAS operation. The remaining invariants are not

affected.

Lemma 5.4.8. The linearization point LP7 preserves the set of invariants.

Proof. After a successful CAS operation in the linearization point LP7, a bucket entry

B is updated from the marking node M to Null, thus Inv2 holds. The Inv5 also

holds, because Algorithm 5.5 is called from Algorithm 5.3 at lines 18 and 19, which

means that the bucket entry B was initialized with the reference to the marking node

M , so B never referred to Null before the CAS operation. The remaining invariants

are not affected.

Lemma 5.4.9. The linearization point LP8 preserves the set of invariants.

Proof. After the UPDATE operation in the linearization point LP8 the reference of

a node chain is updated to refer to Null, thus Inv3 and Inv4 hold. The Inv5 holds,

because the chain node, where the reference if being updated, is not a memory location

used for concurrent insertions of new data structures, thus to chain is allowed to refer

to Null more than once. The remaining invariants are not affected.
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Corollary 5.4.1. The invariants hold on every configuration of the LF1 proposal due

to Lemmas 5.4.1 to 5.4.9.

Theorem 5.4.1. The LF1 proposal is linearizable.

As described previously the lock-freedom property is very important because, although

it allows individual threads to starve, it guarantees system-wide throughput. Using

the notion of progress presented in the Subsection 5.2.2, we next prove that the LF1

proposal is lock-free.

At the beginning of the section, we defined progress as the steps that a thread takes

to complete the search/insert key operation (with the stages defined in the beginning

of the section) in the data structures, i.e., the steps that a thread takes between the

instant of the call and the instant of the return of the operation that it is calling.

Formally, progress is given by: either (i) a thread searching for keys within the data

structure and finding the key that it is searching between the two instants; or by (ii)

a thread changing the configuration of the data structures through insertion of new

nodes or optimizing the data structures though the expand and adjust procedures.

As observed before, changes in the configuration of the data structure occur in the

linearization points. Some of the linearization points use the CAS operation, which

might fail in successfully update a memory position, and in those cases we will prove

that progress still exists, because at least an other thread has made progress to the

configuration of the data structure. The proof of lock-freedom of the LF1 proposal has

two parts, on the first part we discuss progression in the search insert key on hash,

hash expansion, adjust chain nodes, and remove marking node algorithms and in the

second part we prove the lock-freedom property.

For the progress in the linearization points we have.

Lemma 5.4.10. The execution of the operations defined by the linearization points

LP4, LP5, and LP8 lead to change in the configuration of data structure because such

operations are composed by unconditional updates.

Lemma 5.4.11. When a thread executes the operations defined by the linearization

points LP1, LP2, LP3, LP6 and LP7 then configuration of the data structures has

changed.

Proof. All linearization points correspond to CAS operations on a given memory

location L trying to update an initial reference I to a new reference R corresponding

to an adjusted node, a new node or a new bucket array. Assuming that ti is the
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instant of time where a thread T first reads I from L and that tf is the instant of

time where T executes the CAS operation trying to update I to R, then a successful

CAS execution leads to a change in the configuration of a data structure because L

was updated to R. Otherwise, if the CAS operation fails, that means that between

instants ti and tf , the reference on L was changed, which means that at least another

thread has changed L between the instants of time ti and tf , thus also leading to a

change in the configuration of the data structures.

Corollary 5.4.2. When a thread executes one of the linearization points LP1 to LP8

then, due to Lemma 5.4.10 and to Lemma 5.4.11, the state of the configuration of the

data structure has made progress.

For progress in the search and insert procedures, we prove that every key is only

inserted once. To do so, we must prove that for a given key, if it exists in the data

structure, then the algorithms are able to find it. Otherwise, if the key does not exist,

then the algorithms are able to insert it. For the sake of clarity, we next introduce

three lemmas: two for the search procedure, where we distinguish the cases where the

expand procedure interferes or not with the search procedure, and one for the insert

operation.

Lemma 5.4.12. Consider Algorithm 5.2 with a given key K. Assuming that the

insert and expand procedure do not interfere with the search operation, if K exists in

the data structure, then the node with K is found, otherwise the algorithm moves from

the search procedure to the insert procedure.

Proof. Given the assumption above, the condition in line 10 of the Algorithm 5.2 fails,

and thus the search for K begins in line 18 with chain and oldF irst referring to the

first node in the chain and to Null (end of the chain), respectively. Next, at line 19,

if the key of chain is equal to K then the node with K is found. Otherwise, the keys

are different, the condition fails and the next condition at line 22 also fails, because

no marking node can be found during the search (the marking node belongs to the

expand procedure). Finally, the next node in the chain is visited (line 30) and the

search procedure continues until either K is found or the chain is equal to Null and

the algorithm passes from the search procedure to the insert procedure. The invariant

Inv4 ensures that chain reaches Null whenever a marking node is not present.

Lemma 5.4.13. Consider Algorithm 5.2 with a given key K. Assuming that the

insert and expand procedure interfere with the search procedure, if K exists in the data

structure, then the node with K is found, otherwise the algorithm moves from search

procedure to the insert procedure.
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Proof. Given the assumption above the search procedure might be influenced in two

situations:

• References to second hashes H or a marking node M might be found. If a

reference to H if found, then the condition at line 10 in the Algorithm 5.2 is

true, thus the search procedure traverses all second hashes until a reference to

a chain of nodes is found (using lines 10 to 16). If a reference to M is found,

then the key in M is always different from K, thus M is always skipped from

the search.

• Cycled chains of nodes might be found, such as the one presented in Figure 5.8(c).

Cycled chains of nodes do not end with a marking node M or Null. However, the

invariant Inv4 ensures that in any given instant one of both have to be present

in a chain of nodes. Thus, to prove that the search procedures always ends and

finds K if it is in the chain, we consider two situations:

– If M is found then Algorithm 5.2 uses a Boolean markingNodeV isited

variable to detect if M was visited more than once (lines 23 and 24), and

uses the oldF irst to detect the reference that ends the search, i.e. the

reference to the first node in the chain that was already visited. Thus,

the algorithm passes from the search procedure to the insert procedure.

During the search procedure, if K is the chain then it is found (proven by

Lemma 5.4.12).

– If Null is found, then the condition at line 18 in Algorithm 5.2 fails, and

the search procedure ends. Since K was not found, the algorithm advances

to the insert procedure.

Lemma 5.4.14. Consider Algorithm 5.2 with a given key K. If K does not exist,

then K is inserted in the data structure and the insert procedure ends, otherwise the

algorithm moves to the search procedure.

Proof. Given the assumption above, consider that the bucket entry B marks the

insertion point of the K and that R is the reference in B that was read in the

initial instant Ti of the execution of the search procedure. In Lemma 5.4.12 and

Lemma 5.4.13, we proved that the search procedure either finds a node with key K

and ends at line 21 in Algorithm 5.2 or, otherwise, moves to the insert procedure

without finding K. The insert procedure is executed in the instant Tf at line 31 in



5.4. LOCK-FREE TRIE - LF1 143

Algorithm 5.2, using B, R and the new node to be inserted newNode. During the

instants Ti to Tf − 1 the algorithm executed the search procedure. At instant Tf one

of the two situations might have occurred:

• The reference in B is equal to R. The invariant Inv5 ensures that nothing has

changed in the chain, thus K is not in the chain of nodes and K is inserted in

the data structure with the CAS operation.

• The reference in B is different from R. The invariant Inv5 ensures that R must

be Null, a node N or a hash H. In all situations the CAS operation will fail

and the algorithm moves again to the search procedure.

Corollary 5.4.3. On every instant of the execution of the search/insert key operation,

at least one of the threads T executing the operation does progress.

• Corollary 5.4.2 shows that progress always exists in every linearization point,

since if T has not made progress, then another thread has made progress in

changing the configuration of the data structures.

• Lemma 5.4.12, Lemma 5.4.13 and Lemma 5.4.14, shows that progress always

exists in the search and insert procedures because:

– without the expand procedure, if T executes the search procedure with a key

K, then T finds K if it is in the data structure, otherwise T successfully

inserts K using the insert procedure or calls back the search procedure.

– with the expand procedure, T might be or might not be the elected thread for

the expansion. If T is the elected thread, then T progresses according with

the changes that it does in data structures using the linearization points

LP2 to LP8. If the CAS operation fails in some of the linearization points,

then at least other thread as made progress in that particular linearization

point. Otherwise, T is not the elected thread, thus it simply returns from

the search/insert key operation.

Theorem 5.4.2. The LF1 proposal is lock-free.
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5.4.4 Discussion

We have presented the LF1 lock-free proposal specially aimed for environments that

do not require the support for the delete operation. Our main motivation was to

reduce the granularity of the previous lock-based proposal in order to be as efficient

as possible in the concurrent search and insert operations and to maintain an efficient

average node access as the size of the trie data structures increases, independently of

the number of running threads. We discussed the relevant implementation details and

proved the correctness of the implementation.

The LF1 proposal implements a dynamic resizing of the hash tables by doubling the

size of the bucket entries in the hash, whenever a trie level becomes saturated. Since

the size of the hashes doubles, it is highly inappropriate to integrate this proposal with

the TabMalloc memory allocator which requires the usage of fix-sized data structures

and pages.

To implement lock-freedom we took advantage of the CAS operation which reduces the

granularity of the synchronization when threads access concurrent areas. However, we

observed that, by also implementing the LF1 proposal in an external framework written

in C, the LF1 proposal suffers from problems such as false sharing or cache memory ping

pong effects. We detected this behavior in four different x86 architectures: a 24-Core

AMD Opteron(TM) Processor 8425 HE, a 32-Core AMD Opteron (TM) Processor

6274, a 64-Core AMD Opteron(TM) Processor 6376 and a 24-Core Intel Xeon(TM)

Processor E5645. These problems are mostly due to the fact that nodes are inserted

in bucket entries, and since bucket entries are close to each other they share the same

cache lines in memory which causes false sharing and cache ping-pong overheads during

execution.

5.5 Lock-Free Hash Trie - LF2

This section presents the LF2 proposal. This proposal is based on hash tries and

is aimed to be a simpler and more efficient lock-free proposal that disperses the

concurrent areas as much as possible in order to minimize problems such as false

sharing or cache memory ping pong effects. In what follows, we describe the key ideas

of this proposal, discuss important implementation details and we present a proof of

correctness. At the end of the section, we describe how we have used the LF2 proposal

to deal with the consumer chain of nodes in the AT data structures.
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Hash tries (or hash array mapped tries) are a trie-based data structure with nearly

ideal characteristics for the implementation of hash tables [15]. An essential property

of the trie data structure is that common prefixes are stored only once [40], which

in the context of hash tables allows us to efficiently solve the problems of setting the

size of the initial hash table and of dynamically resizing it in order to deal with hash

collisions. To implement hashing inside the ST and AT data structures, thus use hash

trie structures. In a nutshell, a hash trie is composed by internal hash arrays and

leaf nodes. The leaf nodes store key values and the internal hash arrays implement

a hierarchy of hash levels of fixed size 2w. To map a key into this hierarchy, we first

compute the hash value h for key and then use chunks of w bits from h to index the

entry in the appropriate hash level. Hash collisions are solved by simply walking down

the tree as we consume successive chunks of w bits from the hash value h.

The aim of the LF2 proposal is then to be as effective as possible in heavily concurrent

environments and improve the efficiency of the previous LF1 proposal in three major

aspects: (i) integration with the TabMalloc memory allocator, (ii) reduce false sharing

and ping-pong effects, and (iii) improve liveness. With LF2, the integration with the

TabMalloc memory allocator, is now possible because, as we will observe, the size of

the bucket arrays is fixed. To integrate LF2 with TabMalloc, we have created a new

queue of pages, for the pages holding the bucket array of entries.

For reducing false sharing and ping-pong effects, each bucket array of entries has the

size of a line of cache of the hardware architecture that is supporting the execution.

Additionally, we disperse the concurrent memory locations for insertion and the insert

procedure is done now in the tail of the chain of nodes instead of the head. As a result,

it is expected that, threads working in chains of nodes with bucket array entries that

share the same cache line will interfere less with each other when compared with the

LF1 proposal.

Finally, for improving liveness, in the LF1 proposal, only one thread T could be

expanding a hash and the expanding procedure would be done by T in all bucket

entries. The OS scheduler can affect the performance of the LF1 since the preemption

of T stops the expansion procedure which can potentially saturate all chains of nodes

in all bucket entries. This might occur in heavily concurrent environments where

other threads, different from T , insert an arbitrary large number of nodes during the

preemption of T . Consequently, a chain of nodes could potentially be much more

higher that the maximum number of nodes MAX NODES that we have predefined

has threshold. In the LF2 proposal, we reduce the granularity of the expanding

operation to a single bucket entry. Thus, if a thread T activates the expansion



146 CHAPTER 5. LOCK-FREE DATA STRUCTURES

operation, T is only responsible for expanding only one chain of nodes and that chain

of nodes will have exactly the number of nodes given by the MAX NODES threshold.

Figure 5.10 shows the progress stages that a thread passes by in the search and

insert key operation, according with the decisions (oval boxes) that it has to do while

executing the operation in the LF2 proposal. We define three types of stages that

specify the type of progress that a thread can make:

• The private stages that do not change the configuration of data structures (white

rectangular boxes). A thread progresses in a private fashion, searching for keys

in chain nodes or returning from the operation;

• The public stage where a thread might or might not change the configuration

of data structures (gray rectangular box). In this stage a thread progresses if it

successfully inserts a key in the data structure;

• The public stages that must change the configuration of data structures (black

rectangular boxes). A thread progresses in this stage whenever it changes suc-

cessfully the configuration of data structures.

The search/insert key operation of the LF2 proposal begins with a search stage. In this

stage, the thread searches for a key in the chain of nodes and if the key is found then

the thread moves to the return stage. Otherwise, the key is not found and the thread

passes to the election for optimization process. If elected, then the thread passes to

the optimization stage, where it expands the current bucket array to a new one and

adjusts all nodes to the new bucket array, and, at the end of the optimization process,

it goes for a new election. If elected, it begins a new optimization process, otherwise,

it returns to the search procedure. For the search procedure, if the thread does not

find the key and it is not elected, it passes to the insert stage. In the insert stage, if

the key is not inserted, then the thread moves again to the search stage. Otherwise,

the key is inserted and the thread moves to the return stage.

5.5.1 Our Proposal By Example

This section presents our LF2 proposal to support the concurrent search, insertion and

expansion procedures inside the ST and AT data structures. Again, for the sake of

simplicity, we are only considering one trie level of the ST and AT data structures. We

begin with Figure 5.11 showing a small example that illustrates how the concurrent
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Figure 5.10: Progress stages of a thread in the search/insert key operation of the LF2

proposal

insertion of nodes is done in a level of the ST and AT data structures starting with

the initial configuration containing one hash level. We will use three examples to

illustrate the different configurations that the hash trie assumes for one, two and three

hash levels (for more hash levels, the same idea applies).
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.
.
.

Prev

K1 K1 K2 K3EkBkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2 
entries

w

Hi Hi Hi

Figure 5.11: Insert procedure in a hash level

Figure 5.11(a) shows the initial configuration for a hash level. Each hash level Hi is

formed by a bucket array of 2w entries and by a backward reference to the previous hash

level (represented as Prev in the figures). For the root level, the backward reference

is Null. In Figure 5.11(a), Bk represents a particular bucket entry of the hash level.

Bk and the remaining entries are all initialized with a reference to the current level
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Hi. During execution, each bucket entry stores either a reference to a hash level or

a reference to a separate chaining mechanism, using a chain of internal nodes, that

deals with the hash collisions for that entry. Each internal node holds a key value

and a reference to the next-on-chain internal node. Figure 5.11(b) shows the hash

configuration after the insertion of node K1 on the bucket entry Bk and Figure 5.11(c)

shows the hash configuration after the insertion of nodes K2 and K3 also in Bk. Note

that the insertion of new nodes is done at the end of the chain and that any new node

being inserted closes the chain by referencing back the current level.

During execution, the different memory locations that form a hash trie are considered

to be in one of the following states: black, white or gray. A black state represents

a memory location that can be updated by any thread (concurrently). A white

state represents a memory location that can be updated only by one (specific) thread

(not concurrently). A gray state represents a memory location used only for reading

purposes. As the hash trie evolves during time, a memory location can change between

black and white states until reaching the gray state, where it is no further updated.

The initial state for Bk is black, because it represents the next synchronization point

for the insertion of new nodes. After the insertion of node K1, Bk moves to the white

state and K1 becomes the next synchronization point for the insertion of new nodes.

To guarantee the property of lock-freedom, all updates to black states are done using

CAS operations. Since we are using single word CAS operations, when inserting a

new node in the chain, first we set the node with the reference to the current level and

only then the CAS operation is executed to insert the new node in the chain.

When the number of nodes in a chain exceeds a MAX NODES threshold value, then

the corresponding bucket entry is expanded with a new hash level and the nodes in

the chain are remapped in the new level. Thus, instead of growing a single monolithic

hash table, the hash trie settles for a hierarchy of small hash tables of fixed size 2w.

To map our key values into this hierarchy, we use chunks of w bits from the hash

values computed by our hash function. For example, consider a key value and the

corresponding hash value h. For each hash level Hi, we use the w ∗ i least significant

bits of h to index the entry in the appropriate bucket array, i.e., we consume h one

chunk at a time as we walk down the hash levels. Starting from the configuration in

Figure 5.11(c), Figure 5.12 illustrates the expansion mechanism with a second level

hash Hi+1 for the bucket entry Bk.

The expansion procedure is activated whenever a thread T meets the following two

conditions: (i) the key at hand was not found in the chain and (ii) the number of nodes
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Figure 5.12: Expanding a bucket entry with a second level hash

in the chain is equal to the threshold value (in what follows, we consider a threshold

value of three nodes). In such case, T starts by pre-allocating a second level hash

Hi+1, with all entries referring the respective level (Figure 5.12(a)). At this stage, the

bucket entries in Hi+1 can be considered white memory locations, because the hash

level is still not visible for the other threads. The new hash level is then used to

implement a synchronization point with the last node on the chain (node K3 in the

figure) that will correspond to a successful CAS operation trying to update Hi to Hi+1

(Figure 5.12(b)). From this point on, the insertion of new nodes on Bk will be done

starting from the new hash level Hi+1.

If the CAS operation fails, that means that another thread has gained access to the

expansion procedure and, in such case, T aborts its expansion procedure. Otherwise,

T starts the remapping process of placing the internal nodes K1, K2 and K3 in the

correct bucket entries in the new level. Figures 5.12(c) to 5.12(h) show the remapping

sequence in detail. For simplicity of illustration, we will consider only the entries Bm

and Bn on level Hi+1 and assume that K1, K2 and K3 will be remapped to entries
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Bm, Bn and Bn, respectively. In order to ensure lock-free synchronization, we need to

guarantee that, at any time, all threads are able to read all the available nodes and

insert new nodes without any delay from the remapping process. To guarantee both

properties, the remapping process is thus done in reverse order, starting from the last

node on the chain, initially K3.

Figure 5.12(c) then shows the hash trie configuration after the successful CAS oper-

ation that adjusted node K3 to entry Bn. After this step, Bn moves to the white

state and K3 becomes the next synchronization point for the insertion of new nodes

on Bn. Note that the initial chain for Bk has not been affected yet, since K2 still

refers to K3. Next, on Figure 5.12(d), the chain is broken and K2 is updated to refer

to the second level hash Hi+1. The process then repeats for K2 (the new last node

on the chain for Bk). First, K2 is remapped to entry Bn (Figure 5.12(e)) and then

it is removed from the original chain, meaning that the previous node K1 is updated

to refer to Hi+1 (Figure 5.12(f)). Finally, the same idea applies to the last node K1.

Here, K1 is also remapped to a bucket entry on Hi+1 (Bm in the figure) and then

removed from the original chain, meaning in this case that the bucket entry Bk itself

becomes a reference to the second level hash Hi+1 (Figure 5.12(h)). From now on, BK

is also a gray memory location since it will be no further updated.

Concurrently with the remapping process, other threads can be inserting nodes in the

same bucket entries for the new level. This is shown in Figure 5.12(e), where a new

node K4 is inserted before K2 in Bn and, in Figure 5.12(g), where a node K5 is inserted

before K1 in Bm. As mentioned before, lock-freedom is ensured by the use of CAS

operations when updating black state memory locations.

To ensure the correctness of the remapping process, we also need to guarantee that

the nodes being remapped are not missed by any other thread traversing the hash trie.

Please remember that any chaining of nodes is closed by the last node referencing back

the hash level for the node. Thus, if when traversing a chain of nodes, a thread U ends

in a second level hash Hi+1 different from the initial one Hi, this means that U has

started from a bucket entry Bk being remapped, which includes the possibility that

some nodes initially on Bk were not seem by U . To guarantee that no node is missed,

U simply needs to restart its traversal from Hi+1.

We conclude the description of our proposal with a last example that shows a ex-

pansion procedure involving three hash levels. Starting from the configuration on

Figure 5.12(b), Figure 5.13 assumes a scenario where a set of nodes (K4, K5, K6 and

K7 in the figure) are inserted in the bucket entries Bm and Bn before the beginning



5.5. LOCK-FREE HASH TRIE - LF2 151

of the remapping process of nodes K1, K2 and K3. Again, we will consider only the

entries Bm and Bn on level Hi+1 and assume that K1, K2 and K3 will be remapped

to entries Bm, Bn and Bn, respectively.
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Figure 5.13: Adjusting nodes on a third level hash

Figure 5.13(a) shows the situation where K3 is scheduled to be remapped to entry

Bn on level Hi+1 but, since the number of nodes on Bn is equal to the threshold

value, a preliminary expansion procedure for Bn should be done, which leads to the

pre-allocation of a third level hash Hi+2. Figure 5.13(b) then shows the hash trie

configuration after the remapping of the nodes on Bn to the level Hi+2. Please note
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that Bn became a gray state memory location since it is now referring the third level

hash Hi+2, which means that any operation scheduled to Bn should be rescheduled

to Hi+2. This is the case shown in Figure 5.13(c), where K3 and K2 were both

rescheduled to entry Bz on Hi+2. Despite this third level remapping, the chaining

reference of the last node on the chain (for example, K1 in Figure 5.13(c)) is still made

to refer to the second level hash Hi+1. To conclude the example, Figure 5.13(d) shows

the configuration at the end of the remapping process. Here, K1 is remapped to the

bucket entry Bm on Hi+1 and removed from the initial chain, meaning that Bk itself

becomes a reference to Hi+1 and moves to a gray state.

For each configuration shown, the reader is encourage to verify that, at any moment, all

threads are able to access all available nodes. Consider, for example, the configuration

shown in Figure 5.13(c) and a thread entering on level Hi searching for a node with

the key K7. The thread would begin by hashing the key K7 on level Hi and obtain the

bucket entry Bk. Then, it would follow the chain of nodes (K1 in this case) and reach

level Hi+1. At level Hi+1, it would hash again the key K7, obtain the bucket entry Bn

and follow the reference to level Hi+2. Finally, it would hash one more time the key

K7, now for level Hi+2, obtain the entry Bx and follow the chain until reaching node

K7.

We argue that a key design decision in the LF2 proposal is thus the combination

of hash tries with the use of a separate chaining (with a threshold value) to resolve

hash collisions. Also, to ensure that nodes being remapped are not missed by any

other thread traversing the hash trie, any chaining of nodes is closed by the last node

referencing back the hash level for the node, which allows to detect the situations

where a node changes level. This is very important because it allows to implement

a clean design to resolve hash collisions by simply moving nodes between the levels.

In this proposal, updates and expansions of the hash levels are never done by using

replacement of data structures (i.e., create a new one to replace the old one), which

also avoids the complex mechanisms necessary to support the recovering of the unused

data structures. Another important design decision which minimizes the low-level

synchronization problems leading to false sharing or cache memory side-effects, is the

insertion of nodes done at the end of the separate chain. Inserting nodes at the

end of the chain allows for dispersing as much as possible the memory locations being

updated concurrently (the last node is always different) and, more importantly, reduces

the updates for the memory locations accessed more frequently, like the bucket entries

for the hash levels (each bucket entry is at most only updated twice).
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5.5.2 Implementation Details

This section presents the algorithms that implement our new lock-free hash trie pro-

posal. We begin with Algorithms 5.6 and 5.7 that show the pseudo-code for the

search/insert operation of a given key K in a hash level H. In a nutshell, the algorithms

execute recursively, moving through the hierarchy of hash levels until K is found or

inserted in a hash level H (for the entry call, H is the root level). Algorithm 5.6 deals

with the hash level data structures and Algorithm 5.7 deals with the internal nodes in

a separate chaining.

Algorithm 5.6 search insert key on hash(key K, hash H)

1: B ← GetHashBucket(H,Hash(Level(H), K))

2: if EntryRef(B) = H then . B is an empty bucket

3: newNode← AllocNode()

4: Key(newNode)← K

5: NextRef(newNode)← H

6: if CAS(EntryRef(B), H, newNode) then

7: return newNode

8: else

9: FreeNode(newNode)

10: R← EntryRef(B)

11: if IsNode(R) then . start traversing the chain

12: return search insert key on chain(K,H,R, 1)

13: else . R references a second level hash

14: return search insert key on hash(K,R)

In more detail, Algorithm 5.6 starts by applying the hash function that allows obtain-

ing the appropriate bucket entry B of H that fits K (line 1). Next, if B is empty (i.e.,

if B is referencing back the hash level H), then a new node newNode representing K

is allocated and properly initialized (lines 3–5). Then, the algorithm tries to insert K

on the head of B by using a CAS operation that updates H to newNode (line 6). If

the operation is successful, then the node was successfully inserted and the algorithm

ends by returning it (line 7). Otherwise, in case of failure, the head of B has changed

in the meantime, so B is not empty (lines 10–14). Here, the algorithm then reads

the reference R on B (line 10) and checks whether it references an internal node or a

second hash level. If R is a node, then it calls Algorithm 5.7 to traverse the chain of

nodes (line 12). Otherwise, it calls itself, but now for the second level hash represented

by R (line 14).
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Algorithm 5.7 shows the search/insert operation of a given key K in a hash level

H starting from a reference R (which is a chain node) at position C in a separate

chaining (for the entry call, C is 1 and R is the head node in the chain). Initially,

the algorithm simply checks if R holds the key K, in which case, it ends by returning

R (lines 1–2). Otherwise, it checks if R is the last node in the chain (line 3). If so,

then two situations might occur: (i) the chain is full, in which case, the expansion

procedure should be activated (lines 5–13); or (ii) the chain is not full, in which case,

a new node representing K should be inserted in the chain (lines 15–21).

For the former situation, a second level hash newHash is first allocated and initialized

(lines 5–6) and then used to implement a synchronization point that will correspond

to a CAS operation trying to update the next reference of R from H to newHash (line

7). If the CAS operation fails, that means that another thread has gained access to

the expansion procedure. Otherwise, if successful, the algorithm starts the remapping

process of adjusting the internal nodes on the separate chaining, corresponding to

the bucket entry B at hand, to the new hash level (line 9) and, for that, it calls the

adjust chain nodes() procedure (see Algorithm 5.8 next). After that, it updates the

bucket entry B to refer to the new level (line 10) and then Algorithm 5.6 is called

again, this time to search/insert for K in the new hash level (line 11).

For the latter situation (lines 15–21), a new node representing K is allocated and

properly initialized (lines 15–17), and a CAS operation tries to insert it at the end of

the chain. If successful, the reference to the new node is returned. Otherwise, this

means that another thread has inserted another node in the chain in the meantime,

which lead us to the situation in the last block of code (lines 22–28), where R is not

last in the chain.

In the last block of code, the algorithm then updates R to the next reference in the

chain (line 22) and, as in Algorithm 5.6, it checks whether R references an internal node

or a second hash level. If R is still a node, then the algorithm calls itself to continue

traversing the chain of nodes (line 24). Otherwise, it returns to Algorithm 5.6, but

now for the hash level after the given hash H (lines 26–28). Note that, if other threads

are simultaneously expanding the hash tries, it might happen that we end in a hash

level several levels deeper and thus incorrectly miss the node we are searching for.

This is why we need to move backwards to the hash level after the given hash H (lines

26–27).

Algorithms 5.8, 5.9 and 5.10 show the pseudo-code for the remapping process of

adjusting a chain of nodes to a new hash level H. Algorithm 5.8 is the entry procedure
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Algorithm 5.7 search insert key on chain(key K, hash H, reference R, counter C)

1: if Key(R) = K then . we have found K in the chain

2: return R

3: if NextRef(R) = H then . R is last in the chain

4: if C = MAX NODES then . chain is full

5: newHash← AllocInitHash(Level(H) + 1)

6: PrevHash(newHash)← H

7: if CAS(NextRef(R), H, newHash) then

8: B ← GetHashBucket(H,Hash(Level(H), K))

9: adjust chain nodes(EntryRef(B), newHash)

10: UPDATE(EntryRef(B), newHash)

11: return search insert key on hash(K,newHash)

12: else

13: FreeHash(newHash)

14: else

15: newNode← AllocNode()

16: Key(newNode)← K

17: NextRef(newNode)← H

18: if CAS(NextRef(R), H, newNode) then

19: return newNode

20: else

21: FreeNode(newNode)

22: R← NextRef(R)

23: if IsNode(R) then . keep traversing the chain

24: return search insert key on chain(K,H,R,C + 1)

25: else . R references a second level hash

26: while PrevHash(R) 6= H do . move backwards

27: R← PrevHash(R)

28: return search insert key on hash(K,R)

that ensures that the remapping process is done in reverse order, Algorithm 5.9 deals

with the adjustment on hash level data structures and Algorithm 5.10 deals with the

adjustment on a separate chaining.

In more detail, Algorithm 5.8 starts by traversing the nodes in the chain until reach-

ing the last one. Then, for each node R in the chain (from last to first), it calls

adjust node on hash() in order to remap R to the given new hash level H.
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Algorithm 5.8 adjust chain nodes(reference R, hash H)

1: if NextRef(R) 6= H then

2: adjust chain nodes(NextRef(R), H)

3: adjust node on hash(R,H)

4: return

Algorithm 5.9 shows the pseudo-code for the process of remapping a given node N

into a given hash H. It is quite similar to Algorithm 5.6, except for the fact that there

is no need to allocate and initialize a new node with the key at hand (here, we already

have the node). It starts by updating the next reference of N to H (line 1), next it

applies the hash function that allows obtaining the appropriate bucket entry B of H

that fits the key on N (line 2), and then, if B is empty, it tries to successfully insert

N on the head of B by using a CAS operation (lines 3–5). Otherwise, B is not empty,

and the same procedure as in Algorithm 5.6 applies (lines 6–10). The difference is that

here it calls the adjust node on chain() and adjust node on hash() algorithms, instead

of the search insert key on chain() and search insert key on hash() algorithms.

Algorithm 5.9 adjust node on hash(node N, hash H)

1: UPDATE(NextRef(N), H)

2: B ← GetHashBucket(H,Hash(Level(H), Key(N)))

3: if EntryRef(B) = H then . B is an empty bucket

4: if CAS(EntryRef(B), H,N) then

5: return

6: R← EntryRef(B)

7: if IsNode(R) then . start traversing the chain

8: return adjust node on chain(N,H,R, 1)

9: else . R references a second level hash

10: return adjust node on hash(N,R)

Algorithm 5.10 then concludes the presentation. It shows the pseudo-code for the pro-

cess of remapping a given node N into a hash level H starting from a node R at position

C in a separate chaining. As before, Algorithm 5.10 also shares similarities, but now

with Algorithm 5.7, except for the fact that there is no need to check if N already exists

in the chain (lines 1–2 in Algorithm 5.7) and, as before, that there is no need to allocate

and initialize a new node with the key at hand (lines 15–17 in Algorithm 5.7). The

last block of code (lines 14–20) is also identical to Algorithm 5.7, except for the fact

that it calls the adjust node on chain() and adjust node on hash() algorithms, instead

of the search insert key on chain() and search insert key on hash() algorithms.
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Algorithm 5.10 adjust node on chain(node N, hash H, reference R, counter C)

1: if NextRef(R) = H then . R is last in the chain

2: if C = MAX NODES then . chain is full

3: newHash← AllocInitHash(Level(H) + 1)

4: PrevHash(newHash)← H

5: if CAS(NextRef(R), H, newHash) then

6: B ← GetHashBucket(H,Hash(Level(H), K))

7: adjust chain nodes(EntryRef(B), newHash)

8: UPDATE(EntryRef(B), newHash)

9: return adjust node on hash(N, newHash)

10: else

11: FreeHash(newHash)

12: else if CAS(NextRef(R), H,N) then

13: return

14: R← NextRef(R)

15: if IsNode(R) then . keep traversing the chain

16: return adjust node on chain(N,H,R,C + 1)

17: else . R references a second level hash

18: while PrevHash(R) 6= H do . move backwards

19: R← PrevHash(R)

20: return adjust node on hash(N,R)

5.5.3 Proof of Correctness

In this section, we discuss the correctness of the LF2 proposal. For the sake of

simplicity, we will keep the discussion similar to the proof of the LF1 proposal, thus

consisting in two parts: first we prove that the LF2 proposal is linearizable and then

we prove that the proposal is lock-free for the search and insert operations.

Again, the linearization proof has then three parts. On the first part, we describe

the linearization points of the LF2 proposal. On the second part, we describe the

invariants that define a correct state of the concurrent trie data structure within the

LF2 proposal. On the third part, we prove that every linearization point preserves a

set of invariants.

The linearization points in the algorithms of the LF2 proposal are:

LP1 Algorithm 5.6 (search insert key on hash) is linearizable at successful CAS in



158 CHAPTER 5. LOCK-FREE DATA STRUCTURES

line 6.

LP2 Algorithm 5.7 (search insert key on chain) is linearizable at successful CAS in

line 7.

LP3 Algorithm 5.7 (search insert key on chain) is linearizable at the UPDATE in

line 10.

LP4 Algorithm 5.7 (search insert key on chain) is linearizable at successful CAS in

line 18.

LP5 Algorithm 5.9 (adjust node on hash) is linearizable at the UPDATE in line 1.

LP6 Algorithm 5.9 (adjust node on hash) is linearizable at successful CAS in line 4.

LP7 Algorithm 5.10 (adjust node on chain) is linearizable at successful CAS in line 5.

LP8 Algorithm 5.10 (adjust node on chain) is linearizable at the UPDATE in line 8.

LP9 Algorithm 5.10 (adjust node on chain) is linearizable at successful CAS in line 12.

The set of invariants that must be preserved on every state of the data structure are:

Inv1 For every hash level H, PrevHash(H) always refers to the previous hash level.

Inv2 A bucket entry B belonging to a hash level H must comply with the following

semantics: (i) its initial reference is H; (ii) after the first update, it must refer

to a node N ; (iii) after the second (and final) update, it must refer to a hash

level Hd such that PrevHash(Hd) = H.

Inv3 A node N in a chain of nodes starting from a bucket entry B belonging to a

hash level H must comply with the following semantics: (i) its initial reference

is H; (ii) after an update, it must refer to another node in the chain or to a hash

level Hd (at least one level) deeper than H.

Inv4 For a chain of nodes in a bucket entry B belonging to a hash level H, the

number C of nodes in the chain is always lower or equal than a predefined

threshold value MAX NODES (MAX NODES ≥ 1).

Inv5 The value of every concurrent memory location L that is used for insertion of

new structures (nodes and bucket array of entries) refers only once to the same

value V1. Once it changes to another value V2 it will never refer again to V1.



5.5. LOCK-FREE HASH TRIE - LF2 159

Next, we prove that every linearization point preserves the set of invariants.

Lemma 5.5.1. In the initial state of the data structure the set of invariants hold.

Proof. Consider that H represents the root level for a hash trie (its initial configuration

is the same as the one represented in Figure 5.11(a)). Since H is the root level, the

reference PrevHash(H) is Null (Inv1), each bucket entry B is referring H (Inv2) and

the number C of nodes in any chain is 0 (Inv3 and Inv4). The invariant Inv5 is not

affected.

Lemma 5.5.2. The linearization point LP1 preserves the set of invariants.

Proof. After the successful execution of the CAS operation at line 6, the bucket entry

B refers to newNode (Inv2), newNode refers to H (Inv3), as initialized at line 5, and

C = 1 (Inv4). Inv5 holds because newNode is allocated at line 3 of Algorithm 5.6,

thus it represents a new memory location. Inv1 is not affected.

Lemma 5.5.3. The linearization point LP2 preserves the set of invariants.

Proof. After the successful execution of the CAS operation at line 7, the node R refers

to a deeper hash level newHash (Inv3) and PrevHash(newHash) refers to the current

hash level H, as initialized at line 6 (Inv1). Inv5 holds because newHash is allocated

at line 5 of Algorithm 5.7, thus it represents a new memory location. Inv2 and Inv4

are not affected.

Lemma 5.5.4. The linearization point LP3 preserves the set of invariants.

Proof. After the UPDATE operation in the linearization point LP3, a bucket entry

reference B is updated to refer to a newHash, which is a new memory location, thus

Inv5 holds because for the linearization point LP3 be executed, then the condition

C = MAX NODES must be true, which means that B was referring a chain node

(Inv2). The remaining invariants are not affected.

Lemma 5.5.5. The linearization point LP4 preserves the set of invariants.

Proof. After the successful execution of the CAS operation at line 18, the node R

refers to newNode and newNode refers to H, as initialized at line 17 (Inv3). Inv4

also holds because since the condition at line 4 failed, meaning that initially Ci <

MAX NODES, the insertion of a new node in the chain after R leads to Cf =

Ci + 1 ≤ MAX NODES. Inv5 holds because newNode is allocated at line 15 of
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Algorithm 5.7, thus it represents a new memory location. Inv1 and Inv2 are not

affected.

Lemma 5.5.6. The linearization points LP5, LP6, LP7, LP8 and LP9 preserve the

set of invariants.

Proof. The linearization points LP5, LP6, LP7, LP8 and LP9 belong to the optimiza-

tion procedure of adjusting a chain of nodes to a new hash level. This procedure is

initially called at line 9 of Algorithm 5.7, for a chain of nodes in the bucket entry B and

for the deeper hash level newHash with the previous hash reference updated to the

previous hash level (line 6) and B is updated to refer to the newHash (line 10), thus

Inv1 and Inv2 hold. The adjust chain nodes() algorithm then calls Algorithms 5.9

and 5.10. In Algorithm 5.9, at line 1, the node N being adjusted is made to refer to

a deeper hash level, thus Inv3 holds. During the adjustment procedure, the number

of nodes is always lower or equal than a predefined threshold value MAX NODES

(line 2 at Algorithm 5.10), thus Inv4 holds. Finally, every linearization point update

memory locations L to newly allocated bucket array structures or to chain nodes that

were never referred by L, thus Inv5 holds. For the remaining parts of Algorithms 5.9

and 5.10, the proofs are similar to the proofs for Algorithms 5.6 and 5.7, as shown on

the previous lemmas. Thus, the invariants still hold for Algorithms 5.9 and 5.10.

Corollary 5.5.1. The invariants hold on every configuration of the LF2 proposal due

to Lemmas 5.5.1 to 5.5.6.

Theorem 5.5.1. The LF2 proposal is linearizable.

The proof of lock-freedom of the LF2 proposal has two parts, on the first part we

discuss progression in the search insert key on hash(), search insert key on chain(),

adjust chain nodes(), adjust node on hash() and adjust node on chain() algorithms

and in the second part we prove the lock-freedom property.

For the progress in the linearization points we have.

Lemma 5.5.7. The execution of the operations defined by the linearization points LP3,

LP5 and LP8 lead to progress in the configuration of the data structures because such

operations are composed by unconditional updates.

Lemma 5.5.8. When a thread executes the operations defined by the linearization

points LP1, LP2, LP4, LP6, LP7 and LP9 then the configuration of the data structure

has made progress.
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Proof. All linearization points correspond to CAS operations on a given memory

location M trying to update an initial reference to a hash level H with a reference R

corresponding to a new node or hash level. Assuming that ti is the instant of time

where a thread T first reads H from M and that tf is the instant of time where T

executes the CAS operation trying to update H to R, then a successful CAS execution

leads to progress in the state of the hash trie configuration because M was updated

to R. Otherwise, if the CAS operation fails, that means that between instants ti and

tf , the reference on M was changed, which means that at least another thread has

changed M between the instants of time ti and tf , thus leading to progress in the state

of the hash trie configuration.

Corollary 5.5.2. When a thread executes one of the linearization points LP1 to LP9

then, due to Lemmas 5.5.7 to 5.5.8, the state of the configuration of the data structure

has made progress.

For progress in the search and insert operation, we prove that every key is only inserted

once. To do so, we must prove that for a given key K, if K exists in the hash trie, then

the algorithms are able to find it. Otherwise, if K does not exist, then the algorithms

are able to insert it.

Lemma 5.5.9. Consider Algorithm 5.6 with a given key K and a hash level H. If K

exists in a chain of nodes in a hash level deeper than H, then Algorithm 5.6 computes

the next hash level Hd where K can be found, and calls itself for Hd. When K exists

in a chain of nodes in H, then Algorithm 5.6 maps K to the correct bucket B of H

that holds K and calls Algorithm 5.7 to search for K in the separate chaining of B.

Proof. Since we are assuming that K already exists in a chain of nodes, the code

between lines 2–9 can be ignored because the condition at line 2 is always false. If R

is then a reference to a hash trie, the algorithm calls itself for the next hash level (as

defined by Inv2) and the process continues recursively until the condition at line 11

be true. At that stage, Algorithm 5.7 is called to search for K starting from the first

node R in the corresponding separate chaining B of H.

Lemma 5.5.10. Consider Algorithm 5.7 with a given key K, a hash level H and

a reference to the first node R in a chain of nodes. If K exists in the chain, then

Algorithm 5.7 finds the node with K.

Proof. Since we are assuming that K already exists in a chain of nodes, the code

between lines 3–21 can be ignored because the condition at line 3 is always false. If
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the condition at line 1 succeeds then K was found in the chain. Otherwise, if the chain

is not being remapped to a second hash level, the algorithm uses the lines 22–24 to call

itself recursively until it finds K at line 1. If the chain is being remapped, Inv3 ensures

that we will reach a reference to a hash level Hd which is deeper than H. Thus, at

some point in the execution, the algorithm reads Hd at line 22, calling Algorithm 5.6

in the continuation with a hash level Ha one level deeper than H (not that Hd can

be in a deeper level than Ha). The search process then continues using Lemma 5.5.9.

Since K exists and was not found yet, Algorithm 5.7 will be called again, this time

for Ha or for a deeper level and the process will be repeated until K be found in a

node.

Lemma 5.5.11. If a given key K does not exist in the hash trie, then it will be inserted

in the linearization points LP1 or LP4.

Proof. Since we are assuming that K does not exist in the hash trie, then the search

procedure will necessarily end when it finds an empty bucket entry (line 2 in Algo-

rithm 5.6) or when it reaches the last node in a chain of nodes not being remapped

(line 3 in Algorithm 5.7). If the CAS operation at line 6 for Algorithm 5.6 (LP1) or at

line 18 for Algorithm 5.7 (LP4) then succeeds, a new node with the key K was inserted

in the hash trie. Otherwise, in case of CAS failure, the separate chaining at hand was

changed by another thread T in the meantime. In particular, it could happen that T

had inserted a node for K. The search process is then resumed and if K was inserted

by another thread then, using Lemmas 5.5.9 and 5.5.10, Algorithm 5.7 will find it.

Otherwise, the search process will end again in the lines mentioned above until K be

successfully inserted in the hash trie.

Corollary 5.5.3. Progress exists in every search and insert key operation because:

• Corollary 5.5.2 shows that progress always exists in every linearization point even

if a particular thread T does not progress another thread has made progress.

• Lemma 5.5.9, Lemma 5.5.10 and Lemma 5.5.11, shows that progress always

exists in every search and insert operation because:

– if T executes a search and insert operation with a given key K then, the

thread finds K if it exists in the data structure (T progresses).

– otherwise, if K does not exist, then T inserts it in the data structure (T

progresses because the configuration of the data structure changes).
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– in both cases, T might also expand the hash and in that cases, T changes

the configuration of the data structure and consequently T progresses.

Theorem 5.5.2. The LF2 proposal is lock-free.

5.5.4 Private Consumer Chaining

In this subsection, we describe how we have used the data structures of LF2 proposal

to improve the performance of the FS design when dealing with the chain of nodes

representing tabled answers. We named this procedure Private Consumer Chaining

(PCC). The key idea is similar to the idea proposed by Costa and Rocha [31] for the

global trie data structure, where the answers are represented only once on a global

trie and then each subgoal call has private pointers to its set of answers. With the

PCC procedure we apply the same key idea of representing only once each answer (as

given by the FS design), but now since we are in a multithreaded environment, we use

a private chain of answers per thread to represent the answers for each subgoal call.

As we have shown in the previous chapters, the FS design minimizes memory usage.

On the other hand, it showed overheads in the execution time mainly due to the

synchronization that it needs whenever one thread is updating an AT data structure

and other threads are also updating/accessing the same answer trie data structure.

Throughout a deeper study we have identified that most of the FS overheads are

caused by the consumer chaining in the answer trie data structure. As explained in

Figure 2.13, the consumer chaining is used to chain the answers to be consumed by the

consumer nodes. This chaining procedure takes place whenever a new answer is found

for a call, and since it is done inside the AT, it requires synchronization at the write

level in multithreaded environments. The key idea of the PCC is then to improve the

behavior in the execution time of the FS design, by moving the chaining procedure

from public to private, i.e., we remove the chaining procedure from the answer trie

and we moved it to a private procedure that only affects the thread that is doing it.

At the end, when the evaluation is complete, i.e, when a subgoal call is marked as

complete, we put one of the private chains as public, so that from that point on all

threads can use that chain in complete (only reading) mode.

Figure 5.14 shows the key data structures for supporting the implementation of the

PCC procedure during the evaluation of a tabled subgoal call Pi.j using the FS design.

The FS design uses a subgoal entry data structure to store common information for

a subgoal call and a subgoal frame (SF) data structure to store private information
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about the execution of each thread. The PCC procedure works at the subgoal frame

level, since its aim is to avoid the sharing problems described above.

Subgoal Entry call P

Consumer

. . .T0 T1 Tk-2 Tk-1

i.j

Subgoal
Frame
call P

i.j

Subgoal
Frame
call P

i.j
AT
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Figure 5.14: The FS design with the PCC optimization - (a) private chaining and (b)

public chaining

Figure 5.14(a) shows then a situation where two threads, T1 and Tk−1, are sharing

the same subgoal entry call Pi.j when the subgoal is still under evaluation, i.e., the

subgoal is not yet complete. The current state of the evaluation shows an answer trie
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(AT) with 3 answers found for the subgoal call Pi.j. For the sake of simplicity, we are

omitting the internal AT nodes and we are only showing the leaf nodes on the AT data

structure, nodes LN1, LN2 and LN3, in the figure. With the PCC optimization, the

leaf nodes are no longer chained in the AT data structure. Now, the chaining process

is done privately, and for that, we use the SF structure of each thread. On the SF

structure we added a new field, called consumer, to store the answers found within the

execution of the thread. In order to minimize the impact of the PCC optimization,

each node within the new consumer answer structure has two fields: (i) an entry

pointer, which points to the corresponding leaf node in the AT data structure; (ii) a

next pointer to chain the answers within the consumer structure. To maintain a good

performance, when the number of nodes exceeds a certain threshold, we use a hash

trie mechanism design similar to the LF2 proposal. However, since this mechanism

is private to each thread, it did not requires any of the tools that were necessary to

support lock-freedom. In particular, on each hash trie level, we have removed the

previous pointer from the hashes and from the nodes within the separate chaining

mechanism and, for writing, we not use the CAS operation. We have chosen the LF2

proposal instead of the LF1, because the LF2 proposal showed better balance between

lookup and insert operations [10, 11, 14], but the major reason was mostly because of

the integration in the TabMalloc memory allocator.

Going back to Figure 5.14(a), the consumer answer structures represent then two

different situations where threads can be evaluating a subgoal call. Thread T1 has

only found one answer and it is using a direct consumer answer chaining to access the

node LN1. Thread Tk−1 was already found three answers for the subgoal call and it

is already using the hash trie mechanism within its consumer answer structure. The

consumer nodes are chained between themselves, thus that consumer nodes belonging

to thread Tk−1 can consume the answers as in the original mechanism.

Figure 5.14(b) shows the state of the subgoal call after completion (recall that after

completion of a subgoal call, the threads use loader nodes to consume the answers).

When a thread T completes a subgoal call, it frees its private consumer structures,

but before doing that, it checks whether another thread as already marked the subgoal

as completed. If no other thread has done that, then thread T not only follows its

private chaining mechanism as it would for freeing its private nodes, but also, follows

the pointers to the answer trie leaf nodes in order to reproduce the chain inside the

answer trie. Since this procedure is done inside a critical region, no more than one

thread can be doing this chaining process. Thus, in Figure 5.14(b), we are showing

a situation where the subgoal call is completed and both threads T1 and Tk−1 have
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already removed their consumer answer structures and chained the leaf nodes inside

the answer trie.

5.6 Performance Analysis on Worst Case Scenarios

In this section, we analyze the performance of the LF1 and LF2 proposals, when

applied to the SS design and the FS design used solely and combined with the PCC

optimization, and compare them against the best lock-based strategy presented in

the previous chapters, which has the one using global locks. For benchmarking, we

used the same set of tabling benchmarks presented in the previous chapters. Again,

since these benchmarks have characteristics that cover a wide number of scenarios in

terms of trie usage, they have different demands in terms of trie traversing and create

different trie configurations with lower and higher number of nodes and depths. Since

all threads are executing the same query goal, it is expected that the aforementioned

problems of false sharing and cache memory effects to show up and thus penalize the

less robust designs.

Table 5.1 shows the overhead ratios (minimum, maximum and average) of the five

sets of benchmarks, using the combination of TabMalloc with the TcMalloc memory

allocators, which showed to be the best combination in the previous chapter, when

comparing against the NS design with one thread. The columns of the table are

divided by designs, the first set of three columns represent the SS design, the second

set of three columns represent the FS design and the third set represent the FS design

using the PCC optimization. For each set, the first column represents the design

using global locks (SSG and FSG), the second and third columns represent the usage

of the first (SSLF1 and FSLF1) and the second (SSLF2 and FSLF2), lock-free proposals,

respectively. For both proposals, we have experimented with several configurations of

sizes for the initial hash tables and the threshold values. Table 5.1 shows the overhead

ratios for the configurations that showed the best results, which were the following:

For the LF1 proposal, both the initial number of bucket entries of the hash table and

the MAX NODES constant have the same value which is 8. For the LF2 proposal,

each hash trie level has 8 bucket entries and the MAX NODES constant is 4. As

described in the previous sections, the hash tries of the LF2 proposal are integrated

in the TabMalloc memory allocator. The values in bold, represent the best overhead

ratios by row and by design. For example, the minimum overhead ratio obtained for

one thread was: 0.54 for the SS design, 0.85 for the FS design and 1.01 for the FS

design combined with PCC.
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Table 5.1: Overhead ratios, when compared with the NS design with 1 thread, for

the SS, FS and FS + PCC designs using global locks and the LF1 and the LF2

proposals, when running 1, 8, 16, 24 and 32 threads with local scheduling on the

five sets of benchmarks (best ratios by row and by design for the Minimum, Average

and Maximum are in bold)

Threads
SS FS FS + PCC

SSG SSLF1 SSLF2 FSG FSLF1 FSLF2 FSG FSLF1 FSLF2

1

Min 0.54 0.54 0.54 0.85 0.96 0.85 1.03 1.02 1.01

Avg 0.84 0.84 0.84 0.99 1.07 1.06 1.28 1.32 1.30

Max 1.03 1.05 1.04 1.10 1.17 1.16 1.71 1.71 1.76

StD 0.17 0.17 0.17 0.08 0.05 0.08 0.22 0.25 0.22

8

Min 0.66 0.68 0.66 1.09 1.04 0.99 0.99 1.15 1.16

Avg 0.99 0.91 0.92 2.46 2.36 2.30 2.55 2.29 1.88

Max 1.36 1.05 1.20 4.48 4.55 4.54 4.96 4.54 2.82

StD 0.22 0.14 0.15 1.08 1.17 1.13 1.24 1.11 0.60

16

Min 0.81 0.82 0.82 1.14 1.12 1.11 1.01 1.14 1.17

Avg 1.13 1.02 1.04 2.89 2.59 2.50 2.88 2.69 1.97

Max 1.50 1.14 1.31 5.67 5.19 4.88 5.84 6.07 3.14

StD 0.21 0.08 0.12 1.40 1.33 1.22 1.48 1.62 0.65

24

Min 1.02 1.02 1.02 1.23 1.07 1.07 1.28 1.15 1.16

Avg 1.34 1.20 1.22 3.15 2.79 2.71 3.11 2.84 2.06

Max 1.77 1.72 1.81 6.34 5.90 5.65 6.45 6.89 3.49

StD 0.23 0.16 0.18 1.58 1.50 1.41 1.62 1.74 0.70

32

Min 1.07 1.08 1.07 1.37 1.31 1.28 1.40 1.33 1.33

Avg 1.71 1.55 1.54 3.51 3.12 3.03 3.46 3.07 2.24

Max 2.61 2.53 2.52 7.47 6.81 6.54 7.23 7.47 3.71

StD 0.45 0.43 0.42 1.85 1.72 1.63 1.80 1.85 0.74

Analyzing the results for the SS design, one can observe that both LF1 and LF2

proposals have similar results for one thread when comparing with the global locks

approach, but as we scale the number of threads up to 32 threads, the best average

ratios are found for both lock-free proposals. In particular, for 32 threads the best

overheads (minimum, maximum and average) are found for the LF2 proposal. Having a

closer look into the benchmark characteristics (please refer to Table 3.1), we observed

during experimentation that on the WordNet set of benchmarks, the LF2 proposal

clearly outperforms the remaining strategies on the SS design (on the remaining
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benchmark sets it is still better, however the difference is not that clear). This is

explained by the fact that on the WordNet set of benchmarks, the ratio of time that

the threads spend in ST data structures is actually higher than on the remaining sets,

thus the impact of the LF2 proposal becomes more visible when compared with the

global locks and the LF1 proposals.

For the FS design used solo, the best proposal is again LF2, which as we scale the

number of threads, improves its difference against the other two proposals. For 32

threads, the average overhead of the LF2 proposal is 3.03, which is a good result when

compared with the 3.51 overhead of the global locks and the 3.12 overhead of the LF1

proposal. By using the LF2 proposal, we are removing part of the synchronization

overhead from inside the AT data structure, but the weight in terms of overhead that

the chaining mechanism introduces, still restrains the performance of the LF2 proposal

when combined with the FS design.

Finally, we discuss the results of the FS design combined with the PCC optimization.

In this strategy, the results of the LF2 proposal become more visible as we scale the

number of threads. For 32 threads, the LF2 has an average overhead of 2.24 which is

by far better than 3.46 and 3.07 of the global locks and LF1, respectively. However,

we would like to draw the reader’s attention to the worst results obtained, which are

the ones represented by the maximum rows. For 32 threads, the LF2 has 3.71, which

is an outstanding result, when comparing with the 7.23 and 7.47 of the global locks

and LF1, respectively.

In conclusion, the design that showed the best behavior from all combinations was

the SS design with the LF2 proposal. For the FS design, we have highly improved

the overhead ratios, using the PCC strategy with the LF2 hash trie design. Foremost,

we have shown that for 32 threads, on the worst case, we had an overhead of 3.71,

which we consider to be an considerable result, if we consider the fact that on the first

approach of the FS design, shown in the Table 3.2, we had an initial overhead of 12.32.

5.7 Performance Analysis in a External Framework

For the LF2 proposal, we have also compared it against some of the best-known

currently available implementations of lock-free hash tables [10, 14], and for that

we used a publicly available framework6 developed to evaluate lock-free hash tables.

6Available at https://github.com/axel22/Ctries



5.7. PERFORMANCE ANALYSIS IN A EXTERNAL FRAMEWORK 169

Using the Oracle’s JDK version 1.7.0 25, we tested the following implementations: two

CTries [94] proposals (CT1 is the original approach and CT2 is a second proposal with

improved snapshots); and the CHM and CSL (both implemented by Doug Lea) from

the Java’s concurrency package [70]. In CHM, the keys are mapped by any order and

the hashes re-size (expand and contract) according with the number of keys in the data

structure. The execution time to perform search and insert operations is expected to

be constant whatever the size of the map (may vary with the hash re-sizing operation).

In the CSL, the keys are mapped by a order (for example, if keys are integers, they may

be mapped according with their natural order), thus the execution time to perform

search and insert operations is expected to be not constant, once they depend on the

number of keys in the data structures. Both CHM and CSL allow parallel search access

by multiple threads without any blocking and for the insert operation, they block only

a portion of the data structure during the insertion of new keys.

For the experiments, we used two benchmarks already available in the framework,

Insert(N) and Lookup(N) for a numeric data-set with N = 107 different elements.

The Insert(N) benchmark starts with an empty set and inserts the N elements.

The Lookup(N) benchmark does N searches on a previously created data structure

containing the same N elements. For both benchmarks, the work of inserting/searching

the N elements is equally divided between the working threads. In addition, we created

a new benchmark, named Worst(N), for testing a worst case scenario where all threads

fully insert the same N elements (we used a numeric data-set with N = 2 ∗ 106

different elements). By doing this, it is expected that all threads will access the same

data structures, to search/insert for elements, at similar times, thus stressing the

synchronization on common memory locations, which can increase the aforementioned

problems of false sharing and cache memory effects. We experimented with intervals

of 8 threads up to 32 threads (the number of cores in the machine) and all results are

the average of 10 runs for each benchmark.

Table 5.2 shows the execution time, in milliseconds, and the speedup, compared against

the respective execution time with one thread, for the five proposals when running the

Insert(N) and Lookup(N) benchmarks.

For the Insert(N) benchmark, LF2 has the best results for the execution time, showing

a significant difference to all other proposals. On average, LF2 is around three times

faster than the second best proposal, which is CT2. Regarding the speedup, CT2

competes with LF2 for the best results, but for most cases, LF2 still gets the best

speedup. The top speedups for LF2 are 10.76 and 11.00 for 16 and 32 threads. For

CT2, the top speedup is 9.96 for 32 working threads.
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Table 5.2: Execution time, in milliseconds, and speedup, against the execution time

with one thread, for the Insert(N) and Lookup(N) benchmarks using Java’s standard

library JDK version 1.7.0 25, when running 1, 8, 16, 24 and 32 threads with LF2, CT1,

CT2, CSL and CHM proposals (best ratios by row and by execution time and speedup

are in bold)

Thrs Time (TP (w)) Speedup (TP (1)/TP (w))

(w) LF2 CT1 CT2 CSL CHM LF2 CT1 CT2 CSL CHM

Insert(N) Benchmark

1 3,057 7,231 9,613 4,701 4,983 1.00 1.00 1.00 1.00 1.00

4 976 2,836 3,017 3,198 3,314 3.13 2.55 3.19 1.47 1.50

8 582 1,693 1,726 2,552 2,654 5.25 4.27 5.57 1.84 1.88

16 284 1,453 1,441 2,339 2,815 10.76 4.98 6.67 2.01 1.77

24 466 1,521 1,072 2,088 3,031 6.56 4.75 8.97 2.25 1.64

32 278 1,285 965 1,910 3,340 11.00 5.63 9.96 2.46 1.49

Lookup(N) Benchmark

1 6,175 6,856 6,905 6,046 1,898 1.00 1.00 1.00 1.00 1.00

4 1,581 1,834 1,806 1,572 540 3.91 3.74 3.82 3.85 3.51

8 845 924 942 735 283 7.31 7.42 7.33 8.23 6.71

16 445 515 524 346 151 13.88 13.31 13.18 17.47 12.57

24 327 479 431 512 119 18.88 14.31 16.02 11.81 15.95

32 335 492 469 302 123 18.43 13.93 14.72 20.02 15.43

For the Lookup(N) benchmark, CHM achieves the best results for the execution time

followed by CSL and LF2 as third placed. When the work is split among multiple

threads, LF2 is up to 1.5 times faster than CT1 and CT2. For the speedup, CSL and

LF2 show the best results. The top speedup for both proposals is achieved for 32

threads with a 20.02 value for CSL and 18.43 for LF2.

Table 5.3 shows the execution time, in milliseconds, and the speedup, compared against

the respective execution time with one thread, for the five proposals when running the

Worst(N) benchmark.

For the Worst(N), we are interested in evaluating the robustness of the implemen-

tations when exposed to worst case scenarios. As it is expected that the execution

time with multiple threads will result in worst results when compared with the base

execution time with one thread, we thus show the overhead (not the speedup) for

comparing the execution with increasing number of threads (values close to 1.00 are

thus better). For the execution time, LF2 shows again the best results with CT2 being
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Table 5.3: Execution time, in milliseconds, and speedup, against the execution time

with one thread, for the Worst(N) benchmark using Java’s standard library JDK

version 1.7.0 25, when running 1, 8, 16, 24 and 32 threads with LF2, CT1, CT2, CSL

and CHM proposals (best ratios by row and by execution time and overhead are in

bold)

Thrs Time (TP (w)) Overhead (TP (w)/TP (1))

(w) LF2 CT1 CT2 CSL CHM LF2 CT1 CT2 CSL CHM

1 495 987 1,442 818 827 1.00 1.00 1.00 1.00 1.00

4 1,579 2,840 1,720 3,786 2,388 3.19 2.88 1.19 4.63 2.89

8 2,019 2,971 2,667 7,698 3,395 4.08 3.01 1.85 9.41 4.11

16 2,346 3,276 2,518 8,018 7,936 4.74 3.32 1.75 9.80 9.60

24 2,502 3,802 3,223 8,304 12,864 5.05 3.85 2.24 10.15 15.56

32 2,730 4,111 3,181 8,620 16,420 5.52 4.17 2.21 10.54 19.85

very close. For the overhead, CT2 and CT1 are better than LF2 mostly because the

base execution times with one thread are significantly higher than LF2 (495, 987 and

1, 442 milliseconds, respectively, for the LF2, CT1 and CT2 proposals). The CSL and

CHM proposals show a poor performance for this benchmark. In particular, CHM has

the worst results with an overhead almost linear to the number of working threads.

In summary, these experiments show that the LF2 proposal clearly outperforms all the

other proposals for the execution times and that, in general, it also achieves the best

results for the speedup/overhead in most experiments.

5.8 Chapter Summary

This chapter introduced several key concepts about the LF1 and the LF2 proposals

which are lock-free data structures. We presented the algorithms, the formalization

of the proposals and the PCC optimization for the FS proposal. At the end of the

chapter, we discussed the performance analysis of the proposals.

Both lock-free data structure proposals were implemented in the YapTab-Mt frame-

work. Our main motivation for the creation of the proposals was to refine the previous

lock-based proposals in order to be as effective as possible in the concurrent search and

insert operations over the trie structures of the table space. We discussed the relevant

details of each proposal, described the main algorithms and proved the correctness of

both. We based our discussion on the YapTab-Mt framework, but both proposals can
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be applied to general purpose applications, such as word counting, compilers, language

run-times and some components of game development, that only require search and

insert operations on their hash mapping mechanisms.

For the LF2 proposal, a key decision was the combination of hash tries with the use

of a separate chaining closed by the last node referencing back the hash level for the

node. This allowed us to implement a clean proposal to solve hash collisions by simply

moving nodes between the levels. In this proposal, updates and expansions of the

hash levels are never done by using data structure replacements (i.e., create a new one

to replace the old one), which also avoids the need for memory recovery mechanisms.

Another key proposal decision that minimizes the bottlenecks leading to false sharing

or cache memory effects, is the insertion of nodes done at the end of the separate chain.

This allows for dispersing the memory locations being updated concurrently as much as

possible and, more importantly, reduces the updates for the memory locations accessed

more frequently, like the bucket entries for the hash levels. A final motivation was the

complete integration of hashes and nodes within the TabMalloc memory allocator,

thus that we could minimize the cost of having multiple and simultaneous memory

allocation requests.

Experimental results obtained in a external framework (i.e., not within YapTab-Mt)

showed that this proposal can effectively reduce the execution time and scales better

than some of the best-known currently available lock-free hashing implementations.

In the context of YapTab-Mt framework, our proposal clearly achieved the best results

for the overhead ratios. In particular, for worst case scenarios, our proposal clearly

outperformed the previous proposals with superb overheads in some cases.



Chapter 6

Batched Scheduling

In this chapter we discuss the problem of supporting multithreaded batched schedul-

ing and we present a performance analysis comparing local scheduling with batched

scheduling.

Local and batched evaluations differ in that batched evaluation eagerly returns answers

while local evaluation may not return any answers out of an SCC until that SCC is

completely evaluated. Thus, batched scheduling schedules the evaluation of a program

in a depth-first manner as does the WAM, favoring the forward execution first instead

of backtracking, leaving the consumption of answers and completion for last. Thus,

the key idea is to return an answer for a subgoal call to the GN that called the subgoal

call as soon as the answer is derived.

6.1 Implementation Details

At the implementation level, the major difference between local and batched scheduling

is in the tabling operation tabled new answer, where we decide what to do when

an answer is found during the evaluation. This operation checks whether a newly

found answer is already in the corresponding answer trie structure and, if not, inserts

it. Remember that in Chapter 3, we showed how to extend the tabled new answer

operation to support multithreading (Algorithm 3.2). For the NS and SS designs the

support for batched scheduling was immediate, since the AT data structure is not

shared among threads, but for the FS design we have omitted how to handle batched

scheduling. The usage of local scheduling with the FS design was straightforward,

because for repeated and new answers, local scheduling always fails. The usage of
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batched scheduling with the FS design requires further support since with batched

scheduling, answers are immediately propagated and we have to ensure that the

propagation of an answer occurs on all subgoal calls one and only once. To do so,

we take advantage of the PCC procedure, presented in Section 5.5.4, as a way to

keep, for every subgoal call of every thread, track of all the answers that were already

propagated. This requires minor changes to the tabled new answer tabling operation.

Algorithm 6.1 shows how we have extended the tabled new answer operation to support

the FS design with batched scheduling.

Algorithm 6.1 tabled new answer(answer ANS, subgoal frame SF)

1: leaf ← check insert answer trie(ANS, SF )

2: if NS design or SS design then

3: ... . same as Algorithm 3.2

4: else . FS design

5: chain← check insert consumer chain(leaf, SF )

6: if is answer marked as found(chain) = True then

7: return failure

8: else . the answer is new

9: mark answer as found(chain)

10: if local scheduling mode(SF ) then

11: return failure

12: else . batched scheduling mode

13: return proceed

The algorithm receives two arguments: the new answer found during the evaluation

(ANS ) and the subgoal frame which corresponds to the call at hand (SF ). The

NS design, SS design and FS design macros define which table design is enabled.

The algorithm begins by checking/inserting the given ANS into the answer trie struc-

ture, which will return the leaf node for the path representing ANS (line 1). In line 2,

it then tests whether one of the NS or SS designs are active, and in such a case, the

algorithm is the same as Algorithm 3.2.

Otherwise, for the FS design (lines 4 to 13), it checks/inserts the given leaf node into

the private consumer chain for the current thread, which will return the corresponding

chain node. In line 6, it then tests whether the chain node already existed in the

consumer chain, i.e., if it was inserted or not by the current check/insert operation in

order to return failure (line 7), or it proceed with marking the answer ANS has found

(line 9). At the end (lines 10 to 13), it returns failure if local scheduling is active (line
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11), otherwise, the batched scheduling is active, thus it propagates the answer ANS

(line 13).

6.2 Performance Analysis on Worst Case Scenarios

We now present experimental results about the usage of the batched scheduling on the

NS, SS and FS designs. For the sake of simplicity, for the SS and FS designs, we will

be presenting only the results for the lock free LF2 proposal (SSLF2 and FSLF2), since

they were the ones that presented the lowest overheads in the previous chapters. For

the FSLF2 design, we will use it with the PCC procedure enabled.

Concerning the benchmarks, we will be using the same five sets of benchmarks pre-

sented before with the same number of runs per benchmark, the same formula to

calculate the overhead ratios, and the same worst case scenario approach, where

all threads begin with the same query goal. To put the results in perspective, we

experimented with 1, 8, 16, 24 and 32 threads (the maximum number of cores available

in our machine) with batched and local scheduling.

Table 6.1 shows the overhead ratios, when compared with the NS design with 1 thread

(running with local scheduling, PtMalloc and without TabMalloc), for the NS, SSLF2

and FSLF2+PCC designs (all running with TabMalloc and TcMalloc), when running

1, 8, 16, 24 and 32 threads with local and batched scheduling on the five sets of

benchmarks. For each design, the table has then two columns, a column Local that

shows results already presented in previous chapters for the local scheduling and a

column Batched that shows the new results with batched scheduling. The overhead

results presented in both Local and Batched columns use as base time the execution

times presented in the NS column of the Table 3.1.

By observing Table 6.1, we can see that, for one thread, on average, local scheduling

is sightly better than batched on the three designs. For the NS design, we have 0.78

and 0.82, for the SSLF2 design we have 0.84 and 0.90 and for the FSLF2+PCC design

we have 1.30 and 1.46 average overhead ratios, for the local and batched scheduling

strategies, respectively.

As we scale the number of threads, one can observe that, for the NS and SSLF2 designs

both scheduling strategies have similar minimum, average and maximum overhead

ratios. For the FSLF2+PCC design, the best minimum overhead ratio is always for

batched scheduling. During experimentation we observed that the minimum overhead
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Table 6.1: Overhead ratios, when compared with the NS design with 1 thread (running

with local scheduling, PtMalloc and without TabMalloc) for the NS, SSLF2 , FSLF2+PCC

designs (with TabMalloc and TcMalloc), when running 1, 8, 16, 24 and 32 threads

with local and batched scheduling on the five sets of benchmarks (best ratios by row

and by design for the Minimum, Average and Maximum are in bold)

Threads
NS SSLF2 FSLF2+PCC

Local Batched Local Batched Local Batched

1

Min 0.53 0.55 0.54 0.55 1.01 0.95

Avg 0.78 0.82 0.84 0.90 1.30 1.46

Max 1.06 1.05 1.04 1.04 1.76 2.33

StD 0.15 0.14 0.17 0.16 0.22 0.44

8

Min 0.66 0.63 0.66 0.63 1.16 0.99

Avg 0.85 0.88 0.92 0.93 1.88 1.95

Max 1.12 1.14 1.20 1.15 2.82 3.49

StD 0.13 0.14 0.15 0.14 0.60 0.79

16

Min 0.85 0.75 0.82 0.77 1.17 1.06

Avg 0.98 1.00 1.04 1.05 1.97 2.08

Max 1.16 1.31 1.31 1.28 3.14 3.69

StD 0.09 0.17 0.12 0.13 0.65 0.83

24

Min 0.91 0.93 1.02 0.98 1.16 1.09

Avg 1.15 1.16 1.22 1.19 2.06 2.19

Max 1.72 1.60 1.81 1.61 3.49 4.08

StD 0.20 0.21 0.18 0.16 0.70 0.91

32

Min 1.05 1.04 1.07 1.12 1.33 1.26

Avg 1.51 1.49 1.54 1.51 2.24 2.41

Max 2.52 2.63 2.52 2.62 3.71 4.51

StD 0.45 0.45 0.42 0.43 0.74 1.02

values for 8, 16, 24 and 32 threads were given by the benchmark belonging to the

model checking set (see Table 3.1 for the characteristics of the benchmarks). For the

average and maximum overhead ratio, local scheduling is always better than batched

scheduling. During experimentation we observed also that the maximum overhead

values for 8, 16, 24 and 32 threads were given by the pyramid benchmark in the path

right set.

In summary, we can say that both the local and batched scheduling strategies have

similar overhead results on worst case scenarios for the NS, SSLF2 and FSLF2+PCC
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designs.

6.3 Chapter Summary

So far we have observed that both scheduling strategies have similar results for worst

case scenarios, even though that local scheduling showed to be on average slightly

better that batched scheduling for the NS, SS and FS designs. In the next chapter,

we will be discussing answer subsumption and mode-directed tabling features. Pre-

vious works [42, 125] showed that local is the best scheduling strategy for answer

subsumption, because it restricts all operations to a maximal SCC. This property

implies that no non-maximal answer will be used outside of the SCC in which it

was derived. For this reason, the use of local evaluation can be critical for efficient

answer subsumption. A good theoretical example was given by Freire in the work [42],

where answer subsumption is used to find the shortest paths in a graph G. When

local evaluation is used, the complexity of evaluation is proportional to the number

of edges in G. When batched evaluation is used, the complexity of the evaluation is

proportional to the number of paths in G, which is exponential in the number of edges

of G. This example was used later by Swift and Warren in their work about answer

subsumption [125].

In a different work, Santos and Rocha compared local and batched evaluations using

mode-directed tabled predicates on several benchmarks and showed that, on aver-

age, batched evaluation is around 31% worse than local evaluation for the execution

time [116]. Additionally, they observed that batched evaluation allocated/deleted

more trie nodes and inserted/deleted more tabled answers than local evaluation. In

particular, batched evaluation got worse as more answers were inserted into the table

space.

Accordingly, based on our results and on these previous works, in the next chapter

we will continue to use local scheduling as our default scheduling strategy for multi-

threaded tabled evaluations.
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Chapter 7

Subgoal-Sharing with Shared

Answers

In this chapter, we focus on two well-known dynamic programming problems, the 0-1

Knapsack and Longest Common Subsequence (LCS) problems, and we discuss how

we were able to scale their execution by taking advantage of the SS design. For each

problem, we present a multithreaded tabled top-down and bottom-up approach. For

the top-down approach, we use YapTab’s mode-directed tabling support [116] that

allows to aggregate answers by specifying pre-defined modes such as min or max. For

the bottom-up approach, we use YapTab’s standard tabling support.

7.1 Dynamic Programming

Dynamic programming [17] is a general recursive strategy that consists in dividing a

problem in simpler sub-problems that, often, are the same. The idea behind dynamic

programming is to reduce the number of computations: once an answer to a given

sub-problem has been computed, it is memorized and the next time the same answer

is needed, it is simply looked up. Dynamic programming is especially useful when the

number of overlapping sub-problems grows exponentially as a function of the size of the

input, such as problems where functional equations can provide a mechanism to obtain

optimal solutions to sub-problems. Dynamic programming problems, may be classified

in terms of the functional equation. A functional equation that contains a single

recursive term yields a monadic dynamic programming formulation. Formulations

whose cost functions contains multiple recursive terms are called polyadic formulations.

179
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Formulations can also be categorized as serial, if the sub-problems at all levels depend

only on the results at the immediate preceding levels, or non-serial if the sub-problems

at all levels depend on the results of other than the immediately preceding levels [67].

Dynamic programming can be implemented using either a bottom-up or a top-down ap-

proach. In bottom-up, it starts from the base sub-problems and recursively computes

the next level sub-problems until reaching the answer to the given problem. On the

other hand, the top-down approach starts from the given problem and uses recursion to

subdivide a problem into sub-problems until reaching the base sub-problems. Answers

to previously computed sub-problems are reused rather than being recomputed. An

advantage of the top-down approach is that it might not need to compute all possible

sub-problems.

Most of the proposals that can be found in the literature to parallelize dynamic

programming problems follow the parallelization of a sequential bottom-up algorithm.

All these proposals are usually based on a careful analysis of the sequential algorithm

in order to find the best way to minimize the data dependencies in the supporting data

structure for memorization, often a matrix or an array, resulting in a parallelization

that requires a synchronization mechanism before recursively computing the next

level sub-problems. Alternatively, a generic proposal to parallelize top-down dynamic

programming algorithms is Stivala et al.’s work [121], where a set of threads solve the

entire dynamic program independently but with a randomized choice of sub-problems,

i.e., each thread runs exactly the same function, but the randomization choice of sub-

problems results in the threads diverging to compute different sub-problems while

reusing the sub-problem’s results computed in the meantime by the other threads.

7.2 Subgoal-Sharing with Shared Answers

In this chapter, we introduce our improved approach of the SS design, where threads

view their tables as private but are able to use the answers of a sub-problem, if another

thread has already computed them. The idea is as follows. Whenever a thread calls a

new tabled subgoal, first it searches the table space to lookup if any other thread has

already computed the full set of answers for that call. If so, then the thread reuses the

available answers. Otherwise, it computes the subgoal call itself in a private fashion.

Several threads can work on the same subgoal simultaneously, i.e., we do not protect

a subgoal from further evaluation while other threads have picked it up already. The

first thread completing a computation, shares the results by making them available
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(public) to the other threads.

Furthermore, we aim to improve the memory usage of the SS design by removing

the BAE data structure. The decision of removing the bucket array is a direct

consequence of the memory analysis made in Equation 3.3 where we have shown that

the performance of the SS design is directly affected by the size of the memory used in

the bucket array of entries. Thus, in problems with a considerable amount of subgoal

calls, the time and memory used in the allocation bucket arrays can have a significant

impact in the performance of the SS design. Thus, assuming that NT threads have

evaluated a predicate Pi, then the memory usage analysis of the SS design with answer

sharing support is given by the following Equation 7.1:

MUSS(Pi) =

TESS + STSS(Pi) +

NC(Pi)∑
j=1

[NT1 ∗ [SFSS + ATSS(Pi.j)]]

cond.



TESS = TEY T

STSS(Pi) = STY T (Pi)

NT1 ≤ NT

SFSS = SFY T

ATSS(Pi.j) = ATY T (Pi.j)

(7.1)

The memory usage is given by the sum of the size of table entry structure (TESS) with

the size of the subgoal trie structure (STSS(Pi)) plus the summatory of the memory

used in the multiplication of NT1 threads by subgoal frame (SFNS) and answer trie

(ATNS(Pi)) data structures in the NC subgoal calls of the predicate Pi (NC(Pi)).

Concerning the conditions that describe the size of the structures, Equation 7.1 shows

that all structures in the SS design have the same size as the ones used in YapTab,

and that NT1 is always lower or equal to NT , since the NT1 value is the number of

threads that have completely evaluated the subgoal calls of Pi in a private fashion.

The NT1 value will be clarified later when we present this new approach.

In more detail, when comparing both equations of the SS design, one can observe that

Equation 7.1 is always lower (or equal if NT = NT1) than Equation 3.3 due to the

condition NT ≤ NT1. Additionally, we have optimized even further this design, and

allow threads to delete their private AT data structures at the end of the evaluation of

a call. So, in practice at the end of the execution of the NT threads, the Equation 7.1

will be even lower than Equation 3.3, since the memory used in the AT data structures
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will be not multiplied by NT .

Figure 7.1 illustrates the table data structures for the SS design with shared answers for

a predicate Pi. As before, threads access the subgoal trie structures, for both read and

write operations concurrently, but for the answer trie structures, only after completion

they are concurrently accessed for reading (black data structures in Figure 7.1).

Subgoal Trie Structure

COMPLETE

Subgoal
Frame
call P

Answer
Trie

Structure

. . .

i.j

Thread T

Subgoal
Frame
call P

Answer
Trie

Structure

i.j

Thread T

Subgoal
Frame
call P

Answer
Trie

Structure

i.j

. . .

Table Entry
P
i

1 kCompleteThread T
1 1

Thread T
k

Figure 7.1: The key idea for the SS design with shared answers

All subgoal frames and answer tries are initially private to a thread. Thus, if k threads

are evaluating a subgoal call Pi.j, each thread has its own subgoal frame and answer

trie structures. Later, when the first subgoal frame is completed, i.e., when we have

found the full set of answers for it, it is marked as completed and put in the beginning

of the list of private subgoal frames (configuration shown in Figure 7.1). Following

calls made by other threads to this subgoal call simply consume the answers from the

completed subgoal frame, thus avoiding recomputing the subgoal call at hand. By

sharing only completed answer tries, we avoid the problem of dealing with concurrent

updates to the answer tries, the problem of managing the different set of answers that

each thread has found and, more importantly, the problem of dealing with concurrent

deletes, as in the case of using mode-directed tabling.

Remember that mode directed tabled predicates require the deletion of nodes inside the
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answer tries, when answers are updated as better ones appear during the evaluation of

the call. Since the SS design keeps the answer tries private to each thread, the deletion

of nodes can be done without any complex machinery to deal with concurrent delete

operations. We use all these advantages at our favor and improve the efficiency of the

SS design by extending it to share the answer tries between the threads as soon as the

tables are completed, i.e., as soon as no more changes can occur in the answer trie of

the subgoal call.

7.2.1 Mode Directed Tabling

Mode-directed tabling is an extension to the tabling technique that supports the

definition of modes for specifying how answers are inserted into the table space. The

idea is to use the modes to define the arguments to be considered for variant checking

and to define how variant answers should be tabled regarding the remaining arguments.

Figure 7.2 shows the example for the tabled predicate p/3 represented in the previous

sections, using mode-directed tabling with modes (index, index, min). At the entry

point we have the TE data structure extended with a mode array. The mode array

stores information about the modes defined for the predicate’s arguments, which in

the example are index for the first and second arguments and maximum for the third

argument. Underneath the TE data structure, we have the ST data structure, that

stores the tokenized form of the calls p(1, X, Y ) and p(1, 2, 3), and call has it own SF

data structure.

With mode-directed tabling the SF data structure is extended with a substitution

array. The substitution array stores the mode information together with the number of

free variables associated with each argument within the subgoal call. In the example,

the call p(1, X, Y ) has 0 variables in the first argument, 1 variable in the second

argument and 1 variable in the third argument, while the p(1, 2, 3) does not have any

variables on its arguments. Finally, each SF has its own AT data structure, with

the answers for the subgoal call. For p(1, X, Y ), the answers shown are p(1, 1, 3) and

p(1, 1, 4), but now since the mode operator in the third argument is the maximum,

the answer p(1, 1, 3) is marked as invalid (black box), and thus the only valid answer

is p(1, 1, 4). For p(1, 2, 3), the AT data structure remains with the answer true.

Next, we describe how the call p(1, X, Y ) is represented in the SS design using mode-

directed support. To do so, we use Figure 7.3 with two threads T1 and Tk evaluating

the call p(1, X, Y ). The figure is divided in two types of data structures, the data

structures that belong to the table space and the local stack of thread T1 (for the sake
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Subgoal Frame
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Figure 7.2: Table space organization for mode-directed tabling

of simplicity, we are only showing the local stack of thread T1 since the local stack of

thread Tk is similar). As expected, the table space data structures have the ST data

structure shared among threads and the leaf node of the call p(1, X, Y ) refers to a

bucket array of entries. Each thread has its own cell inside the bucket array, which

refers to the private structures of each thread, which are the SF data structure with

the substitution array and the AT data structure.

For the local stack of thread T1, Figure 7.3 shows the generator node referring the

SF data structure, and the consumer node referring the AT data structure (remember

that generator nodes are allocated in the first call to a term, while consumer nodes are

allocated in follower calls). The allocation of both generator/consumer nodes is done

independently by both threads T1 and Tk, i.e., each thread allocates its own nodes

referring the private SF and AT data structures. This allocation is done regardless of

the fact that one of the threads might already have completely evaluated the subgoal

call. One can observe, that in the example, thread Tk has already marked as complete

the SF data structure and the AT data structure is in its final state (the invalid answer

p(1, 1, 3) has been already deleted from the data structure), but this information is
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Figure 7.3: The SS design with mode-directed tabling

not shared with thread T1.

7.2.2 Support for Shared Answers

In this section, we describe how we have extended the SS design, thus that it can sup-

port answer sharing for a subgoal call after it is completely evaluated. The description

has three steps. On the first step we show how we compacted the table space to be

more efficient in terms of memory usage. On the second step, we show how answers

from a thread must be public before they can be shared with other threads. On the

third step, we show how a thread publishes its answers as public and how efficient is

the access to the shared answers.

Figure 7.4 shows then the first step of changes that we have implemented in the SS

design. In this step, we allocate only once the substitution array and share it among
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threads, and next we remove the bucket array of entries between the ST and the SF

data structures.
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Figure 7.4: The first step for sharing answers in the SS design

For the substitution array, instead of allocating one of this structure by subgoal frame,

we allocate it only once and share it among all threads and their respective SF data

structures. The substitution array is then allocated when the first SF data structure is

allocated for a subgoal call, and the follower SF data structures for the same subgoal

call simply refer to it whenever they are allocated. Furthermore, since the initial

values in the substitution array data structure do not change during the evaluation

of a subgoal call, the data structure is used only for reading, thus no synchronized

mechanism is required when multiple threads access it.
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For the removal of the bucket array of entries, we included the information about the

thread identifier in the SF data structure and chained these structures. The downside

of this removal is the fact that we have now a linear search over the thread identifiers

whenever a thread is searching for its subgoal frame, if exists more than one thread

using the same subgoal call. In the future, we hope to implement a lock-free hashing

mechanism similar to the LF2 proposal to solve this issue, but for the moment the

reader should keep in mind that the user-defined scheduler must be efficient enough

to take advantage of the SS design with shared answers, otherwise if multiple threads

evaluate the same subgoal calls, the overall performance might end up in overheads

instead of speedups.

In the example shown in Figure 7.4 for the call p(1, X, Y ), the threads T1 and Tk are

sharing the same substitution array and both of their SF data structures are chained.

Thus, if the thread Tk wants to reach to its SF data structure, it has to traverse the

SF data structure of thread T1. Furthermore, the AT data structures of both threads

are similar and none of them is complete.

Next, on the second step, we show how answers from a thread can be shared with

other threads using Figure 7.5. The key idea of sharing answers among threads is to

allow the threads to use a AT data structure as soon as it is in its final state, i.e., as

soon as its SF data structure is marked as complete. For this idea to the true, every

generator and consumer node in the local stack of every thread must be able to access

the AT data structure which is being shared, regardless of the state of its own SF

data structure. An important remark is the fact that a SF data structure marked as

complete is not enough for allowing the remaining threads to begin consuming from

its AT data structure, since both data structures must be public before being used.

This is imperative, since by default, in the SS design both data structures are private

to each thread. We require that data structures must be made public before being

used, therefore ensuring the correctness of the implementation and avoid situations

where a thread is consuming answers from AT data structure which is being deleted

by an other thread.

Figure 7.5 shows then an example where the thread Tk as already completed the

evaluation of the call p(1, X, Y ). But, thread T1 is still using its own data structures,

thus both the generator and consumers nodes in the local stack are using its own SF

and AT data structures.

On the third and last step, we show how a thread publishes its answers as public. To do

so, we use Figure 7.6 which is a continuation of the previous example. The publishing
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Figure 7.5: The second step for sharing answers in the SS design

process is done with a simple CAS operation over the reference of leaf node in the ST

data structure (the VAR1 node in the example) that marks the head of the chain of

SF data structures. A successful CAS operation means that the SF becomes public,

otherwise it means that the SF remains private to the thread Tk. When the CAS

operation fails, it means that another thread has inserted a newly SF data structure

in the chain. So, thread Tk checks the state of the newly inserted SF. If the state is

complete, then SF is public and thread Tk finishes its publishing process. Otherwise,

the SF is private and thread Tk executes again the CAS operation over the leaf node.

The publishing process finishes when thread Tk finds a public SF or succeeds inserting

its own SF. Consequently, the search for a public SF data structure is only done on

the head of the chain.

In the example shown in Figure 7.6, we have the complete SF data structure already



7.2. SUBGOAL-SHARING WITH SHARED ANSWERS 189

Thread T

Subgoal Frame
 p(1,VAR0,VAR1)

COMPLETE

Subgoal Frame
 p(1,VAR0,VAR1)

1

VAR0

VAR1

Table Entry
 p/3

ST

Table Entry
 p(index,index,max)

Modes

index index max

Substitutions

0 1 1

Local Stack

Consumer Node
Call of

p(1,VAR0,VAR1)

Thread T1

1

4

AT

Local Stack

Consumer Node
Call of

p(1,VAR0,VAR1)

T

Consumer Node
Call of

p(1,VAR0,VAR1)

Thread T1Complete

T
Local Stack
Thread T2

Local Stack
Thread Tk

Figure 7.6: The third step for sharing answers in the SS design

public and the threads T1, T2 and Tk already using it in their consumer nodes 1. The

allocation of these consumer nodes have two major advantages: The first advantage is

the fact that all answers become available sooner for all threads. The second advantage

is that these consumer nodes are not in the process of subgoal call completion check,

since when they were allocated the SF was already complete. For the sake of simplicity,

we will not be discussing the completion check process, but the reader can keep the

idea that the process is simpler with a low number of consumer nodes than with a

higher number of consumer nodes. The intuitive notion is that the completion process

requires that all consumer nodes to have consumed all answers in the AT data structure

and when this is not the case, the evaluation is resumed in those consumer nodes.

1The values of NT and NT1 in Equation 7.1 would be 3 and 2, respectively, since three threads

used the subgoal call, but only two have evaluated the subgoal call in a private fashion. Additionally,

to optimize the memory usage, we allowed thread T1 to delete its private AT data structure.
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Note that in Figure 7.6, thread T1 is still alive and the SF data structure is still in

the chain of the subgoal call, but the AT data structure was already deallocated.

The deallocation of structures, in the original SS design, occurred only when a thread

existed. With the shared answers support, the deallocation of structures is sightly

different, since the SF and AT data structures might be allocated as private and later

passed to public. Furthermore, since all threads can traverse the chain of subgoal

frames, with the shared answers support, this type of structure is actually always

public. Thus, upon the completion procedure of its own SF, thread T1 proceeds as

follows. It begins by the publishing procedure, but it finds other public SF and AT

data structures. Hence, thread T1 deallocates its AT data structure, but keeps SF in

the chain to be deallocated later by the last living thread in the environment, which

is always the main thread. At the end of the execution, the main thread proceeds as

in the original SS design and deallocates all public data structures.

7.3 0-1 Knapsack Problem

The Knapsack problem [78] is a well-known problem in combinatorial optimization

that can be found in many domains such as logistics, manufacturing, finance or

telecommunications. Given a set of items, each with a weight and a profit, the goal

is to determine the number of items of each kind to include in a collection so that

the total weight is equal or less than a given capacity and the total profit is as much

as possible. The most common variant of the problem is the 0-1 Knapsack problem,

which restricts the number of copies of each kind of item to be zero or one. In what

follows, we will focus on this variant. The 0-1 Knapsack problem can be described by

the following formulation:

KS =


max

N∑
i=1

pi.xi,

N∑
i=1

wi.xi ≤ C, xi ∈ {0, 1}.

KSR =


∀i∈{1,...,N}, wi ≤ C,
N∑
i=1

wi > C.

Given a set of items i ∈ {1, ..., N}, each with a weight wi ∈ N∗ and a profit pi ∈ N∗,
and a Knapsack with capacity C ∈ N∗, the formula KS defines the Knapsack problem,

which is the maximum value obtained for the summatory of profits of the items in the

Knapsack not exceeding the capacity C. The formula KSR defines the restriction that

avoids any trivial solution, by insuring that each item fits into the Knapsack and that

the total weight of all items exceeds the Knapsack capacity.
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7.3.1 Top-Down Approach

In a standard top-down approach that solves the 0-1 Knapsack problem, an item i is

excluded from or included in the knapsack whether it does not belong or belongs to

the best solution of the problem. Figure 7.7 shows the evaluation tree of a Knapsack

with N items and a capacity C. As expected, the tree is the binary combination of

excluding and/or including the N items.
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Figure 7.7: Knapsack top-down evaluation tree

In the black box of Figure 7.7 we have the top query call KS[N,C], and from that

point the evaluation traverses all items from the Nth item to the first item. The

evaluation stores two temporary values, the capacity c and the profit p, which store

the capacity available in the knapsack and the corresponding accumulated profit. In

each level of the tree, an item i can be excluded or included in the Knapsack. When

the condition c− wi ≥ 0 is false then the item can only be excluded. When the item

i is included, the capacity c is updated with the value c− wi , the profit p is updated

with the value p + pi and the evaluation passes to the next level, i.e., passes to the

item j = i− 1 in the figure. Finally, whenever the evaluation reaches the last level of

the tree, the maximum value in p stores the best solution of the Knapsack.

Now the reader can observe that some of the sub-trees under the Exci and Inci nodes

are equal, which means that the capacity and profits can be shared by both sub-trees,

and to do so we will be using tabling. Next we introduce a standard top-down approach

that solves the Knapsack problem using mode-directed tabling. Figure 7.8 shows our

Yap’s implementation adapted from [49] to include the profitability dimension.

The table directive declares that predicate ks with arity 3 (or ks/3 for short) is to be

tabled using modes (index, index,max), meaning that the third argument (the profit)
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% t a b l i n g d e c l a r a t i o n

:− table ks ( index , index , max ) .

% base case

ks (0 , C, 0 ) .

% e x c l u d e case

ks ( I , C, P) :−
I > 0 , k s exc ( I , C, P, 1 ) .

% i n c l u d e case

ks ( I , C, P) :−
I > 0 , k s i n c ( I , C, P, 1 ) .

% e x c l u d e N items s t a r t i n g from I

ks exc ( I , C, P, N) :−
J i s I − N, ks (J , C, P) .

% i n c l u d e I and

% e x c l u d e the next N−1 i tems

k s i n c ( I , C, P, N) :−
item ( I , Ci , Pi ) , Cj i s C − Ci ,

Cj >= 0 , J i s I − N,

ks (J , Cj , Pj ) , P i s Pi + Pj .

Figure 7.8: A top-down approach for the Knapsack problem with mode-directed

tabling

should store only the maximal answers for the first two arguments (the index of the

number of items being considered and Knapsack’s capacity). The remaining part of

the program implements a recursive top-down definition of the Knapsack problem.

The first clause is the base case and defines that the empty set is a solution with profit

0. The second clause excludes the current item from the solution set and the third

includes the current item in the solution if its inclusion does not overcome the current

capacity of the Knapsack. For simplicity of integration with the parallel approach

presented next, we are already using two auxiliary predicates, ks exc/4 and ks inc/4,

as a way to implement the exclude and include cases. These auxiliary predicates

take an extra argument N (fourth argument) that represents the number of items to

jump (or exclude) in the recursion procedure. Here, for the sequential version of the

problem, N is always 1, i.e, we always move to the next item.

To parallelize top-down dynamic programming algorithms, we followed Stivala et al.’s
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work [121] where a set of threads solve the entire program independently but with a

randomized choice of the sub-problems. Figure 7.9 shows a small example with two

threads T1 and T2. Threads begin in the top query call KS[N,C], but now on each

level of the evaluation tree, they use a random function to decided which branch will

be evaluated first (the exclude item branch or the include item branch). This random

decision is aimed to disperse the threads through the evaluation tree.
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Figure 7.9: Knapsack top-down parallel evaluation tree

Figure 7.9(a) shows a situation where the thread T1 is evaluating a left branch of

the tree, while the thread T2 is evaluating a right branch. Remember that although

the threads are evaluating the branches of the tree in a random order, they have to

evaluate all branches thus that they can find the optimal solution for the Knapsack.

So, the random decision is only about the evaluation order of the branches and not

about skipping branches. Figure 7.9(b) shows then a situation where thread T1 has

completely evaluated the Exci branches of the tree and is now evaluating the Inci
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branches. Since the threads are using dynamic programming, thread T1 computes the

branch Excj that was not yet evaluated and consumes the results that were already

evaluated for the branch Incj, which in this example was evaluated by thread T2.

We can thus consider two alternative execution choices at each step: (i) exclude first

and include next (as in the sequential version presented in Figure 7.8), or (ii) include

first and exclude next. The randomized choice of sub-problems results in the threads

diverging to compute different sub-problems simultaneously while reusing the sub-

problem’s results computed in the meantime by the other threads. Since the number

of overlapping sub-problem is usually high in these kind of problems, it is expected

that the available set of sub-problems to be computed will be evenly divided by the

number of available threads resulting in less computation time required to reach the

final result.

For the parallel version of the Knapsack problem, we have implemented two alternative

versions. The first version simply follows Stivala et al.’s original random approach.

The second version extends the first one with an extra step where the computation is

first moved forward using a random displacement of the number of items to be excluded

and only then the computation is performed for the next item, as usual. By doing

this, it is expected that the sub-problems closer to the base cases are computed earlier,

meaning that their subgoal frames are also marked as completed earlier, which avoids

recomputation when other threads call the same sub-problems. Figure 7.10 shows the

implementation. The difference between the two versions is that the first version does

not consider the first extra clause in the aux exc/4 and aux inc/4 auxiliary predicates.

7.3.2 Bottom-Up Approach

A straightforward method to solve the Knapsack problem bottom-up, for a fixed

capacity c, is to consider all 2N possible subsets of the N items and choose the one

that maximizes the profit. The recursive application of this algorithm to increasing

capacities c ∈ {1, ..., C}, yields a Knapsack of maximum profit for the given capacity

C [66]. The bottom-up characteristic comes from the fact that, given a Knapsack with

capacity c and using i items, i < N , the decision to include the next item j, j = i+ 1,

leads to two situations: (i) if j is not included, the Knapsack profit is unchanged;

(ii) if j is included, the profit is the result of the maximum profit of the Knapsack

with the same i items but with capacity c − wj (the capacity needed to include the

weight wj of item j) increased by pj (the profit of the item j being included). The

algorithm then decides whether or not to include an item based on which choice
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% t a b l i n g d e c l a r a t i o n

:− table ks ( index , index , max ) .

% base case

ks (0 , C, 0 ) .

% random cho ice

ks ( I , C, P) :−
I > 0 , random (2 , maxRandom, N) ,

R i s N mod 2 ,

( R = = 0 −>
aux exc ( I , C, P, N)

;

aux inc ( I , C, P, N) ) .

% t r y e x c l u d e f i r s t and i n c l u d e next

% not in the f i r s t v e r s i o n

aux exc ( I , C, P, N) :− ks exc ( I , C, P, N) .

aux exc ( I , C, P, ) :− ks exc ( I , C, P, 1 ) .

aux exc ( I , C, P, ) :− k s i n c ( I , C, P, 1 ) .

% t r y i n c l u d e f i r s t and e x c l u d e next

% not in the f i r s t v e r s i o n

aux inc ( I , C, P, N) :− k s i n c ( I , C, P, N) .

aux inc ( I , C, P, ) :− k s i n c ( I , C, P, 1 ) .

aux inc ( I , C, P, ) :− ks exc ( I , C, P, 1 ) .

Figure 7.10: A top-down parallel version of the Knapsack problem with mode-directed

tabling

leads to maximum profit. Thus, the equation in the formulation of the Knapsack

problem is serial monadic [67], once all levels require solutions to sub-problems at

the immediate preceding level (serial) and the equation has a single recursive term

(monadic). Figure 7.11 shows the KS[N,C] matrix that represents the dependencies

in this approach. The rows define the items and the columns define the Knapsack

capacities. The first column and row are filled with zeros, which are the initial profit

for the Knapsack with no items or no capacity.

The sequential version of the algorithm can be constructed row by row or column

by column. The computation of each sub-problem KS[j, c] considers the maximum

profitability obtained between KS[j−1, c] and KS[j−1, c−wj−1]+pj. Thus, the black
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dots and the black cell within the evaluation matrix represents this dependency for the

maximum profitability of the black cell that depends on the cells that have the dots.

When all sub-problems are computed, KS[N,C] holds the best profitability for the full

problem. Figure 7.12 shows Yap’s implementation. For simplicity of presentation, we

are omitting the predicate that implements the main loop used to recursively traverse

the matrix and launch the computation for each sub-problem.

% t a b l i n g d e c l a r a t i o n

:− table ks /3 .

% base cases

ks (0 , C, 0 ) .

ks ( I , 0 , 0 ) .

% item I exceeds c a p a c i t y C

ks ( I , C, P) :−
I > 0 , item ( I , Ci , Pi ) , Ci > C,

J i s I − 1 , ks (J , C, P) .

% item I f i t s in c a p a c i t y C

ks ( I , C, P) :−
I > 0 , item ( I , Ci , Pi ) , Ci =< C,

Cj i s C − Ci , Cj >= 0 , J i s I − 1 ,

ks (J , Cj , Pj ) , P1 i s Pj + Pi ,

ks (J , C, P2 ) , max(P1 , P2 , P) .

Figure 7.12: A bottom-up approach for the Knapsack problem with standard tabling
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The table directive declares that predicate ks/3 is to be tabled using standard tabling.

Since here a sub-problem can be computed from the results of its sub-problems,

standard tabling is enough and there is no need for mode-directed tabling. The first

two clauses of ks/3 are the base cases and define that the Knapsacks with no items or

no capacity have profit 0. The third clause deals with the cases where an item’s weight

exceeds the Knapsack capacity and the fourth clause is the one that implements the

main case discussed above.

Filling cells in subsequent rows requires accessing two cells from the previous row: one

from the same column and one from the column offset by the weight of the current

item. Thus, computing a row i depends only on the sub-problems at row i − 1. A

possible parallelization is, for each row, to divide the computation of the C columns

between the available threads and then wait for all threads to complete in order to

synchronize before computing the next row. Figure 7.13 shows an example with two

threads T1 and T2, where the computation of the C columns within the evaluation

matrix was divided in smaller chunks and those chunks were evaluated in the threads.
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Figure 7.13: Knapsack bottom-up parallel matrix

Figure 7.13(b) shows a situation where the black cell in Figure 7.13(a) is evaluated by

the thread T1. To do so, it must have the values of the cell to which this cell depends.

Since the threads are using dynamic programming, thread T1 computes the cell that

was not yet evaluated and consumes the results of the cell that was already evaluated,

which in this example was evaluated by thread T2.

Here, since we want to take advantage of the built-in tabling mechanism, which

is implicit and cannot be controlled by the user, we want to avoid this kind of

synchronization between iterations. Hence, when a sub-problem in the previous row

was not computed yet (i.e., marked as completed in one of the subgoal frames for the

given call), instead of waiting for the corresponding result to be computed by another

thread, the current thread starts also its computation and for that it can recursively
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call many other sub-problems not computed yet. Despite this can lead to redundant

sub-computations, it avoids synchronization. In fact, as we will see, this strategy

showed to be very effective.

We next introduce our generic multithreaded scheduler used to load balancing the

access to a set of concurrent tasks. We assume that the number of tasks is known

before execution starts and that tasks are numbered incrementally starting at 1. For

the Knapsack problem, we will consider that the number of tasks is the number of

capacities c ∈ {1, ..., C} (alternatively, we could have considered the number of items

i ∈ {1, ..., N}). In a nutshell, the scheduler uses a user-level mutex to protect a

concurrent queue that stores the indices of the available tasks. In fact, since tasks

are numbered incrementally, the queue simply needs to store the index of the next

available task. When a thread gets access to the queue of tasks, it picks a chunk of

consecutive tasks and updates the queue’s stored index accordingly. Figure 7.14 shows

the Prolog code that implements the main execution loop of each thread.

% i n i t i a l i z e mutex

:− mutex create ( queueLock ) .

% i n i t i a l i z e queue

:− s e t v a l u e ( queueIndex , 0 ) .

% main e x e c u t i o n loop

do work ( NumberOfTasks , ChunkSize ) :−
mutex lock ( queueLock ) ,

g e t v a l u e ( queueIndex , Current ) ,

( Current = NumberOfTasks −>
% terminate e x e c u t i o n

mutex unlock ( queueLock )

;

F i r s t i s Current + 1 ,

Last i s Current + ChunkSize ,

s e t v a l u e ( queueIndex , Last ) ,

mutex unlock ( queueLock ) ,

compute tasks ( F i r s t , Last ) ,

% g e t more work

do work ( NumberOfTasks , ChunkSize )

) .

Figure 7.14: The generic execution loop of each thread for the bottom-up approach
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The top declarations initialize the queueLock mutex and the queueIndex queue.

The predicate do work/2 implements the main execution loop of each thread and is

recursively executed until no more tasks exist in the queue. It receives two arguments:

the total number of tasks in the problem (NumberOfTasks); and the chunk size to

be considered when retrieving tasks from the queue (ChunkSize). In each loop, a

thread starts by gaining access to the mutex and then it checks the queue. If the

queue is empty, case in which the test Current = NumberOfTasks succeeds2, the

mutex is released and the thread terminates execution. Otherwise, the thread picks

a new chunk of consecutive tasks and updates the queue’s stored index accordingly.

Variables First and Last define the lower and upper bounds of the chunk of tasks

obtained. The tasks are then evaluated using the compute tasks/2 predicate, which

calls the ks/3 predicate for the set of Knapsack sub-problems associated with the

task. After the compute tasks/2 finishes, the do work/2 predicate is called again to

get more tasks from the queue. The process repeats until no more tasks exist.

7.4 Longest Common Subsequence Problem

The problem of computing the length of the Longest Common Subsequence (LCS) is

representative of a class of dynamic programming algorithms for string comparison

that are based on getting a similarity degree. A good example is the sequence

alignment, which is a fundamental technique for biologists to investigate the similarity

between species. The problem can be described as follows: given a finite set of

symbols S and two sequences U = 〈u0, u1, ..., uN〉 and V = 〈v0, v1, ..., vM〉 such that

∀i∈0,...,N , ui ∈ S and ∀i∈0,...,M , vi ∈ S, we say that U has a common subsequence with

V of length k if there are indices i0, i1, ..., ik, j0, j1, ..., jk : 0 ≤ i0 < i1 < ... < ik ≤ N

and 0 ≤ j0 < j1 < ... < jk ≤M such that ∀l∈0,...,k, uil = vjl . The length k is considered

to be the longest common subsequence if it is maximal.

7.4.1 Top-Down Approach

In a standard top-down approach that solves the LCS problem, a symbol with an index

i is included or excluded from the longest common subsequence whether it belongs or

not belongs to the best solution of the problem. Figure 7.15 shows a level of the

2In order to avoid low-level details which are not relevant to this work, the reader can assume that

NumberOfTasks is a multiple of ChunkSize.
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evaluation tree of the problem with two sequences u and v, such that the size of the

sequence u is N and the size of the sequence v is M . The evaluation tree is then a

3-ary tree, which is the combination of changing the indices in the sequences u and v,

whether the symbols in the indices are equal or different in both sequences.

SeqU
[i-1,j]

Match
[i-1,j-1]

SeqV
[i,j-1]

Match
[i,j]

SeqU
[i,j]

SeqV
[i,j]

LCS
[N,M]

Figure 7.15: LCS top-down evaluation tree

In the black box of Figure 7.15 we have the top query call LCS[N,M ], and from that

point the evaluation traverses all symbols of both sequences u and v from the Nth

and Mth index to the last index, which is 0. The evaluation keeps one temporary

value, that stores the maximum accumulated length l. In each level of the tree, a

symbol with index i is included or excluded, whether the condition ui = vj matches

or not. When the condition is true (left-most sub-tree in the figure), both the index

in both sequences decreases in one passing to the next index i− 1 and j − 1, and the

l value is updated to l + 1. When the condition is false (middle and right branches

in the sub-tree), the evaluation decreases the index of only of the sequences, thus in

the middle branch the sequence u passes to the index i − 1, while the sequence v

remains unchanged. In the right branch, the sequence u remains unchanged, while the

sequence v passes to the index j − 1. Whenever the evaluation reaches the last level

of the tree, the maximum value in l stores the best solution of the problem.

We next introduce a standard top-down approach that solves the LCS problem using

mode-directed tabling. Figure 7.16 shows Yap’s implementation adapted from [49].

The first two clauses of lcs/3 are the base cases defining that for empty sequences the

LCS (third argument) is 0. The third clause deals with the cases where the current

symbols in both sequences match (arguments Iu and Iv represent, respectively, the

current indices in sequences U and V to be considered). The fourth and fifth clauses

represent the opposite case, where the symbols do not match, and each clause moves

one of the sequences to the next symbol (note that recursion is done in descending order
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% t a b l i n g d e c l a r a t i o n

:− table l c s ( index , index , max ) .

% base cases

l c s ( I , 0 , 0 ) .

l c s (0 , I , 0 ) .

% matched case

l c s ( Iu , Iv , L) :−
Iu > 0 , Iv > 0 , symbol u ( Iu , S ) ,

symbol v ( Iv , S ) , Ju i s Iu − 1 ,

Jv i s Iv − 1 , l c s ( Ju , Jv , Lj ) ,

L i s Lj + 1 .

% sequence U case

l c s ( Iu , Iv , L) :−
Iu > 0 , Iv > 0 ,

l c s u ( Iu , Iv , L , 1 ) .

% sequence V case

l c s ( Iu , Iv , L) :−
Iu > 0 , Iv > 0 ,

l c s v ( Iu , Iv , L , 1 ) .

% jump N symbols in sequence U

l c s u ( Iu , Iv , L , N) :−
symbol u ( Iu , Su ) , symbol v ( Iv , Sv ) ,

Su =\= Sv , Ju i s Iu − N,

l c s ( Ju , Iv , L ) .

% jump N symbols in sequence V

l c s v ( Iu , Iv , L , N) :−
symbol u ( Iu , Su ) , symbol v ( Iv , Sv ) ,

Su =\= Sv , Jv i s Iv − N,

l c s ( Iu , Jv , L ) .

Figure 7.16: A top-down approach for the LCS problem with mode-directed tabling

until reaching index 0). Again, for simplicity of integration with the parallel approach

presented next, we are already using two auxiliary predicates, lcs u/4 and lcs v/4, as

a way to implement the unmatched cases. As for the Knapsack problem, these two

auxiliary predicates take an extra argument N (fourth argument) that represents the

number of symbols to jump in the recursion procedure. For the sequential version of
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the problem, N is always 1, meaning that we always move to the next symbol.

Similarly to Knapsack’s problem, to parallelize the LCS sequential top-down approach,

we have implemented two alternative versions. The first version follows Stivala et al.’s

original random approach. The second version extends the first one with an extra

step where the computation is first moved forward using a random displacement of

the number of symbols to jump and only then the computation is performed for the

next symbol, as usual. The parallel evaluation tree of the LCS problem is similar to

the Knapsack problem, the difference is that it has three branches to jump on each

level instead of two. Figure 7.17 shows the implementation. The difference between

the two versions is that the first version does not consider the first extra clause in the

aux u/4 and aux v/4 auxiliary predicates.

7.4.2 Bottom-Up Approach

We now introduce our bottom-up approach to the LCS problem, which is based

on [66]. In a nutshell, the bottom-up characteristic comes from the fact that, the

maximum length of a common subsequence between two sequences u and v is: (i) if

the initial symbols of both sequences match, then they are part of the longest common

subsequence and the length of the longest common subsequence is the length of u and

v both without the initial symbols plus one; (ii) if the initial symbols do not match

then two situations arise: the longest common subsequence may be obtained from:

sequence u and sequence v without its initial symbol; or sequence v and sequence u

without its initial symbol. Since we want the longest subsequence, the maximum of

these two must be selected. The following equation formulates the LCS problem as

described above:

LCS[j, l] =

LCS[j − 1, l − 1] + 1, if uj = vl.

max {LCS[j, l − 1], LCS[j − 1, l]}, otherwise.

The formulation is non-serial monadic [67], once each problem depends on sub-problems

at the same or preceding level (non-serial) and the equation has a single recursive term

(monadic). Figure 7.18 shows the LCS matrix that represents the dependencies in this

approach. The rows define the indices to be considered in sequence u and the columns

define the indices in sequence v. The first column and the first row are filled with

zeros, meaning that for empty sequences the LCS is 0. The sequential version of the

algorithm can be constructed row by row or column by column, since the computation
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% t a b l i n g d e c l a r a t i o n

:− table l c s ( index , index , max ) .

% base cases

l c s ( I , 0 , 0 ) .

l c s (0 , I , 0 ) .

% matched case

l c s ( Iu , Iv , L) :−
Iu > 0 , Iv > 0 ,

symbol u ( Iu , S ) , symbol v ( Iv , S ) ,

Ju i s Iu − 1 , Jv i s Iv − 1 ,

l c s ( Ju , Jv , Lj ) , L i s Lj + 1 .

% random cho ice

l c s ( Iu , Iv , L) :−
Iu > 0 , Iv > 0 ,

random (2 , maxRandom, N) ,

R i s N mod 2 ,

( R = = 0 −>
aux u ( Iu , Iv , L , N)

;

aux v ( Iu , Iv , L , N) ) .

% t r y sequence U f i r s t and V next

% not in the f i r s t v e r s i o n

aux u ( Iu , Iv , L , N) :− l c s u ( Iu , Iv , L , N) .

aux u ( Iu , Iv , L , ) :− l c s u ( Iu , Iv , L , 1 ) .

aux u ( Iu , Iv , L , ) :− l c s v ( Iu , Iv , L , 1 ) .

% t r y sequence V f i r s t and U next

% not in the f i r s t v e r s i o n

aux v ( Iu , Iv , L , N) :− l c s v ( Iu , Iv , L , N) .

aux v ( Iu , Iv , L , ) :− l c s v ( Iu , Iv , L , 1 ) .

aux v ( Iu , Iv , L , ) :− l c s u ( Iu , Iv , L , 1 ) .

Figure 7.17: A top-down parallel version of the LCS problem with mode-directed

tabling

of each sub-problem LCS[j, l] only depends on the sub-computations done for the

preceding row and column. At the end, LCS[N,M ] holds the LCS for the problem.



204 CHAPTER 7. SUBGOAL-SHARING WITH SHARED ANSWERS

0

N

.

.

.

i

j

S
e
q
u
e
n
c
e
 
u

.

.

.
0

0

0

0

0

0 0 0 0 0 0

LCS
[N,M]

1

0 k l ... M...

Sequence v

Figure 7.18: LCS bottom-up matrix

Figure 7.19 shows Yap’s implementation. Again, for simplicity of presentation, we are

omitting the predicate that implements the main loop used to recursively traverse the

matrix and launch the computation for each sub-problem.

% t a b l i n g d e c l a r a t i o n

:− table l c s /3 .

% base cases

l c s ( I , 0 , 0 ) .

l c s (0 , I , 0 ) .

% matched case

l c s ( Iu , Iv , L) :−
Iu > 0 , Iv > 0 , symbol u ( Iu , S ) ,

symbol v ( Iv , S ) , Ju i s Iu − 1 ,

Jv i s Iv − 1 , l c s ( Ju , Jv , Lj ) ,

L i s Lj + 1 .

% unmatched case

l c s ( Iu , Iv , L) :−
Iu > 0 , Iv > 0 , symbol u ( Iu , Su ) ,

symbol v ( Iv , Sv ) , Su =\= Sv ,

Ju i s Iu − 1 , Jv i s Iv − 1 ,

l c s ( Ju , Iv , L1 ) , l c s ( Iu , Jv , L2 ) ,

max(L1 , L2 , L ) .

Figure 7.19: A bottom-up approach for the LCS problem with standard tabling

The table directive declares that predicate lcs/3 is to be tabled using standard tabling.
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The first two clauses of lcs/3 are the base cases and the third and fourth clauses deal

with the cases where the initial symbols of both sequences match and do not match,

respectively.

Concerning the parallelization of the matrix, a possible approach is, for each row,

divide the computation of the M columns between the available threads or, for each

column, divide the computation of the N rows between the available threads. Here,

we will follow the same approach as for the Knapsack problem and we will use the

generic multithreaded scheduler that implements the thread execution loop presented

in Figure 7.14. The number of concurrent tasks to be considered is the size of sequence

u (alternatively, we could have considered the size of sequence v) and the evaluation

of the compute tasks/2 predicate calls the lcs/3 predicate for the set of LCS sub-

problems associated with a given task.

7.5 Performance Evaluation

In this section, we evaluate the performance of the YapTab-Mt framework on both

problems using the multithreaded top-down and bottom-up approaches. To do so, we

used the SS design with support for shared answers3 together with the LF2 proposal

to support concurrency within the ST data structure, and the TabMalloc combined

with the TcMalloc as the memory allocator. To put our results in perspective, we also

experimented with XSB Prolog version 3.4.0, using the shared tables model.

For the Knapsack problem, we fixed the number of items and capacity, respectively,

1600 and 3200. For the LCS problem, we used both sequences with a fixed size of 3200

symbols each. Then, for each problem, we created three different datasets, D10, D30 and

D50, meaning that the values for the weights/profits for the Knapsack problem and the

symbols for LCS problem where randomly generated in an interval between 1 and 10%,

1 and 30% and, 1 and 50% of the total number of items/symbols, respectively. For the

top-down approaches, we only experimented with YAP since XSB does not support

mode-directed tabling. We tested YAP in both problems, without randomization

(YAPTD0), and with randomization using Stivala et al.’s original random version

(YAPTD1) and the extended version using the extra random displacement clause

(YAPTD2). For both Knapsack and LCS problems, in the randomized versions we

used a maxRandom value corresponding to 10% of the total number of items/symbols

3Note that without this support, the YapTab-Mt framework would have overhead results instead

of speedups, once every thread would be required to compute every answer for every subgoal call.
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in the problem. For the bottom-up approaches, we experimented with Yap (YAPBU)

and XSB (XSBBU) and we used a ChunkSize value of 5.

Table 7.1 and Table 7.2 show the average of 10 runs results obtained, respectively, for

the Knapsack and LCS problems for both top-down and bottom-up approaches using

the YAP and XSB Prolog systems. In particular, the columns of both tables show

the following information: (i) the first two columns show the system and the dataset

used; (ii) the third column shows the sequential execution time (Tseq). In Tseq, the

Prolog systems where compiled without multithreaded support and all multithreaded

instructions were removed from the Prolog code; (iii) the next five columns show the

execution time for one thread (column Time (T1)) and the corresponding speedup,

for the execution with 8, 16, 24 and 32 threads (columns Speedup (T1/Tp)); (iv)

The last column resumes the best execution time (Tbest) obtained from the previous

columns, where the results in bold highlight the best execution time (or speedup)

obtained for each system/dataset configuration.

Analyzing the general picture of both tables, one can observe that for both problems,

the speedup columns of the top-down YAPTD0 approach show not considered (n.c.)

results, because without randomization the approach is unable to scale because threads

would evaluate every subgoal call in the same order, thus causing a worst case scenario

similar to the ones presented in the previous chapters. When comparing the Tseq and

T1 results of YAPTD0 with YAPTD1 and YAPTD2 approaches, we can observe that the

randomized evaluation has an important cost. This can be explained by two situations,

one is the usage of random function itself and other if the fact that the Prolog code is

sightly more complex than without randomization. However, the top-down YAPTD2

and bottom-up YAPBU approaches have the best results with excellent speedups for

8, 16, 24 and 32 threads. In particular, for 32 threads, they obtain speedups around

21 and 20, respectively, for the Knapsack and LCS problems. The results for the

top-down YAPTD1 approach are not so interesting, regardless of the fact that it can

slightly scale for the Knapsack problem up to 16 threads.

Note that, despite the similar average speedups for the YAPTD2 and YAPBU , their

execution times are quite different. For example, consider the D50 dataset of the

Knapsack problem with 32 threads, while the speedup 20.62 of YAPTD2 corresponds

to an execution time of 1.233 seconds, the speedup 21.76 of YAPBU only corresponds

to 0.804 seconds. Similarly for the LCS problem, if considering the D50 dataset with

32 threads, while the speedup 19.58 of YAPTD2 corresponds to 2, 255 seconds, the

speedup 20.52 of the YAPBU only corresponds to 1, 406 seconds.
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Table 7.1: Execution time, in milliseconds, for one thread (sequential and multi-

threaded version) and corresponding speedup against one thread the multithreaded

version, for the execution with 8, 16, 24 and 32 threads, for the top-down and bottom-

up approaches of the Knapsack problem using the YAP and XSB Prolog systems

System/Dataset

Seq. # Threads (p) Best

Time Time (T1) Speedup (T1/Tp) Time

(Tseq) 1 8 16 24 32 (Tbest)

Top-Down Approaches

YAPTD0

D10 9,508 12,415 n.c. n.c. n.c. n.c. 9,508

D30 9,246 12,177 n.c. n.c. n.c. n.c. 9,246

D50 9,480 12,589 n.c. n.c. n.c. n.c. 9,480

YAPTD1

D10 14,330 19,316 1.96 2.12 2.04 1.95 9,115

D30 14,725 19,332 3.57 4.17 4.06 3.93 4,639

D50 14,729 18,857 4.74 6.28 6.44 6.41 2,930

YAPTD2

D10 19,667 24,444 6.78 12.35 15.44 18.19 1,344

D30 19,847 25,609 7.15 13.83 17.37 20.47 1,251

D50 19,985 25,429 7.27 13.70 17.35 20.62 1,233

Bottom-Up Approaches

YAPBU

D10 12,614 17,940 7.17 13.97 18.31 22.15 0,810

D30 12,364 17,856 7.23 13.78 18.26 21.94 0,814

D50 12,653 17,499 7.25 14.01 18.34 21.76 0,804

XSBBU

D10 32,297 38,965 0.87 0.66 0.62 0.55 32,297

D30 32,063 38,007 0.86 0.61 0.56 0.53 32,063

D50 31,893 38,534 0.84 0.58 0.57 0.57 31,893

Regarding the base execution times with one thread, YAPTD2 clearly pays the cost of

the extra clause with an average execution time around 1.3 to 1.5 times slower than

YAPTD1 and YAPBU . In this regard, comparing the execution time for one thread (T1)

with the execution time of the sequential Prolog engine (Tseq), i.e., without thread

support and without mutex in the Prolog code, we observed an average overhead

(T1/Tseq) around 1.3 to 1.4 times. For example, if we consider the D50 dataset of the

Knapsack problem, this means that the speedups to Tseq for the execution with 8,

16, 24 and 32 threads are, respectively, 5.71, 10.77, 13.63 and 16.21 for YAPTD2 and

5.25, 10.13, 13.26 and 15.74 for YAPBU . We thus argue that, even if we consider the

sequential Prolog engine as the base for comparison, our results still show excellent

speedups for the execution with 8, 16, 24 and 32 threads. The executions times in the
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Table 7.2: Execution time, in milliseconds, for one thread (sequential and multi-

threaded version) and corresponding speedup against one thread the multithreaded

version, for the execution with 8, 16, 24 and 32 threads, for the top-down and bottom-

up approaches of the LCS problem using the YAP and XSB Prolog systems

System/Dataset

Seq. # Threads (p) Best

Time Time (T1) Speedup (T1/Tp) Time

(Tseq) 1 8 16 24 32 (Tbest)

Top-Down Approaches

YAPTD0

D10 21,191 26,225 n.c. n.c. n.c. n.c. 21,191

D30 20,809 26,146 n.c. n.c. n.c. n.c. 20,809

D50 20,775 26,028 n.c. n.c. n.c. n.c. 20,775

YAPTD1

D10 26,030 33,969 1.58 1.53 1.50 1.42 21,509

D30 26,523 34,213 1.60 1.54 1.50 1.42 21,424

D50 26,545 34,234 1.60 1.54 1.51 1.40 21,408

YAPTD2

D10 34,565 44,371 7.23 13.23 16.45 19.74 2,248

D30 34,284 44,191 7.12 13.09 16.52 19.77 2,235

D50 33,989 44,158 7.06 13.30 16.49 19.58 2,255

Bottom-Up Approaches

YAPBU

D10 20,799 28,909 6.47 12.21 16.48 20.32 1,423

D30 21,174 28,904 6.94 12.61 16.63 20.40 1,417

D50 21,166 28,857 6.44 12.31 16.44 20.52 1,406

XSBBU

D10 60,983 74,108 n.a. n.a. n.a. n.a. 60,983

D30 59,496 74,410 n.a. n.a. n.a. n.a. 59,496

D50 59,700 74,628 n.a. n.a. n.a. n.a. 59,700

Tbest column confirm this idea, showing that YAPBU has the best execution times of

all systems in all datasets.

Regarding the comparison with XSB’s shared tables model, YapTap-Mt’s results clearly

outperform those of XSB. For the execution time with one thread, XSB shows higher

times than all Yap’s approaches (around two times the execution times for YAPTD1 and

YAPBU). For the parallel execution of the Knapsack problem, XSB shows no speedups

and for the parallel execution of the LCS problem we have no results available (n.a.)

since we got segmentation fault execution errors. From our point of view, XSB’s

results are a consequence of the usurpation operation [77] that restricts the potential

of concurrency to non-mutually dependent sub-computations. As the parallel versions

of the Knapsack and LCS problems create mutual dependent sub-computations, which
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can be executed in different threads, the XSB is actually unable to execute them in

a parallel fashion. By other works, even if we launch an arbitrary large number of

threads on those programs, the system would tend to use only one thread at the end

to evaluate most of the computations.

7.6 Non-Prolog Related Work

Our framework provides the ground technology for multithreaded dynamic program-

ming. From the user’s point of view, it can be enabled through the use of single

instructions of the form ‘:- table p/n’, meaning that common sub-computations for p/n

will be synchronized and shared between threads at the engine level, i.e., at the level

of the tables where the results for such sub-computations are stored. Nevertheless,

the user still needs to explicitly implement the thread management and scheduler

policy for task distribution, which is orthogonal to the focus of our work. In any case,

high-level predicates or libraries, like the generic multithreaded scheduler presented in

Figure 7.14, can be easily develop on top of our framework to accomplish such tasks.

To put our framework in perspective, we next briefly discuss and compare it with

others available outside Prolog’s world.

For functional programming languages, the Eden [75] and HDC [59] Haskell based

frameworks allow the users to express their programs using polymorphic higher-order

functions. Eden is a general-purpose parallel functional language suitable for devel-

oping sophisticated skeletons as well as for exploiting more irregular parallelism that

cannot be easily captured by a predefined skeleton. HDC stands for higher-order

divide-and-conquer and was originally developed for the parallelization of divide-

and-conquer recursions, but is also appropriate for programming skeletons of any

kind. Both frameworks showed the efficiency of these type of languages by presenting

relevant speedups in benchmarks such as the Karatsuba, the N-Queens and the parallel

computation of the Gröbner basis.

For object-oriented programming languages, the MALLBA [2] and DPSKEL [89]

frameworks also showed relevant speedups in the parallel evaluation of combinatorial

optimization benchmarks. MALLBA tackles the resolution of combinatorial optimiza-

tion problems using algorithmic skeletons implemented in C++. Several skeletons are

available, such as, divide-and-conquer, branch-and-bound, dynamic programming, hill

climbing, among many others. DPSKEL is a skeleton tool for dynamic programming

problems. In particular, DPSKEL used dynamic programming to solve the Knapsack
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and LCS problems in a shared memory architecture, where it obtained maximum

speedups of 6.63 and 8.15 for 8 threads, on the Knapsack benchmark with 1600 items

and a capacity of 3200 and the LCS benchmark with sequences 3000 items, respectively.

These speedups are in line with the speedups obtained with our approach.

Comparing our top-down results with Stivala et al.’s work [121], we can observe

comparable results for the Knapsack problem and slight worst results for the LCS

problem with YAPTD1 , but significant better results with YAPTD2 . For the Knapsack

problem, Stivala et al.’s presented results for speedups over the sequential time (time

without the multithreaded support, i.e., same Tseq presented in the Table 7.1) in 100

instances each of uncorrelated, weakly correlated, strongly correlated, inverse strongly

correlated and almost strongly correlated Knapsack problems, each with 500 items

and weights in the interval [1, 500]. The maximum speedups obtained were 8.31 with

31 threads on a UltraSPARC T1 architecture, 3.11 with 8 threads on a IBM PowerPC

- 8 cores architecture and 3.21 with 8 threads on a AMD Quad Core Opteron - 8 cores

architecture.

Comparing our bottom-up results, they are also quite relevant when compared with

similar approaches in the literature. For example, for the Knapsack problem, our

bottom-up YAPBU approach has similar speedups for 8 threads and better for 16

threads if compared with a multithreaded implementation using the classic and Morales

parallelization of the Knapsack problem [101]. The work used Intel Core 2 Duo - 2

cores and Intel Core 2 Quad - 4 cores architectures and the classic parallelization

used OpenMP, while the Morales used Pthreads. The Knapsack problem with ca-

pacity 10000 and 10000 items generated using the procedure described in [91]. The

maximum speedup obtained over the sequential execution was about 7.80 for the classic

parallelization and about 5.10 for the Morales parallelization, both of them obtained

for 8 threads. For the LCS problem, our bottom-up YAPBU approach shows similar

base execution times (with one thread) for sequences of identical sizes, but far better

speedups than parallel CUDA, OpenCL and OpenMP versions of the problem [36].

The work used Intel Core(TM) 2 Quad - 4 cores with Nvidia GT 430 - 96 cores

architecture, with parallelization based on [66] (same as our bottom-up approach). For

two sequences with fixed sizes of 4000 symbols, the best results were obtained using

CUDA with a speedup of about 13.80, while OpenCL and OpenMP had speedups of

about 10.20 and 3.20, respectively.
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7.7 Chapter Summary

Starting from two well-known dynamic programming problems, the Knapsack and the

Longest Common Subsequence problems, we have discussed how we were able to scale

their execution by taking advantage of the multithreaded tabling engine of the Yap

Prolog system. A key contribution of this work is our new asynchronous version of the

table space data structures, where threads view their tables as private but are able to

use the answers of a sub-problem, if another thread has already computed them.

We have presented multithreaded tabled top-down and bottom-up approaches using,

respectively, Yap’s mode-directed tabling support and Yap’s standard tabling support.

Our experiments, showed that using either top-down or bottom-up techniques, we were

able to scale the execution of both problems by taking advantage of the state-of-the-art

multithreaded tabling engine of the YapTab-Mt framework.
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Chapter 8

Concluding Remarks

In this final chapter, we summarize the main contributions of the thesis and we outline

some directions for the further work.

8.1 Main Contributions

The ultimate goal, of this thesis was to answer the question of either a Prolog sys-

tem with a tabling engine could or could not scale effectively the execution of logic

programming applications using tabling and multithreading. So far, the only system

that combined multithreading with tabling was XSB Prolog [125] but, from our point

of view, the results obtained by XSB Prolog were far from the potentialities of the

combination. We believe that this thesis contributes to support the idea the answer

that yes, we can be able to scale effectively the execution time of logic programming

applications using tabling and multithreading combined.

The starting point of our work was XSB’s approach for multithreaded tabling. We

have studied both XSB’s designs, private tables and shared tables, and understood

their limitations. In the private tables design, the threads simply do not share any

information, thus no scalability can be achieved with this design. In the shared tables

design, the XSB Prolog system uses an usurpation operation [77] that restricts the

potential of concurrency to non-mutually dependent sub-computations, since when a

set of subgoals computed by different threads is mutually dependent, then a usurpation

operation synchronizes threads and a single thread assumes the computation of all

subgoals, turning the remaining threads into consumer threads. Thus, in applications

that create mutual dependent sub-computations, XSB is actually unable to execute in

213
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a concurrent parallel fashion due to this operation. By other works, even if we launch

an arbitrary large number of threads on those programs, the system would tend to use

only one thread at the end to evaluate most of the sub-computations. Additionally,

we believe that the usurpation algorithm is also too costly, to be used with either local

and batched scheduling, because, during the execution, it has to keep track of the

dependent subgoals calls being called by different threads. For batched scheduling,

this can be potentially a bigger problem, since batched scheduling is known to create

higher subgoal call dependency than local scheduling.

Having both XSB designs in mind, we have defined two main goals for this thesis.

The first was to present alternative designs for concurrent tabling and to effectively

understand their advantages and limitations. The second goal was to implement

an efficient multithreaded tabling framework that could use both local and batched

scheduling and be used in multiple domains. Thus, the system had be as robust as

possible, meaning that it had to be capable of correctly evaluate an huge class of

problems written in Prolog.

To support our experiments we took advantage of a test suite engine that we had

previously created and we started adjusting it to support multithreaded tabling evalu-

ations. Actually, the engine has about 5 GBytes of data between several different

tests, benchmarks and their solutions/tables produced. The engine is capable of

comparing running time results and test the correctness of the program’s solutions and

tables obtained for either the Yap, XSB or B-Prolog systems. The test suite includes

sets of different path problem definitions and transition graphs, model checking tests

and basic tests to evaluate particular situations and programs obtained from the

OpenRuleBench project [73].

While adjusting the test suite engine, we started the journey of combining multithread-

ing with tabling. This journey took us to different domains in the parallel programming

paradigm, such as concurrent memory allocators, concurrent data structures and

top-down and bottom parallelization techniques applicable to dynamic programming

problems. We then summarize the main contributions of our work.

Novel concurrent table space designs. We have presented three novel designs for

concurrent table spaces and implemented them in the YapTab-Mt framework.

For each design we have shown also a detailed memory usage analysis. These

designs can be seen as alternative trade-offs between concurrency and memory

usage. The first design (No Sharing), avoids concurrency by allowing threads to

use all table space in a private fashion. In the second design (Subgoal Sharing),
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threads share part of the table space in a concurrent fashion, while in the third

design (Full Sharing), threads fully share the table space.

Lock-based concurrent table space designs. For the initial implementation of

the concurrent table space designs in YapTab-Mt, we used four types of locking

schemes to support the SS and FS designs: standard locks, try-locks, global locks

and global try-locks, and we have compared them against the NS design with 1

thread using worst case scenarios. To do so, we scaled in intervals of 8 threads

starting with 1 thread and ending with 32 threads. The best (minimum, average

and maximum) overhead ratios obtained on worst case scenarios with 32 threads

were, respectively:

• 1.33, 12.94 and 26.67 for the NS design;

• 1.18, 11.16 and 25.91 for the SS design;

• 1.34 (global locks and try-locks), 5.72 (try-locks) and 10.02 (global try-

locks) for the FS design.

The TabMalloc memory allocator. We have presented a novel, efficient and scal-

able memory allocator for multithreaded tabled evaluation of logic programs,

and combined it with four different state-of-the-art memory allocators, namely,

PtMalloc, Hoard, TcMalloc and JeMalloc. TabMalloc is based on local and

global pages, that splits memory among specific data structures and different

threads, together with a page based mechanism, where data structures of the

same type are pre-allocated within a page. Our experimental results showed

that we were successful in our goal of minimizing the performance degradation

that YapTab-Mt suffered, when exposed to simultaneous memory requests made

by multiple threads. The best (minimum, average and maximum) overhead

ratios obtained on worst case scenarios with 32 threads were, respectively:

• 1.05, 1.51 and 2.52 (all best ratios obtained with TabMalloc combined with

TcMalloc) for the NS design;

• 1.07, 1.71 and 2.61 (all best ratios obtained with TabMalloc combined with

TcMalloc) for the SS design;

• 1.34 (PtMalloc used solely), 3.51 (TabMalloc combined with TcMalloc) and

7.42 (TabMalloc combined with Hoard) for the FS design.

Novel proposals for lock-free tries. We have presented two proposals, named LF1

and LF2, for lock-free tries, specially aimed for environments that do not require

support for concurrent delete operations. The LF1 proposal implements dynamic
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resizing of the hash tables by doubling the size of the bucket entries in the

hash, whenever a threshold limit for hash collisions is reached. Since the size

of the hashes doubles, we could not efficiently integrate this proposal with

the TabMalloc memory allocator, which requires the usage of fix-sized data

structures and pages. The LF2 proposal is based on lock-free hash tries and

is aimed to be a simpler and more efficient lock-free proposal that disperses the

concurrent areas as much as possible in order to minimize problems such as false

sharing or cache memory ping-pong effects. Experimental results obtained with

a external framework (i.e., not within YapTab-Mt) showed that the LF2 proposal

could effectively reduce the execution time and scale better than some of the best-

known currently available lock-free hashing implementations. Within YapTab-

Mt, the best (minimum, average and maximum) overhead ratios obtained on the

worst case scenarios with 32 threads were, respectively:

• 1.07, 1.54 and 2.52 (all best ratios obtained with LF2 proposal) for the SS

design;

• 1.28, 3.03 and 6.54 (all best ratios obtained with LF2 proposal) for the FS

design.

Private consumer chaining. During the implementation of the FS design, we ob-

served a bottleneck in the procedure of chaining answers to be used by the

consumer nodes. To avoid this bottleneck, we moved the chaining procedure

from public to private, i.e., we removed the chaining procedure from the answer

tries and we moved it to a private chaining procedure that only affects the thread

that is doing it. Later, when a evaluation is complete, i.e, when a subgoal call

is marked as complete, we put one of the private chains as public, so that, from

that point on, all threads can use that chain in complete mode (only for reading).

Experimental results showed that by using a private consumer chaining process

we were able to improve significantly the behavior of the FS design. The best

(minimum, average and maximum) overhead ratios obtained on the worst case

scenarios with 32 threads were, respectively, 1.33, 2.24 and 3.71.

Batched scheduling. We have presented a performance analysis comparison be-

tween local and batched scheduling for the NS, SS and FS designs. Experimental

results showed that both local and batched scheduling perform similarly in worst

case scenarios, even though that local scheduling showed to be on average slightly

better that batched scheduling. For batched scheduling, the best (minimum,

average and maximum) overhead ratios obtained on the worst case scenarios

with 32 threads were, respectively:
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• 1.04, 1.49 and 2.63 for the NS design;

• 1.12, 1.51 and 2.62 for the SS design;

• 1.26, 2.41 and 4.51 for the FS design.

Sharing completed tables. Small extension to the SS design to support answer

sharing after a subgoal call is complete. A key contribution of this extension

is that threads view their tables as private but are able to use the answers of

a subgoal call, if another thread has already computed them. We showed how

to take advantage of this extension in two real world dynamic programming

problems using multithreaded tabled top-down and bottom-up approaches. Our

experiments, showed that using either top-down or bottom-up techniques, we

were able to scale the execution of both problems. We hope that in the future

this simple design could be adopted by other Prolog systems, such as the XSB

Prolog. The best speedups obtained for the YapTab-Mt, with 32 threads, for

the Knapsack and LCS problems were, respectively, 22.15 and 20.52.

The results obtained in YapTab-Mt throughout this thesis reinforced our belief that

multithreaded combined with tabling is a very good combination that can contribute

to expand the range of applications in Logic Programming.

8.2 Further Work

We hope that the work resulting from this thesis will be a basis to conduct further

improvements and further research in this area. YapTab-Mt has achieved our initial

goal. Even so, the system still has some limitations that may reduce its use elsewhere

and its contribution to general Prolog applications. Current limitations are mostly

related with issues not within the scope of the present work, but that are very

important for wider use throughout the logic programming community. We next

suggest some topics for future work:

Lock-free bucket array of entries. An alternative approach for the implementa-

tion of the bucket array of entries data structure presented in the Subsection 3.3.2

would be to apply the LF2 proposal. Applying the LF2 proposal would be

possible because no deletion operation is required in this data structure.

Extending FS design to support mode-directed tabling. This feature would al-

low the FS design to exploit the advantages of mode-directed tabling, such as the
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usage of modes to specify how the answers are inserted into the table space [116].

In the previous chapter we observed the advantages of combining the SS design

with mode-directed tabling. However, in the SS design, the answers of tables are

only shared among threads after they are completed. With FS design threads

would be able to share the answers sooner, once this design does not require

the completion of tables to share the answers. Thus, it would interesting to

analyze the performance results of the YapTab-Mt framework, when combining

the FS design with mode-directed tabling, using modes that prune the evaluation

space, such as min and max modes. Using these modes, we would expect that

the pruning effect of inserting an answer in a table by one thread, would be

propagated to all remaining threads, and this would be expected to improve the

overall performance of the YapTab-Mt framework.

Extending LF2 to support concurrent delete operations. This feature would

allow the LF2 proposal to be used in other domains and applications outside the

YapTab-Mt, such as dictionaries or set comparison. Inside the tabling world,

this extension could be applied in concurrent incremental tabling [113], where

specific subgoal calls and answers are deleted during the evaluation of tabled

logic programs.

Implicit parallelism. In the work [105], Rocha presented the OPTYap framework

exploits implicit or-parallelism from tabled logic programs by considering all

subgoals as being parallelizable (subgoals from tabled or non-tabled predicates).

Due to the good performance results obtained with OPTYap, one possible di-

rection for a further work, would be to combine YapTab-Mt with OPTYap and

allow the Yap system to support the simultaneous usage of implicit and explicit

parallelism. This would imply an extensive research about both systems and how

they could be integrated by taking advantage of the good features of both systems

and without penalizing the performance results obtained with each system.

XSB’s shared tables design. The key idea of sharing tables, as proposed by Mar-

ques et. al [76] for the XSB system, seems to be a good approach for par-

allelization of tabled logic programs. As we argued before, the problem with

sharing tables is the usurpation algorithm, which seems to be too complex and

restrains the potentialities of parallelization. During a period of this thesis we

have worked on a different approach for XSB’s sharing tables view. The key idea

was to evaluate a subgoal call in a thread and let other threads consume answers

of that subgoal call. We studied the possibility of using a call graph to keep

record of all subgoal calls in evaluation and the threads where they were being
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evaluated, and then use a termination algorithm that could allow the completion

of dependent subgoal calls, being evaluated in different threads. However, due

to lack, of time we were not able to implement this approach.

Concurrent linear tabling. Since the evaluation of programs with a linear tabling

engine is less complex than the evaluation with a suspension-based engine, it

should be interesting to study how different linear tabled strategies [5, 7, 9],

could run concurrently within such a model and take advantage of the different

linear tabling optimizations. Also, it should be interesting to compare those

results with the results already obtained in this work.

Concurrent negation. A wide range on problems that use tabling require the possi-

bility to manipulate negative subgoals. Extending our implementation with this

feature can be one major step forward to make it usable for a large community.

More experimentation. Explore the impact of applying our strategies to more

complex problems, seeking real-world experimental results allowing us to improve

and consolidate even further the current implementation.

8.3 Final Remark

The research in this thesis involved great motivation, dedication and pertinence.

However, there is still too much work that can be done and this thesis is only a

small step towards that direction. We end this thesis, by leaving the reader with the

answer to the Prolog query multithreaded tabling is(Quality, Reason) that resumes our

view about this topic:
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?− m u l t i t h r e a d e d t a b l i n g i s ( Quality , Reason ) .

Qual i ty = power fu l Reason = ’ Combines Prolog

with t a b l i n g

and concurrency . ’ ?

;

Qual i ty = e l egant Reason = ’At user l e v e l uses

the Prolog language . ’ ?

;

Qual i ty = complex Reason = ’At s t r u c t u r a l l e v e l uses

a complex combination o f

data s t r u c t u r e s . ’ ?

;

Qual i ty = c h a l l e n g i n g Reason = ’Many other f e a t u r e s can

s t i l l be implemented . ’
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