A Lock-Free Hash Trie Design

for
Concurrent Tabled Logic Programs

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA
Faculty of Sciences, University of Porto, Portugal
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

HLPP, Amsterdam, July 2014

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Tabling in Prolog Systems

» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Tabling in Prolog Systems

» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

» |Implementations of Tabling are currently available in systems like:

¢ XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Tabling in Prolog Systems

» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

» |Implementations of Tabling are currently available in systems like:

¢ XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog.
» Multithreading combined with Tabling:

¢ XSB Prolog
¢ Yap Prolog [ICLP 2012]

HLPP, Amsterdam, July 2014 1/14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Table Space - Example

Table Entry
for pred/2

Subgoal Frane
for pred(VARO, VARL)

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Table Space - Example

Table Entry
for pred/2

Subgoal Frane Subgoal Frane
for pred(VARO, VARL) for pred(VARO, 1)

HLPP, Amsterdam, July 2014 2 /14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

o] [Mg

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

HLPP, Amsterdam, July 2014 3/14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs

Miguel Areias and Ricardo Rocha

Table Space - Multithreaded Designs

(NO-SHARING (NS) X

SUBGOAL-SHARING (SS) X

FULL-SHARING (FS))

To 7L T2 ...

e

Subgoal Subgoal
Frame Frame
cal | i cal |l i

m

Subgoal

Subgoal
Frame
cal |l _i

Trie Structure

Subgoal
Frame
cal |l _i

m

Subgoal Trie Structure

Subgoal
Frame
call i

Subgoal
Frame
call _i

Answer

Trie
Struct ure

Thread Thread Thread Thread Thread Thread
TO T1 T2 . o o

HLPP, Amsterdam, July 2014

4/14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking [Euro-Par 2004] and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012]:

« Lock Field per trie node

« Global array of lock entries.
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking [Euro-Par 2004] and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012]:
« Lock Field per trie node

« Global array of lock entries.
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

» Problems faced with these approaches:

¢ Locking mechanisms suffer from:
«x Contention
«x Convoying
x Priority inversion.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking [Euro-Par 2004] and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012]:
« Lock Field per trie node

« Global array of lock entries.
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

» Problems faced with these approaches:

¢ Locking mechanisms suffer from:
«x Contention
«x Convoying
x Priority inversion.

¢ The bucket array of entries inside the hashing system:
« Low dispersion of the synchronization points
+ False sharing (memory cache secondary effects).

HLPP, Amsterdam, July 2014 5/ 14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Use lock-free linearizable objects because they permit greater concurrency
since semantically consistent (non-interfering) operations may execute in

parallel.

» Take ideas from the several lock-free designs that already exist:

¢ Shalev and Shavit Split-Ordered Lists
¢ Prokopec Concurrent Tries
¢ Cliff's Non-Blocking Hash Tables.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Use lock-free linearizable objects because they permit greater concurrency
since semantically consistent (non-interfering) operations may execute in
parallel.

» Take ideas from the several lock-free designs that already exist:

¢ Shalev and Shavit Split-Ordered Lists
¢ Prokopec Concurrent Tries
¢ Cliff's Non-Blocking Hash Tables.

» But ... none of the designs is specifically aimed for an environment with the
characteristics of our tabling framework.

¢ Support for concurrent deletion of nodes increases the complexity of the
designs.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Use lock-free linearizable objects because they permit greater concurrency
since semantically consistent (non-interfering) operations may execute in
parallel.

» Take ideas from the several lock-free designs that already exist:

¢ Shalev and Shavit Split-Ordered Lists
¢ Prokopec Concurrent Tries
¢ Cliff's Non-Blocking Hash Tables.

» But ... none of the designs is specifically aimed for an environment with the
characteristics of our tabling framework.

¢ Support for concurrent deletion of nodes increases the complexity of the
designs.

» Create a new design (LFHT Lock-Free Hash Tries) that:

¢ is as efficient as possible in lookup and insert operations
¢ minimizes the problems associated with our previous approaches.

HLPP, Amsterdam, July 2014 6 /14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Cache
Li ne

Si ze
Entries

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Pr ev Pr ev

Cache
Li ne

Si ze
Entries

__Ek |

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Pr ev Pr ev

Cache
Li ne

Si ze
Entries

__Ek |

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Pr ev Pr ev

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

HLPP, Amsterdam, July 2014

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs

Miguel Areias and Ricardo Rocha

Experimental Results - External Framework

» Comparison in a 32 Core AMD machine. Threads insert different items.

Execution Time by Design (Tp(p))

Speedup by Design (Tp(1) / Tp(p))

10 5.. 12
8 s N ey |
9 r e :
6 i .
i I Lo
4 + 6 e
2 S ; 3| -
" S B . - o}
0 1 i : . 1 1 1
8 16 24 32 8 16 24 32
#threads (p) #threads (p)
LFHT —— CT1 —~ CT2 —%— CSL — = CHM

» LFHT Lock-Free Hash Tries - CT1 /CT2 C-Tries Versions (1/2)
» CSL Concurrent Skip Lists - CHM Concurrent Hash Maps

HLPP, Amsterdam, July 2014 8 /14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Experimental Results - External Framework

» Comparison in a 32 Core AMD machine. Threads lookup for different items.

Execution Time by Design (Tp(p)) Speedup by Design (Tp(1) / Tp(p))
' ! | 20 [| | | |
15 |
10 +
5 L
Ll | | |
8 16 24 32
#threads (p) #threads (p)

LFHT —+— CT1 —~ CT2 =% CSL —= CHM

» LFHT Lock-Free Hash Tries - CT1 /CT2 C-Tries Versions (1/2)
» CSL Concurrent Skip Lists - CHM Concurrent Hash Maps

HLPP, Amsterdam, July 2014 9 /14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Experimental Results - External Framework

» Comparison in a 32 Core AMD machine. All threads lookup and insert the
same items (worst case scenario).

Execution Time by Design (Tp(p)) Overhead by Design (Tp(p) / Tp(1))
10 ‘ |
12 §
8 r g " .
! _ - -
6 — 9 ;s'- -
A e 1 6 ;
---------------- L e JEURSY TEECTPTIPRPEA § .
B, g /L . 1
| 3 r . g “pmenmm |
. . [l - . !
16 24 32 8 16 24 32
#threads (p) #threads (p)

LFHT —+— CT1 —~ CT2 =% CSL —= CHM

» LFHT Lock-Free Hash Tries - CT1 /CT2 C-Tries Versions (1/2)
» CSL Concurrent Skip Lists - CHM Concurrent Hash Maps

HLPP, Amsterdam, July 2014 10 / 14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Experimental Results - Tabling Framework

» Comparison in a 32 Core AMD machine. All threads execute the same sub-
computations (worst case scenario).

Execution Time by Design (Tp(p)) Overhead by Design (Tp(p) / Tp(1))

~
wb?
yr

ad
wr

= 5 : : l

20 . R » T
L o I —— e |
150 - B .:9
..".:t __/‘. :u:: _
100 / .
50 7 : N ‘
0 1 ! 1 1 / 1 1
8 16 24 32 8 16 24 32
#threads (p) #threads (p)
LFHT LF LB - -

» LFHT Lock-Free Hash Tries - LF Lock-Free (old approach)
» LB Lock-Based (old approach)

HLPP, Amsterdam, July 2014

11/ 14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Experimental Results - Tabling Framework

» Comparison in a 32 Core AMD machine. All threads execute different sub-
computations (LFHT Lock-Free Hash Tries).

Execution Time by Benchmark (Tg(p)) Speedup by Benchmark (Tg(1) / Tg(p))

% T T T 20 T “,j

60 -~ 4 e
1 5 e

Pl r
- ._,"
.

W
P
L)
40 | _
wh
L
%
L
v

10

20 5
0
#threads (p) #threads (p)
Path = Carcino > Muta ¢ -

» Path Path problem using a graph with a grid configuration

» Carcino / Muta (genesis) Inductive Logic Programing Benchmarks

HLPP, Amsterdam, July 2014 12 / 14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, efficient and lock-free design for a trie hash data
structure applied to the multithreaded tabled evaluation of logic programs:

¢ Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios.

¢ The paper discusses the most relevant implementation details and proves
the correctness of the design.

» Experimental results show that our approach can effectively reduce the execu-
tion time and scale better, when increasing the number of threads, than other
designs.

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, efficient and lock-free design for a trie hash data
structure applied to the multithreaded tabled evaluation of logic programs:

¢ Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios.

¢ The paper discusses the most relevant implementation details and proves
the correctness of the design.

» Experimental results show that our approach can effectively reduce the execu-
tion time and scale better, when increasing the number of threads, than other

designs.
» Further work will include:

¢ Support the concurrent deletion of trie nodes
¢ Extend the usage of the design to other parts of the Yap Prolog system.

HLPP, Amsterdam, July 2014 13 /14

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA
University of Porto, Portugal
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

Yap Prolog : http://www.dcc.fc.up.pt/~vsc/Yap
Projects SIBILA and PEst: http://cracs.fc.up.pt/

FCT Grant: SFRH/BD/69673/2010

q QUADRO S F C T
DE REFERENCIA
ESTRATEGICO -
COMP ETE NAC UNIAO EURCPEIA

Yalsl il ~ sA_ s 5
{ACIONAL il Fundagdo para a Ciéncia e a Tecnologia
PORTUGALZ007.2013 de Desenvelvimento Regional MINISTERIO DA EDUCACAO E CIENCIA

HLPP, Amsterdam, July 2014

14 / 14

