An Efficient Implementation of
Linear Tabling Based on

Dynamic Reordering of Alternatives

Miguel Areias and Ricardo Rocha
CRACS & INESC-Porto LA
Faculty of Sciences, University of Porto, Portugal
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

PADL 2010, Madrid, Spain, January 2010

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Tabling in Logic Programming

Tabling is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and
recursion.

Implementations of tabling are currently available in systems like XSB Prolog,
Yap Prolog, B-Prolog, ALS-Prolog, Mercury and more recently Ciao Prolog.

In these implementations, we can distinguish two main categories of tabling
mechanisms:

: can be seen as a sequence of sub-computations
that can be suspended and later resumed, when necessary, to compute fix-
points (XSB Prolog, Yap Prolog, Mercury and Ciao Prolog).

: can be seen as a single execution tree where tabled subgoals
use iterative computations, without requiring suspension and resumption, to
compute fix-points (B-Prolog and ALS-Prolog).

PADL 2010, Madrid, Spain, January 2010 1

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Linear Tabling

Arguably, the two most well-known linear tabling proposals are:

. repeated calls, the followers, execute
from the backtracking point of the former call. A follower is then repeatedly
re-executed, until all the available answers and clauses have been exhausted,
that is, until a fix-point is reached.

- tables not only the answers to tabled
subgoals, but also the alternatives leading to repeated calls, the looping
alternatives. It then uses the looping alternatives to repeatedly recompute
them until reaching a fix-point.

PADL 2010, Madrid, Spain, January 2010 2

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Motivation

Suspension-based mechanisms are considered to be more complicated to im-
plement but, on the other hand, they are considered to obtain better results.

However, to the best of our knowledge, no rigorous and fair comparison between
suspension-based and linear tabling was yet been done in order to better
understand the advantages and weaknesses of each mechanism.

The main reason for this is that no single Prolog system simultaneously
supports both mechanisms and thus, the available comparisons between both
mechanisms cannot be fully dissociated from the strengths and weaknesses of
the base Prolog systems on top of which they are implemented.

PADL 2010, Madrid, Spain, January 2010 3

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Our Proposal

» |n this work, we present a new and efficient implementation of linear tabling, but
for that we have extended an already existent suspension-based implementation,
the tabling engine of Yap Prolog.

» Qur linear tabling implementation is based on the DRA technique but it
innovates by considering a strategy that schedules the re-evaluation of tabled
calls in a similar manner to the suspension-based strategies of Yap.

DRA SLG WAM
(Li near) (Suspensi on- Based)

Tabl i ng Support

: Conpi | ed Dat a
Tries Code Struct ures

YAP Pr ol og

PADL 2010, Madrid, Spain, January 2010 4

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Dynamic Reordering of Alternatives

al ternatives state fi x-poi nt

Consider a tabled subgoal call C. Initially, C enters in normal state where it is
allowed to explore the matching clauses as in standard Prolog.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Dynamic Reordering of Alternatives

al ternatives state fi x-poi nt

Consider a tabled subgoal call C. Initially, C enters in normal state where it is
allowed to explore the matching clauses as in standard Prolog.

In normal state, if a repeated call is found then the current clause for the first
call to C will be memorized as a looping alternative.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Dynamic Reordering of Alternatives

al ternatives state fi x-poi nt

Consider a tabled subgoal call C. Initially, C enters in normal state where it is
allowed to explore the matching clauses as in standard Prolog.

In normal state, if a repeated call is found then the current clause for the first
call to C will be memorized as a looping alternative.

Next, after exploring all the matching clauses, C goes into the looping state.

From this point, it keeps trying the looping alternatives repeatedly until reaching
a fix-point.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Dynamic Reordering of Alternatives

al ternatives state fi x-poi nt

Consider a tabled subgoal call C. Initially, C enters in normal state where it is
allowed to explore the matching clauses as in standard Prolog.

In normal state, if a repeated call is found then the current clause for the first
call to C will be memorized as a looping alternative.

Next, after exploring all the matching clauses, C goes into the looping state.
From this point, it keeps trying the looping alternatives repeatedly until reaching
a fix-point.

If no new answers are found during one cycle of trying the looping alternatives,
then we have reached a fix-point and we can say that C is completely evaluated.

PADL 2010, Madrid, Spain, January 2010 5

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Alternatives

t(1,X):-t(2,X),fail.
t(1,X):-t(2, X).
t(2,X):-t(2,X),fail.
t(2,X):-1(1, X).
t(2,a).

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Alternatives

t(1,X):-t(2,X),fail.
t(1,X):-t(2, X).
t(2,X):-t(2,X),fail.
t(2,X):-1(1, X).
t(2,a).

2.t1(2,X),fail.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Al ternatives

t(1,X):-t(2,X,fail. . -
NERC IR P | 5. t(1,X):-t(2,X,fail. (cl)
t(2,X):-t(2,X,fail.
t(2,%:-1(1, X). 3. t(2,X:-t(2,X,fail. (c3)
t(2,a). : 5. t(2,X):-t(1,X). (c4)

2.1(2,X),fail.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Alternatives

t(1,X):-t(2,X,fail. . -
NERC IR P | Ct(L1,X):-t(2,X,fail. (cl)
t(2,X):-t(2,X,fail.
t(2,%:-1(1, X). . 3. t(2,X:-t(2,X,fail. (c3)
t(2,a). : 5. t(2,X):-t(1,X). (c4)

2.1(2,X),fail.

9. re-execute | ooping alternatives

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Alternatives

t(1,X):-t(2,X,fail. . -

1% t(2 % | Ct(LX):-t(2,X,fail. (cl)
t(2,X):-t(2,X,fail.
t(2,%:-t(1,X). | . (c3)
t(2,a). : ot -t : (c4)

2.1(2,X),fail.

9. re-execute | ooping alternatives
14. partial fix-point

—
—
L

~C3

~
]

—
—

X=a

11. fail. 13. fail.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Al ternatives

t(1,X):-t(2,X,fail. - -
NERC IR P | 5. t(1,X):-t(2,X,fail. (cl)
t(2,X:-1(2,X,fail.
t(2,X):-t(1, X). 3. t(2,X):-t(2,X,fail. (c3)
t(2,a). : 5. t(2,X:-t(1,X). (c4)

c2
2.1(2,X),fail. 16.t(2, X).
X=a

15. fail.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Alternatives

t(L,X):-1(2, X, fail. Ct(1,X):-t(2, X, fail.
t(1,X:-t(2,X). : -t (2.X)

t(2,X:-t(2,X,fail. - L0tz 9.
t(2,X:-t(1,X). L t(2
t(2, a). : (2,

ot (2,X), fail.

X)
X):-t(1,X).

c2
2.t1(2,X),fail. 16.t(2, X).
X=a ‘X:a

15. fail. 22. X=a
(fail)

m— 21. partial fix-point

P
03,’ Sec4
- \\

X=a
18. fail. 20. fail.

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

.~ table t/2. Loopi ng Alternatives

t(1,X:-t(2,X),fail. Ct(1, X -t(2,X),fail.
t(1,X:-t(2,X). : -t (2.X)
t(2,X):-t(2,X),fail. B Gl
t(2,X):-t(1,X). , L t(2,X:-t(2,X),fail.
t(2, a). : L t(2,X:-1(1, X).

X)
X)

23. re-execute |looping alternatives

c2
2.t1(2,X),fail. 16.t(2, X).
X=a X=a

15. fail. 22. X=a
(fail)

An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

An Evaluation Example

- table t/2. Loopi ng Alternatives

t(1,X):-t(2,X,fail. 5 e
t(1,X):-t(2,X). :

t(2,X):-t(2,X),fail. . conplete
t(2,X:-t(1,X).
t(2,a).

X=a
conpl ete

23. re-execute |looping alternatives
26. conpl ete

~~~
-~

~ - -
\\Cl __22

-

~ -
2.t(2,%),fail. 16.1(2, X) . 24.1(2,X),fail. 25.1(2,X).
X=a X=a

15. fail. 22. X=a
(fail)

PADL 2010, Madrid, Spain, January 2010




An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Choice Point Stack

re-execute | ooping alternatives

3.t(2,X),fail. 5.t(1,X).

11. fail.

Consuner
10.t(2, X

Gener at or Gener at or Gener at or CGener at or

2.1(2,X) 2.1(2,X) 2.1(2,X) 2.1(2,X)

Gener at or CGener at or Gener at or Gener at or

1.t(1, X 1.1(1, X 1.t(1, X 1.1(1, X

(a) At step 3 (b) At step 5 (c) At step 10 (d) At step 12




An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Choice Point Stack

21. partial fix-point

20. fail.
Consuner
19.t(1, X

Gener at or Gener at or
16.t(2, X 16.t(2, X

CGener at or Gener at or

1.t(1, X) 1.t(1, X

(e) At step 17 (f) At step 19

PADL 2010, Madrid, Spain, January 2010 7



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

Remember that, in looping state, we keep trying the looping alternatives repea-
tedly until reaching a partial fix-point in the evaluation of the corresponding
tabled call.



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

Remember that, in looping state, we keep trying the looping alternatives repea-
tedly until reaching a partial fix-point in the evaluation of the corresponding
tabled call.

Reaching a partial fix-point beforehand can be completely useless for non-leader
calls when later the leader call re-executes itself its looping alternatives, which
in turn leads the non-leader calls to re-execute again their looping alternatives.



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

Remember that, in looping state, we keep trying the looping alternatives repea-
tedly until reaching a partial fix-point in the evaluation of the corresponding

tabled call.

Reaching a partial fix-point beforehand can be completely useless for non-leader
calls when later the leader call re-executes itself its looping alternatives, which
in turn leads the non-leader calls to re-execute again their looping alternatives.

We innovate by considering a strategy that schedules the re-evaluation of tabled
calls in a similar manner to the suspension-based strategies of Yap:



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

Remember that, in looping state, we keep trying the looping alternatives repea-
tedly until reaching a partial fix-point in the evaluation of the corresponding

tabled call.

Reaching a partial fix-point beforehand can be completely useless for non-leader
calls when later the leader call re-executes itself its looping alternatives, which
in turn leads the non-leader calls to re-execute again their looping alternatives.

We innovate by considering a strategy that schedules the re-evaluation of tabled
calls in a similar manner to the suspension-based strategies of Yap:

. The fix-point check for completion is only done by leader calls.
: Only first calls to tabled subgoals allocate generator choice points.

PADL 2010, Madrid, Spain, January 2010 8



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

. The fix-point check for completion is only done by leader calls.

re-execute |l ooping alternatives

3.t(2,X,fail. 7.1(2, a).

11. fail.
Consuner
10.t (2, X)

Gener at or Gener at or Gener at or Gener at or

2.1(2,X) 2.1(2,X) 2.t(2, X) 2.t(2, X)

Gener at or Gener at or Gener at or Gener at or

1.t(1, X) 1.t(1, X 1.t(1, X) 1.t(1, X)

(a) At step 3 (b) At step 5 (c) At step 10 (d) At step 12




An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

» Rule 1: The fix-point check for completion is only done by leader calls.

21. partial fix-point

18. fail. 20. fail.

Consuner
19.1(1, X)
Gener at or Gener at or

16.t (2, X) 16.t (2, X)

Gener at or Gener at or
1.t(1, X 1.t(1, X

(e) At step 17 (f) At step 19

PADL 2010, Madrid, Spain, January 2010 9



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

: Only first calls to tabled subgoals allocate generator choice points.

Consuner
16.t(2, X)

CGener at or
1.t(1, X

(e) At step 16

PADL 2010, Madrid, Spain, January 2010 10



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

To correctly support this strategy, we need to consider that:

a tabled call is a first call every time we re-start a new round over the
looping alternatives for the leader call.



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

To correctly support this strategy, we need to consider that:

a tabled call is a first call every time we re-start a new round over the
looping alternatives for the leader call.

the leader call must re-execute its looping alternatives when new answers
were found for any tabled call during the last traversal of the looping
alternatives (and not only when new answers were found for the leader call).



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

To correctly support this strategy, we need to consider that:

a tabled call is a first call every time we re-start a new round over the
looping alternatives for the leader call.

the leader call must re-execute its looping alternatives when new answers
were found for any tabled call during the last traversal of the looping
alternatives (and not only when new answers were found for the leader call).

To efficiently implement it, we use two chains of tabled calls:



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

To correctly support this strategy, we need to consider that:

a tabled call is a first call every time we re-start a new round over the
looping alternatives for the leader call.

the leader call must re-execute its looping alternatives when new answers
were found for any tabled call during the last traversal of the looping
alternatives (and not only when new answers were found for the leader call).

To efficiently implement it, we use two chains of tabled calls:

One is used when propagating dependencies to traverse the tabled calls in
order to mark the looping alternatives and to mark the non-leader calls.



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Re-Computation Issues

To correctly support this strategy, we need to consider that:

a tabled call is a first call every time we re-start a new round over the
looping alternatives for the leader call.

the leader call must re-execute its looping alternatives when new answers
were found for any tabled call during the last traversal of the looping
alternatives (and not only when new answers were found for the leader call).

To efficiently implement it, we use two chains of tabled calls:

One is used when propagating dependencies to traverse the tabled calls in
order to mark the looping alternatives and to mark the non-leader calls.
The other one is used by the leader call to traverse the tabled calls in order
to mark them for re-evaluation or as completed.

PADL 2010, Madrid, Spain, January 2010 11



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives

Experimental Results: Yap / Yap+DRA

Miguel Areias and Ricardo Rocha

Predicate Pyramid Cycle Grid MC

1000 1500 | 1000 1500 | 30 40 IP LE SV
left_first 0.67 073 | 068 0.72 | 052 058|055 056 0.53
left_last 063 062 | 064 067|054 052|056 051 054
right_first 099 1.03| 059 0.69 | 0.16 0.12 — — —
right_last 1.00 099 | 072 0.74 ] 0.17 0.13 — — —
double_first 049 053 | 058 0.58 | 0.56 0.59 — — —
double_last 051 051 | 057 058 | 056 0.56 - — —

» Yap is around 1.5 to 2 times faster than Yap+DRA.

» Yap+DRA scales well when we increase the complexity of the problem.

PADL 2010, Madrid, Spain, January 2010

12



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Experimental Results: XSB / Yap+DRA

Pyramid Cycle Grid MC

Predicate | ;000 1500 | 10000 1500 | 30 40 | IP LE SV

left_first 056 058 0.78 069|066 065|105 1.52 0.80
left_last 058 062| 068 079|066 063|105 1.50 0.69
right_first 1.32 1.44 | 105 1.03|0.29 0.23 = = —
right_last 1.36 1.34 | 101 098 | 0.30 0.24 - - —
double_first 089 090 | 0.98 re. | 1.01 r.e. — — —
double_last 0.90 0.89 | 0.97 r.e. | 0.99 r.e. — — —

» In general, the difference between XSB and Yap+DRA is clearly smaller.

» Surprisingly, Yap+DRA obtains better results than XSB for the right recursive
definitions with the pyramid configurations and for the left recursive definitions
with the model checking specifications.

PADL 2010, Madrid, Spain, January 2010 13



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives

Experimental Results: B-Prolog / Yap+DRA

Miguel Areias and Ricardo Rocha

Predicate Pyramid Cycle Grid MC

1000 1500 | 1000 1500 | 30 40 IP LE SV
left_first 193 262 | 1.70 220|271 365|361 10.52 9.61
left_last 1.65 227 | 1.74 198|233 339|361 10.18 9.43
right_first 166 196 | 184 215 | 142 1.47 — — —
right_last 155 176 | 1.89 212|144 1.44 — — —
double_first 3.20 4.21 293 3731|281 4.00 — — —
double_last 3.3 428 | 280 3.63 | 277 3.86 — — —

» Yap+DRA is always faster than B-Prolog in all experiments.

» The ratio over Yap+DRA shows a generic tendency to increase as the complexity
of the problem also increases.

PADL 2010, Madrid, Spain, January 2010

14



An Efficient Implementation of Linear Tabling Based on Dynamic Reordering of Alternatives Miguel Areias and Ricardo Rocha

Conclusions and Further Work

We have presented a new and very efficient implementation of linear tabling,
based on DRA technique, that shares the underlying execution environment and
most of the data structures used to implement suspension-based tabling in Yap.

The results obtained are very interesting and very promising. In our experiments,
the commonly referred weakness of linear tabling of doing a huge number of
redundant computations for computing fix-points was not such a problem.

We thus argue that an efficient implementation of linear tabling can be a good
and first alternative to incorporate tabling support into a Prolog system.

Further work will include exploring the impact of applying our proposal to more
complex problems. We also plan to expand our approach to support different
linear tabling proposals like the SLDT strategy.

PADL 2010, Madrid, Spain, January 2010 15



