A Simple and Efficient Lock-Free

Hash Trie Design for
Concurrent Tabling

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA
Faculty of Sciences, University of Porto, Portugal
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

ICLP 2014, Vienna, Austria

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Tabling in Prolog Systems

» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Tabling in Prolog Systems

» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

» |Implementations of Tabling are currently available in systems like:

¢ XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Tabling in Prolog Systems

» Tabling is an implementation technique that overcomes some of the limitations
of Prolog resolution:

¢ Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space

¢ Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

» |Implementations of Tabling are currently available in systems like:

¢ XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog.
» Multithreading combined with Tabling:

¢ XSB Prolog
¢ Yap Prolog [ICLP 2012].

ICLP 2014, Vienna, Austria 1/9

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Table Space - Example

Table Entry
for pred/2

Subgoal Frane
for pred(VARO, VARL)

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Table Space - Example

Table Entry
for pred/2

Subgoal Frane Subgoal Frane
for pred(VARO, VARL) for pred(VARO, 1)

ICLP 2014, Vienna, Austria 2/9

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

o] [Mg

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Table Space - Trie Level Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

ICLP 2014, Vienna, Austria 3/9

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

» Problems faced with these approaches:

¢ Locking mechanisms suffer from: Contention, Convoying and Priority in-
version.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

» Problems faced with these approaches:

¢ Locking mechanisms suffer from: Contention, Convoying and Priority in-
version.

¢ The bucket array of entries inside the hashing system:
« Low dispersion of the synchronization points
+ False sharing (memory cache secondary effects).

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Our Approach - Motivation

» Until now to deal with concurrency we used the following mechanisms:

¢ Standard Locking and Try Locking [ICLP 2012]
¢ Different lock locations [ICPADS 2012
¢ Lock-Free using CAS (Compare-and-Swap) operations [PADL 2014].

» Problems faced with these approaches:

¢ Locking mechanisms suffer from: Contention, Convoying and Priority in-

version.

¢ The bucket array of entries inside the hashing system:
« Low dispersion of the synchronization points
+ False sharing (memory cache secondary effects).

» Create a new design (LFHT Lock-Free Hash Tries) that:

¢ is as efficient as possible in lookup and insert operations
¢ minimizes the problems associated with our previous approaches.

ICLP 2014, Vienna, Austria 4/9

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Cache
Li ne

Si ze
Entries

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Pr ev Pr ev

Cache
Li ne

Si ze
Entries

__Ek |

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Pr ev Pr ev

Cache
Li ne

Si ze
Entries

__Ek |

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

Pr ev Pr ev

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Lock-Free Hash Tries - Key ldeas

ICLP 2014, Vienna, Austria

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Experimental Results - Overhead Scenarios

» Comparison in a 32 Core AMD machine. All threads execute the same
sub-computations (Overall values for five sets of benchmarks).

Execution Time by Design (Tp(p)) Overhead by Design (Tp(p) / Tp(1))
T T T e o 5 T | |
200 ¢ U - 1T e l
e ——— wr
- o e N
150 i .":. _______ e B :’ """""
::'. S m—— seure=""" .:: |
:: ’,n' _‘/-a 3 | :5 ----------------- 3
100 - 7.7 - S e -
= £ -
50 %] 2t F. |
0 : ‘ L 1 M ! |
8 16 24 32 8 16 24 32
#threads (p) #threads (p)
LFHT | L F > 1B - e

» LFHT Lock-Free Hash Tries - LF Lock-Free (old approach)
» LB Lock-Based (old approach)

ICLP 2014, Vienna, Austria 6/9

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Experimental Results - Speedup Scenarios

» Comparison in a 32 Core AMD machine. All threads execute different sub-
computations (LFHT Lock-Free Hash Tries + Naive Scheduler).

Execution Time by Benchmark (Tg(p)) Speedup by Benchmark (Tg(1) / Tg(p))

% T T T 20 T “,j

60 -~ 4 e
1 5 e

-*g .
- ._,"
.

W
P
L)
40 | _
wh
L
%
L
v

10

20 5
0
#threads (p) #threads (p)
Path = Carcino > Muta ¢ -

» Path Path problem using a graph with a grid configuration

» Carcino / Muta (genesis) Inductive Logic Programing Benchmarks

ICLP 2014, Vienna, Austria 7/9

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, efficient and lock-free design for a trie hash data
structure applied to the multithreaded tabled evaluation of logic programs:

¢ Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios

¢ Paper discusses the key ideas of the design. An extended version was already
accepted in HLPP 2014 and will be available soon in the [JPP journal.

» Experimental results show that our approach can effectively reduce the exe-
cution time and scale better, when increasing the number of threads, than
previous designs.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, efficient and lock-free design for a trie hash data
structure applied to the multithreaded tabled evaluation of logic programs:

¢ Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios

¢ Paper discusses the key ideas of the design. An extended version was already
accepted in HLPP 2014 and will be available soon in the [JPP journal.

» Experimental results show that our approach can effectively reduce the exe-
cution time and scale better, when increasing the number of threads, than
previous designs.

» Further work will include:

¢ Support the concurrent deletion of trie nodes (mode-directed tabling)

¢ Extend the usage of the design to other parts of the Yap Prolog system
(atom table)

¢ Explore the full potentiality of the design by using it in other tabling
applications or as stand alone framework.

ICLP 2014, Vienna, Austria 8/9

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA
University of Porto, Portugal
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt
Yap Prolog : http://www.dcc.fc.up.pt/~vsc/yap
Projects SIBILA : http://cracs.fc.up.pt/

FCT Grant: SFRH/BD/69673/2010

QUADRO

DE REFERENCIA

ESTRATEGICO .

‘ S e ICC UNIAO EUROPEIA Fundaci Ciénci T Tics
NACIONAL Fundo Europeu undagao para a _1enc1a € a lecnologla
PORTIUGAL2007.2013 de Desenvolvimento Regional MINISTERIO DA EDUCACAO E CIENCIA

ICLP 2014, Vienna, Austria 9/9

