
On Improving the Efficiency of
Deterministic Calls and Answers in

Tabled Logic Programs

Miguel Areias and Ricardo Rocha
DCC-FC & CRACS

University of Porto, Portugal
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

EPIA 2009, Aveiro, Portugal, October 2009



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Tabling in Logic Programming

ä Tabling is an implementation technique where answers for subcomputations are
stored and then reused when a repeated computation appears.

© Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space.

© Variant calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

ä Tabling has proven to be particularly effective in logic (Prolog) programs:

© Avoids recomputation, thus reducing the search space.
© Avoids infinite loops, thus ensuring termination for a wider class of programs.

EPIA 2009, Aveiro, Portugal, October 2009 1



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocate a choice
point whenever a new tabled subgoal is called. This happens even when the call
is deterministic (i.e., defined by a single matching clause).



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocate a choice
point whenever a new tabled subgoal is called. This happens even when the call
is deterministic (i.e., defined by a single matching clause).

ä Moreover, when a deterministic answer is found for a tabled call, the call
can be completed early and the corresponding choice point can be removed.
However, most tabling engines do not do that and only complete later.



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocate a choice
point whenever a new tabled subgoal is called. This happens even when the call
is deterministic (i.e., defined by a single matching clause).

ä Moreover, when a deterministic answer is found for a tabled call, the call
can be completed early and the corresponding choice point can be removed.
However, most tabling engines do not do that and only complete later.

ä In this work, we propose two different solutions to reduce this memory and
execution overhead to a minimum.

© Reduce choice point’s size for deterministic tabled calls since some information
is never used.

© Complete and remove choice point when finding a deterministic answer for a
tabled call.



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocate a choice
point whenever a new tabled subgoal is called. This happens even when the call
is deterministic (i.e., defined by a single matching clause).

ä Moreover, when a deterministic answer is found for a tabled call, the call
can be completed early and the corresponding choice point can be removed.
However, most tabling engines do not do that and only complete later.

ä In this work, we propose two different solutions to reduce this memory and
execution overhead to a minimum.

© Reduce choice point’s size for deterministic tabled calls since some information
is never used.

© Complete and remove choice point when finding a deterministic answer for a
tabled call.

ä We will focus our discussion on a concrete implementation, the YapTab system,
but our proposal can be generalized and applied to other tabling engines.

EPIA 2009, Aveiro, Portugal, October 2009 2



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Compilation of Tabled Predicates in YapTab

ä Tabled predicates defined by several clauses are compiled using the ta-
ble try me, table retry me and table trust me WAM-like instructions in
a similar manner to the generic try me/retry me/trust me WAM sequence.

ä Tabled predicates defined by a single clause are compiled using the ta-
ble try single WAM-like instruction.

EPIA 2009, Aveiro, Portugal, October 2009 3



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Compilation of Tabled Predicates in YapTab

:- table t/1.
t(X) :- ...

% compiled code generated by YapTab for predicate t/1
t1_1: table_try_single t1_1a
t1_1a: ‘WAM code for clause t(X) :- ...’

ä As t/1 is a deterministic tabled predicate, the table try single instruction will
be executed for every call to this predicate.

EPIA 2009, Aveiro, Portugal, October 2009 4



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Compilation of Tabled Predicates in YapTab

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a3,b1,c2) :- ...

% compiled code generated by YapTab for predicate t/3
t3_1: table_try_me t3_2
t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2: table_retry_me t3_3
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3: table_retry_me t3_4
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4: table_trust_me
t3_4a: ‘WAM code for clause t(a3,b1,c2) :- ...’

EPIA 2009, Aveiro, Portugal, October 2009 5



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Compilation of Tabled Predicates in YapTab

ä t/3 is a non-deterministic tabled predicate, but some calls to this predicate can
be deterministic, i.e., defined by a single matching clause.

ä For example, the calls t(X,Y,c3) and t(a3,X,Y) are deterministic as they only
match with a single t/3 clause.

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a3,b1,c2) :- ...



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Compilation of Tabled Predicates in YapTab

ä t/3 is a non-deterministic tabled predicate, but some calls to this predicate can
be deterministic, i.e., defined by a single matching clause.

ä For example, the calls t(X,Y,c3) and t(a3,X,Y) are deterministic as they only
match with a single t/3 clause.

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a3,b1,c2) :- ...

ä For this kind of deterministic calls, YapTab uses the just-in-time indexing
mechanism of Yap to dynamically generate table try single instructions.

EPIA 2009, Aveiro, Portugal, October 2009 6



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Just-In-Time Indexing in YapTab

ä Tabled calls matching more than a single clause are dynamically indexed using
the table try, table retry and table trust WAM-like instructions in a similar
manner to the generic try/retry/trust WAM sequence.

% indexed code generated by YapTab for call t(X,b1,Y)
table_try t3_1a
table_retry t3_3a
table_trust t3_4a

t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4a: ‘WAM code for clause t(a3,b1,c2) :- ...’

EPIA 2009, Aveiro, Portugal, October 2009 7



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Just-In-Time Indexing in YapTab

ä Tabled calls matching a single clause are dynamically indexed using the ta-
ble try single instruction.

% indexed code generated by YapTab for call t(X,Y,c3)
table_try_single t3_3a
% indexed code generated by YapTab for call t(a3,X,Y)
table_try_single t3_4a

t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4a: ‘WAM code for clause t(a3,b1,c2) :- ...’

EPIA 2009, Aveiro, Portugal, October 2009 8



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Last Matching Clause

ä When evaluating a tabled predicate, the last matching clause of a call is
implemented by one of these instructions:

© table try single: when we have a deterministic predicate or a deterministic
call optimized by indexing code.

© table trust me: when we have a generic call to the predicate (all the
arguments of the call are unbound variables).

© table trust: when we have a more specific call optimized by indexing code
(some of the arguments are at least partially instantiated).



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Basics
Last Matching Clause

ä When evaluating a tabled predicate, the last matching clause of a call is
implemented by one of these instructions:

© table try single: when we have a deterministic predicate or a deterministic
call optimized by indexing code.

© table trust me: when we have a generic call to the predicate (all the
arguments of the call are unbound variables).

© table trust: when we have a more specific call optimized by indexing code
(some of the arguments are at least partially instantiated).

ä The computation state that we have when executing a table trust me or
table trust instruction is similar to that one of a table try single instruction,
that is, in both cases the current clause can be seen as deterministic as it is the
last (or single) matching clause for the call at hand.

ä Thus, we can view the table trust me and table trust instructions as a special
case of the table try single instruction and use the same approach to efficiently
deal with deterministic tabled calls.

EPIA 2009, Aveiro, Portugal, October 2009 9



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Deterministic Tabled Calls
Tabled Nodes

ä A tabled node is a WAM choice point
extended with some extra fields:

© The top section contains the usual
WAM fields needed to restore the
computation on backtracking plus
two extra fields.

© The middle section contains the
argument registers of the call.

© The bottom section contains the
substitution variables, i.e., the
set of free variables which exist in
the terms in the argument regi-
sters of the call.

cp_dep_fr

cp_sg_fr

Dependency frame

Subgoal frame

cp_ap

cp_tr

cp_h

cp_cp

Next unexploit alternative

Top of trail

Top of global stack

Success continuation PC

cp_env Current Environment

An Argument Register n

A1 Argument Register 1

.
.
.
.

.
.
.
.

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_b Failure continuation CP

EPIA 2009, Aveiro, Portugal, October 2009 10



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Deterministic Tabled Calls
Tabled Nodes

ä As the computation is never resumed
in a deterministic tabled node, we
can remove some fields.

© The cp cp, cp h, cp env and
cp dep fr fields.

© The argument registers.

cp_dep_fr

cp_sg_fr

Dependency frame

Subgoal frame

cp_ap

cp_tr

cp_h

cp_cp

Next unexploit alternative

Top of trail

Top of global stack

Success continuation PC

cp_env Current Environment

An Argument Register n

A1 Argument Register 1

.
.
.
.

.
.
.
.

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_b Failure continuation CP

EPIA 2009, Aveiro, Portugal, October 2009 11



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Deterministic Tabled Calls
Tabled Nodes

ä The remaining fields are still required
because:

© cp b is needed for failure conti-
nuation.

© cp ap and cp tr are needed when
backtracking to the node.

© cp sg fr is needed by the new
answer and completion operations.

© The substitution variables are
needed by the new answer ope-
ration.

cp_ap

cp_tr

Next unexploit alternative

Top of trail

Subgoal frame

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1
.
.
.
.

cp_sg_fr

cp_b Failure continuation CP

EPIA 2009, Aveiro, Portugal, October 2009 12



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Deterministic Tabled Calls
Tabled Nodes

ä Considering that A is the number of arguments registers and that S is the
number of substitution variables, the percentage of memory saved with the new
representation can be expressed as:

1− 4 + 1 + S

8 + A + 1 + S

ä This memory reduction increases when the number of argument registers is
bigger and the number of substitution variables is smaller.

EPIA 2009, Aveiro, Portugal, October 2009 13



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

ä During execution it is not always possible to conclude beforehand that no more
answers will be found for a particular tabled call.

ä This is a safe conclusion only when the tabled call is deterministic (i.e., the
clause being executed for the tabled call at hand is the last matching clause),
and the choice point for the tabled call is the topmost choice point (i.e., no
alternative paths exist for evaluating the tabled call at hand).

ä Again, we will generalize the idea of being deterministic and we will consider
that a tabled answer is deterministic when the answer is the last matching
answer for the corresponding tabled call.

EPIA 2009, Aveiro, Portugal, October 2009 14



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

X=a

:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

ä Is X=a a deterministic answer (last matching answer) ?



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

X=a

:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

ä Is X=a a deterministic answer (last matching answer) ?

© Not possible to know at this stage. As t(X) (table try clause) is not in
the last matching clause, new answers can still be found in the two remaining
clauses.

EPIA 2009, Aveiro, Portugal, October 2009 15



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

X=a

ä Is X=a a deterministic answer (last matching answer) ?



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

X=a

ä Is X=a a deterministic answer (last matching answer) ?

© Not possible to know at this stage. As t(X) (table retry clause) is not
in the last matching clause, new answers can still be found in the remaining
clause.

EPIA 2009, Aveiro, Portugal, October 2009 16



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

Choice Point Stack:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

t(X)

a(X) a(X)

X=a

ä Is X=a a deterministic answer (last matching answer) ?



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

Choice Point Stack:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

t(X)

a(X) a(X)

X=a

ä Is X=a a deterministic answer (last matching answer) ?

© Not possible to know at this stage. t(X) is not the top most choice point
on stack, new answers can still be found in the remaining clauses for a(X).

EPIA 2009, Aveiro, Portugal, October 2009 17



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

Choice Point Stack:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

t(X)

X=a

ä Is X=a a deterministic answer (last matching answer) ?



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Early Completion
Last Matching Answer

Choice Point Stack:-table t/1.

t(X):- ...
t(X):- ...
t(X):- ...,a(X),...

t(X)

t(X)

X=a

ä Is X=a a deterministic answer (last matching answer) ?

© Yes. t(X) is the top most choice point and it is executing the last matching
clause (table trust clause). Table for t(X) can be completed.

EPIA 2009, Aveiro, Portugal, October 2009 18



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Experimental Results

Args Subs
YapTab(a) YapTab+Det(b) (b)/(a)

Memory Time Memory Time Memory Time
5 4 18,751 224 11,719 160 0.62 0.71
5 2 17,188 216 10,157 148 0.59 0.69
5 0 15,626 216 8,594 152 0.55 0.70

11 10 28,126 332 16,407 240 0.58 0.72
11 5 24,219 256 12,501 268 0.52 1.05
11 0 20,313 232 8,594 184 0.42 0.79
17 16 37,501 444 21,094 340 0.56 0.77
17 8 31,251 436 14,844 300 0.47 0.69
17 0 25,001 312 8,594 236 0.34 0.76

Average 0.52 0.76

Memory usage in KBytes and running times in milliseconds for three deterministic
tabled predicates (with arities 5, 11 and 17) that call themselves recursively
100,000 times with three different sets of free variables in the arguments.

EPIA 2009, Aveiro, Portugal, October 2009 19



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Experimental Results

Program Size
YapTab(a) YapTab+Det(b) (b)/(a)

Memory Time Memory Time Memory Time

fib/2
1000 250 984 203 884 0.8120 0.8984
2000 375 2,880 305 2,804 0.8133 0.9736
4000 500 6,492 407 6,420 0.8140 0.9889

seq/3
500 45,914 792 39,079 448 0.8511 0.5657

1000 183,625 8,108 156,282 3,272 0.8511 0.4036
2000 734,438 135,580 718,813 117,483 0.9787 0.8665

fib t/2
1000 250 988 125 368 0.5000 0.3725
2000 375 3,040 188 1,268 0.5013 0.4171
4000 500 6,516 250 2,828 0.5000 0.4340

seq t/3
500 45,914 804 78 252 0.0017 0.3134

1000 183,625 8,844 157 952 0.0009 0.1076
2000 734,438 131,904 313 7,048 0.0004 0.0534

Memory usage in KBytes and running times in milliseconds for original and
transformed versions of Sequence Comparisons and Fibonacci problems.

EPIA 2009, Aveiro, Portugal, October 2009 20



On Improving the Efficiency of Deterministic Calls and Answers in Tabled Logic Programs Miguel Areias and Ricardo Rocha

Conclusions

ä We have presented a proposal for the efficient evaluation of deterministic tabled
calls and deterministic tabled answers.

ä Our preliminary results are quite promising as they suggest that, for certain
applications, it is possible not only to reduce the memory usage overhead but
also the running time of the evaluation.

ä Further work will include exploring the impact of applying our proposal to more
complex problems, seeking real-world experimental results allowing us to improve
and expand our current implementation.

EPIA 2009, Aveiro, Portugal, October 2009 21


