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Tabling in Prolog Systems

» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.
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» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

» |Implementations of Tabling are currently available in systems like:

¢ XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog.
» Multithreading combined with Tabling:

¢ XSB Prolog
¢ Yap Prolog [ICLP 2012]
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Table Space - Example

Table Entry
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Table Space - Example

Table Entry
for pred/2

Subgoal Frane Subgoal Frane
for pred(VARO, VARL) for pred(VARO, 1)
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Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.
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Table Space - Multithreaded Designs
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Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking [Euro-Par 2004] and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012]:

« Lock Field per trie node

« Global array of lock entries.
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].
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Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking [Euro-Par 2004] and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012]:
« Lock Field per trie node

« Global array of lock entries.
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

» Problems faced with these approaches:

¢ Locking mechanisms suffer from:
«x Contention
«x Convoying
x Priority inversion.

¢ The bucket array of entries inside the hashing system:
« Low dispersion of the synchronization points
+ False sharing (memory cache secondary effects).
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Our Approach - Motivation

» Use lock-free linearizable objects because they permit greater concurrency
since semantically consistent (non-interfering) operations may execute in

parallel.

» Take ideas from the several lock-free designs that already exist:

¢ Shalev and Shavit Split-Ordered Lists
¢ Prokopec Concurrent Tries
¢ Cliff's Non-Blocking Hash Tables.
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Our Approach - Motivation

» Use lock-free linearizable objects because they permit greater concurrency
since semantically consistent (non-interfering) operations may execute in
parallel.

» Take ideas from the several lock-free designs that already exist:

¢ Shalev and Shavit Split-Ordered Lists
¢ Prokopec Concurrent Tries
¢ Cliff's Non-Blocking Hash Tables.

» But ... none of the designs is specifically aimed for an environment with the
characteristics of our tabling framework.

¢ Support for concurrent deletion of nodes increases the complexity of the
designs.

» Create a new design (LFHT Lock-Free Hash Tries ) that:

¢ is as efficient as possible in lookup and insert operations
¢ minimizes the problems associated with our previous approaches.
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Lock-Free Hash Tries - Key ldeas
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Experimental Results - External Framework

» Comparison in a 32 Core AMD machine. Threads insert different items.

Execution Time by Design (Tp(p))

Speedup by Design (Tp(1) / Tp(p))
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» CSL Concurrent Skip Lists - CHM Concurrent Hash Maps
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Experimental Results - External Framework

» Comparison in a 32 Core AMD machine. Threads lookup for different items.

Execution Time by Design (Tp(p)) Speedup by Design (Tp(1) / Tp(p))
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Experimental Results - External Framework

» Comparison in a 32 Core AMD machine. All threads lookup and insert the
same items (worst case scenario).

Execution Time by Design (Tp(p)) Overhead by Design (Tp(p) / Tp(1))
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Experimental Results - Tabling Framework

» Comparison in a 32 Core AMD machine. All threads execute the same sub-
computations (worst case scenario).

Execution Time by Design (Tp(p)) Overhead by Design (Tp(p) / Tp(1))
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Experimental Results - Tabling Framework

» Comparison in a 32 Core AMD machine. All threads execute different sub-
computations (LFHT Lock-Free Hash Tries).

Execution Time by Benchmark (Tg(p)) Speedup by Benchmark (Tg(1) / Tg(p))
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» Path Path problem using a graph with a grid configuration

» Carcino / Muta (genesis) Inductive Logic Programing Benchmarks
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Conclusions and Further Work

» We have presented a novel, efficient and lock-free design for a trie hash data
structure applied to the multithreaded tabled evaluation of logic programs:

¢ Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios.

¢ The paper discusses the most relevant implementation details and proves
the correctness of the design.

» Experimental results show that our approach can effectively reduce the execu-
tion time and scale better, when increasing the number of threads, than other
designs.



A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, efficient and lock-free design for a trie hash data
structure applied to the multithreaded tabled evaluation of logic programs:

¢ Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios.

¢ The paper discusses the most relevant implementation details and proves
the correctness of the design.

» Experimental results show that our approach can effectively reduce the execu-
tion time and scale better, when increasing the number of threads, than other

designs.
» Further work will include:

¢ Support the concurrent deletion of trie nodes
¢ Extend the usage of the design to other parts of the Yap Prolog system.
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