
Lock-Free Tries

Designs and Applications

Miguel Areias
joint work with Ricardo Rocha

CRACS & INESC-TEC LA
Faculty of Sciences, University of Porto, Portugal

miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

Parallel Computing Course 14/15, DCC-FCUP, Portugal

Lock-Free Tries - Designs and Applications Miguel Areias

Topics in Discussion

ä In this talk we will be discussing:

© YapTab: A single-threaded tabling framework:
∗ Key concepts about tabling.
∗ Table space example.
∗ Trie structure internals.

Lock-Free Tries - Designs and Applications Miguel Areias

Topics in Discussion

ä In this talk we will be discussing:

© YapTab: A single-threaded tabling framework:
∗ Key concepts about tabling.
∗ Table space example.
∗ Trie structure internals.

© YapTab-Mt: A multi-threaded tabling framework:
∗ Table space: No-Sharing, Subgoal-Sharing and Full-Sharing.
∗ Trie structure:
◦ Lock-Based: Standard, Global and Try-Locks.
◦ Lock-Free: Tries and Hash Tries.
◦ Performance analysis.

Lock-Free Tries - Designs and Applications Miguel Areias

Topics in Discussion

ä In this talk we will be discussing:

© YapTab: A single-threaded tabling framework:
∗ Key concepts about tabling.
∗ Table space example.
∗ Trie structure internals.

© YapTab-Mt: A multi-threaded tabling framework:
∗ Table space: No-Sharing, Subgoal-Sharing and Full-Sharing.
∗ Trie structure:
◦ Lock-Based: Standard, Global and Try-Locks.
◦ Lock-Free: Tries and Hash Tries.
◦ Performance analysis.

© Lock-Free Tries - Applications:
∗ Asynchronous parallelism.
∗ Parallelization techniques: Top-Down and Bottom-Up.
∗ Performance analysis.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 1 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Tabling in Prolog Systems

ä Tabling or memoing is an implementation technique that overcomes some of
the limitations of Prolog resolution:

© Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space.

© Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

Lock-Free Tries - Designs and Applications Miguel Areias

Tabling in Prolog Systems

ä Tabling or memoing is an implementation technique that overcomes some of
the limitations of Prolog resolution:

© Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space.

© Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

ä Implementations of Tabling are currently available in systems like:

© XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog.

Lock-Free Tries - Designs and Applications Miguel Areias

Tabling in Prolog Systems

ä Tabling or memoing is an implementation technique that overcomes some of
the limitations of Prolog resolution:

© Tabled subgoals are evaluated by storing their answers in an appropriate data
space, called the table space.

© Repeated calls to tabled subgoals are resolved by consuming the answers
already stored in the table instead of being re-evaluated against the program
clauses.

ä Implementations of Tabling are currently available in systems like:

© XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog.

ä Multithreading combined with Tabling:

© XSB Prolog.
© Yap Prolog (YapTab-Mt).

Parallel Computing Course 14/15, DCC-FCUP, Portugal 2 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Example

Table Entry
for pred/2

VAR0

1

1 2

Answer Trie

Subgoal Trie

Subgoal Frame
for pred(VAR0,VAR1)

VAR1

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Example

Table Entry
for pred/2

VAR0

1

1 2

Answer Trie

Subgoal Trie

Subgoal Frame
for pred(VAR0,VAR1)

VAR1

Table Entry
for pred/2

VAR0

1 1 2

1 2

Answer Trie Answer Trie

Subgoal Trie

Subgoal Frame
for pred(VAR0,VAR1)

Subgoal Frame
for pred(VAR0,1)

VAR1 1

Parallel Computing Course 14/15, DCC-FCUP, Portugal 3 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Trie Level Internals

ä All trie levels have one parent (P) node and at least one child (K) node.

ä Only search and insert operations are executed on the trie levels.

ä Insertion of new nodes is done on the head of the chain, until a threshold is
achieved.

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3

P

K1K2

Parallel Computing Course 14/15, DCC-FCUP, Portugal 4 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Trie Level Internals

ä When the threshold is achieved, a hashing mechanism with separating
chaining is added to the level.

ä The hash H node stores generic information about the level.

ä The value B is the number of bucket entries.

ä When the hash becomes saturated, it is expanded to a new hash with 2 ∗ B
bucket entries.

H

.
.
.

P K1

B

K2

K3

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Trie Level Internals

ä When the threshold is achieved, a hashing mechanism with separating
chaining is added to the level.

ä The hash H node stores generic information about the level.

ä The value B is the number of bucket entries.

ä When the hash becomes saturated, it is expanded to a new hash with 2 ∗ B
bucket entries.

H

.
.
.

P K1

B

K2

K3H

.
.
.

P K2

B

K1

K3

K4

K5 K6

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Trie Level Internals

ä When the threshold is achieved, a hashing mechanism with separating
chaining is added to the level.

ä The hash H node stores generic information about the level.

ä The value B is the number of bucket entries.

ä When the hash becomes saturated, it is expanded to a new hash with 2 ∗ B
bucket entries.

H

.
.
.

P K1

B

K2

K3H

.
.
.

P K2

B

K1

K3

K4

K5 K6H

.
.
.

P K2

K6

B

H

.
.
.P

K4

2*B

.
.
.

K

K2

K1

K3

K1

K3

K6

K4

K5

K7

K5

K8

K9

Parallel Computing Course 14/15, DCC-FCUP, Portugal 5 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

Parallel Computing Course 14/15, DCC-FCUP, Portugal 6 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Motivation

ä Until now to deal with concurrency we used locks:

© Lock Type:
∗ Standard Locks.
∗ Try-Locks.

© Lock Location:
∗ Field per trie node.
∗ Global array of lock entries.

ä The expansion of the hash locked the insertion and could in some cases delay
the search operation (inefficiency).

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Motivation

ä Until now to deal with concurrency we used locks:

© Lock Type:
∗ Standard Locks.
∗ Try-Locks.

© Lock Location:
∗ Field per trie node.
∗ Global array of lock entries.

ä The expansion of the hash locked the insertion and could in some cases delay
the search operation (inefficiency).

ä With lock-free we are interested in reducing the granularity of the synchroni-
zation, by taking advantage of the CAS (Compare-and-Swap) operation.

© Nowadays can be found on many of the common architectures.
© At the heart of many lock-free objects.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 7 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Motivation

ä Lock-free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Several lock-free models do exist:

© Shalev and Shavit Split-Ordered Lists
© Prokopec Concurrent Tries
© Cliff’s Non-Blocking Hash Tables.

ä But ... none of the existent models is specifically aimed for an environment
with the characteristics of our tabling framework.

© Support for the concurrent deletion of nodes increases the complexity of
the models.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 8 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 K3M

K2

CAS

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 K3M

K2

CAS

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 M

K2

CAS

K5

K4

CAS

P
Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

K3

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 K3M

K2

CAS

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 M

K2

CAS

K5

K4

CAS

P
Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

K3

PP

H

.
.

En

Em

B

M K3

Trie Level

K1

K2

K5

K4

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 K3M

K2

CAS

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 M

K2

CAS

K5

K4

CAS

P
Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

K3

PP

H

.
.

En

Em

B

M K3

Trie Level

K1

K2

K5

K4

PPP

H

.
.

En

Em

B

K1 M

K2

K3

Trie Level

P

H

.
.

En

Em

B

P

K1 M

CAS

K3

K2

K5

K4

K5

K4

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 K3M

K2

CAS

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 M

K2

CAS

K5

K4

CAS

P
Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

K3

PP

H

.
.

En

Em

B

M K3

Trie Level

K1

K2

K5

K4

PPP

H

.
.

En

Em

B

K1 M

K2

K3

Trie Level

P

H

.
.

En

Em

B

P

K1 M

CAS

K3

K2

K5

K4

K5

K4

Trie LevelP

H

.
.

En

Em

B

K1 M

K2

K3 K5

K4

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The First Expansion

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

(a) (b)

K2 K1

P

K1

P

(c)

K3 K2

P

K1

CAS CAS CAS

K3 K2

P

K1H

.
.

M

En

Em

B

CAS

Trie Level

K3 K2

P

K1H

.
.

M

En

Em

B

Trie Level

P

H

.
.

En

Em

B

K3 K2

P

K1H

.
.

M

En

Em

B

K1

CAS

K3M K2

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 K3M

K2

CAS

Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

P

H

.
.

En

Em

B

P

K1 M

K2

CAS

K5

K4

CAS

P
Trie LevelPP

H

.
.

En

Em

B

K1 K3M K2

K3

PP

H

.
.

En

Em

B

M K3

Trie Level

K1

K2

K5

K4

PPP

H

.
.

En

Em

B

K1 M

K2

K3

Trie Level

P

H

.
.

En

Em

B

P

K1 M

CAS

K3

K2

K5

K4

K5

K4

Trie LevelP

H

.
.

En

Em

B

K1 M

K2

K3 K5

K4

P

H

.
.

En

Em

B

P

K1

P
Trie LevelP

H

.
.

En

Em

B

K1 M

K2

K5K3

K4

K3

K2

K5

K4

Parallel Computing Course 14/15, DCC-FCUP, Portugal 9 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The Second Expansion

Trie LevelP

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The Second Expansion

Trie LevelP

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

Trie Level

P

H

.
.

En

B

P

H

K3 K5 K1
.
.

M

E’n

E’m

2*B

En

P

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

M

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The Second Expansion

Trie LevelP

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

Trie Level

P

H

.
.

En

B

P

H

K3 K5 K1
.
.

M

E’n

E’m

2*B

En

P

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

M

Trie Level

P

H

.
.

En

B
.
.

E’n

E’m

2*B

P

H

.
.

En

B

K3 K5 K1

.
.

M

E’n

E’m

2*B

M

CAS

K3 K5 K1M

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The Second Expansion

Trie LevelP

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

Trie Level

P

H

.
.

En

B

P

H

K3 K5 K1
.
.

M

E’n

E’m

2*B

En

P

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

M

Trie Level

P

H

.
.

En

B
.
.

E’n

E’m

2*B

P

H

.
.

En

B

K3 K5 K1

.
.

M

E’n

E’m

2*B

M

CAS

K3 K5 K1M

Trie Level

P

H

.
.

En

B

P

H

.
.

En

B

K3 K5 K1

.
.

M

E’n

E’m

2*B

K3 K5

K1

M

.
.

E’n

E’m

2*B

M

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - The Second Expansion

Trie LevelP

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

Trie Level

P

H

.
.

En

B

P

H

K3 K5 K1
.
.

M

E’n

E’m

2*B

En

P

H

.
.

En

Em

B

K1K3

K2

K5

K4

En

M

Trie Level

P

H

.
.

En

B
.
.

E’n

E’m

2*B

P

H

.
.

En

B

K3 K5 K1

.
.

M

E’n

E’m

2*B

M

CAS

K3 K5 K1M

Trie Level

P

H

.
.

En

B

P

H

.
.

En

B

K3 K5 K1

.
.

M

E’n

E’m

2*B

K3 K5

K1

M

.
.

E’n

E’m

2*B

M

Trie Level

P

PP

H

.
.

B

.
.

2*B

PP

H

.
.

B
.
.

2*B

. . .

. . .

. . .

. . .

Parallel Computing Course 14/15, DCC-FCUP, Portugal 10 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Resume

ä Avoids the usage of locks:

© Reduces the size of the nodes.
© Avoids problems associated with locks:
∗ Contention.
∗ Convoying.
∗ Priority inversion.

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Resume

ä Avoids the usage of locks:

© Reduces the size of the nodes.
© Avoids problems associated with locks:
∗ Contention.
∗ Convoying.
∗ Priority inversion.

ä The create and expand operations of the hashing mechanism:

© Does not lock the search operation.
© Allow the concurrent insertion of new nodes.

ä Different nodes can be inserted simultaneously in different bucket entries.

© Previous models locked all bucket entries to insert a new node.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 11 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - Benchmark Statistics

Characteristics Of The Benchmarks: 1 Working Thread

Bench
Tabled Subgoals Tabled Answers

Calls Trie Nodes Trie Depth Unique Repeated Trie Nodes Trie Depth
Model Checking
IProto 1 6 5/5/5 134,361 385,423 1,554,896 4/51/67
Leader 1 5 4/4/4 1,728 574,786 41,788 15/80/97
Sieve 1 7 6/6/6 380 1,386,181 8,624 21/53/58
Large Joins
Join2 1 6 5/5/5 2,476,099 0 2,613,660 5/5/5
Mondial 35 42 3/4/4 2,664 2,452,890 14,334 6/7/7
Path Left
BTree 1 3 2/2/2 1,966,082 0 2,031,618 2/2/2
Pyramid 1 3 2/2/2 3,374,250 1,124,250 3,377,250 2/2/2
Cycle 1 3 2/2/2 4,000,000 2,000 4,002,001 2/2/2
Grid 1 3 2/2/2 1,500,625 4,335,135 1,501,851 2/2/2
Path Right
BTree 131,071 262,143 2/2/2 3,801,094 0 3,997,700 1/2/2
Pyramid 3,000 6,001 2/2/2 6,745,501 2,247,001 6,751,500 1/2/2
Cycle 2,001 4,003 2/2/2 8,000,000 4,000 8,004,001 1/2/2
Grid 1,226 2,453 2/2/2 3,001,250 8,670,270 3,003,701 1/2/2

Parallel Computing Course 14/15, DCC-FCUP, Portugal 12 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - Tabling Framework

ä Comparison in a 32 Core AMD machine. All threads execute the same
sub-computations (worst case scenario). Overhead ratios comparing the
execution time of multiple working threads against the respective execution
time with one thread.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 8 16 24 32 40 48 56 64

O
ve

rh
ea

d
R

at
io

s

Threads

Lock-Freedom (FD)
Local Locks (LL)

Global Locks (GL)

Local Trylocks (LT)
Global Trylocks (GT)

XSB Prolog

Parallel Computing Course 14/15, DCC-FCUP, Portugal 13 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Summary

ä We have presented a first approach for a lock-free trie data structures applied
to the multithreaded tabled evaluation of logic programs:

© Improve the efficiency of the concurrent search and insert operations.
© The paper On the Correctness and Efficiency of Lock-Free Expandable

Tries for Tabled Logic Programs discusses the most relevant implementa-
tion details and proves the correctness of the model.

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Summary

ä We have presented a first approach for a lock-free trie data structures applied
to the multithreaded tabled evaluation of logic programs:

© Improve the efficiency of the concurrent search and insert operations.
© The paper On the Correctness and Efficiency of Lock-Free Expandable

Tries for Tabled Logic Programs discusses the most relevant implementa-
tion details and proves the correctness of the model.

ä Experimental results show that our approach can effectively reduce the execu-
tion time and scale better, when increasing the number of threads, than the
original lock-based designs.

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Tries - Summary

ä We have presented a first approach for a lock-free trie data structures applied
to the multithreaded tabled evaluation of logic programs:

© Improve the efficiency of the concurrent search and insert operations.
© The paper On the Correctness and Efficiency of Lock-Free Expandable

Tries for Tabled Logic Programs discusses the most relevant implementa-
tion details and proves the correctness of the model.

ä Experimental results show that our approach can effectively reduce the execu-
tion time and scale better, when increasing the number of threads, than the
original lock-based designs.

ä But... with a deeper study of this model we found that it still has some
concurrency problems:

© Low dispersion of the synchronization points
© False sharing (memory cache secondary effects).

Parallel Computing Course 14/15, DCC-FCUP, Portugal 14 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Introduction

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Introduction

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Introduction

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Introduction

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Hash
System

P

(d)

.
.
.

K3K2K1

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Introduction

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Hash
System

P

(d)

.
.
.

K3K2K1

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

.
.
.

P K2K1

(d)

K4K3

Parallel Computing Course 14/15, DCC-FCUP, Portugal 15 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

K5Em

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

K5Em

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K4 K2

Prev Prev

K5Em K5 K1

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

K5Em

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K4 K2

Prev Prev

K5Em K5 K1

Trie Level

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

K4 K2

Prev Prev

K5Em K5 K1

Hash

Function

Hash Value (64 bits)

164

......

EkEn

K3

K3

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Key Ideas

Trie Level

(a)

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Trie Level

(a) (b)

.
.
.

Prev

K1Ek

.
.
.

.
.
.

Prev

Ek

.
.
.Cache

Line
Size
Entries

Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

Hi Hi Hi Trie Level

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.Cache

Line
Size
Entries

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Hi Hi Hi Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

K1 K2 K3

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

Prev Prev

K5Em

Trie Level

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

Prev Prev

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K4 K2

Prev Prev

K5Em K5 K1

Trie Level

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

K4 K2

Prev Prev

K5Em K5 K1

Hash

Function

Hash Value (64 bits)

164

......

EkEn

K3

K3

Trie Level

.
.
.

Hi+1

Em

En

Ek

.
.
.

Hi

.
.
.

K4 K2

Prev Prev

K5Em K5 K1

Hash

Function

Hash Value (64 bits)

164

......

EkEn

K3

K3

Parallel Computing Course 14/15, DCC-FCUP, Portugal 16 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - Tabling Framework

ä Comparison in a 32 Core AMD machine. All threads execute the same sub-
computations (worst case scenario).

ä LFHT Lock-Free Hash Tries - LF Lock-Free (old approach)

ä LB Lock-Based (old approach)

Parallel Computing Course 14/15, DCC-FCUP, Portugal 17 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - Tabling Framework

ä Comparison in a 32 Core AMD machine. All threads execute different sub-
computations (LFHT Lock-Free Hash Tries).

ä Path Path problem using a graph with a grid configuration

ä Carcino / Muta (genesis) Inductive Logic Programing Benchmarks

Parallel Computing Course 14/15, DCC-FCUP, Portugal 18 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - External Framework

ä Comparison in a 32 Core AMD machine. Threads insert different items.

ä LFHT Lock-Free Hash Tries - CT1 /CT2 C-Tries Versions (1/2)

ä CSL Concurrent Skip Lists - CHM Concurrent Hash Maps

Parallel Computing Course 14/15, DCC-FCUP, Portugal 19 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - External Framework

ä Comparison in a 32 Core AMD machine. Threads lookup for different items.

ä LFHT Lock-Free Hash Tries - CT1 /CT2 C-Tries Versions (1/2)

ä CSL Concurrent Skip Lists - CHM Concurrent Hash Maps

Parallel Computing Course 14/15, DCC-FCUP, Portugal 20 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - External Framework

ä Comparison in a 32 Core AMD machine. All threads lookup and insert the
same items (worst case scenario).

ä LFHT Lock-Free Hash Tries - CT1 /CT2 C-Tries Versions (1/2)

ä CSL Concurrent Skip Lists - CHM Concurrent Hash Maps

Parallel Computing Course 14/15, DCC-FCUP, Portugal 21 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Summary

ä We have presented a second approach for a lock-free trie data structures
applied to the multithreaded tabled evaluation of logic programs:

© Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios.

© The paper A Lock-Free Hash Trie Design for Concurrent Tabled Logic
Programs discusses the most relevant implementation details and proves
the correctness of the model.

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Summary

ä We have presented a second approach for a lock-free trie data structures
applied to the multithreaded tabled evaluation of logic programs:

© Improves the efficiency of the concurrent lookup and insert operations
even in worst case scenarios.

© The paper A Lock-Free Hash Trie Design for Concurrent Tabled Logic
Programs discusses the most relevant implementation details and proves
the correctness of the model.

ä Experimental results show that our approach can effectively reduce the execu-
tion time and scale better, when increasing the number of threads, than other
designs.

© Tabling framework: Our best Lock-Based Tries, Lock-Free Tries and Lock-
Free Hash Tries.

© External framework: Concurrent Tries (versions 1 and 2), Concurrent Skip
Lists and Concurrent Hash Maps.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 22 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Applications

ä Use Lock-Free Hash Tries with Subgoal-Sharing in the YapTab-Mt frame-
work and extend it to support asynchronous parallelism.

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Applications

ä Use Lock-Free Hash Tries with Subgoal-Sharing in the YapTab-Mt frame-
work and extend it to support asynchronous parallelism.

© The key idea is that a thread does not wait for other threads to compute
a sub-problem ...

© ... but is able to use the result of the sub-problem, if another thread has
already computed it.

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Applications

ä Use Lock-Free Hash Tries with Subgoal-Sharing in the YapTab-Mt frame-
work and extend it to support asynchronous parallelism.

© The key idea is that a thread does not wait for other threads to compute
a sub-problem ...

© ... but is able to use the result of the sub-problem, if another thread has
already computed it.

ä Use the YapTab-Mt to scale the execution of two well-know dynamic
programming problems that can be found in many domains:

© 0-1 Knapsack: logistics, manufacturing, finance or telecommunications.
© Longest Common Subsequence (LCS): sequence alignment, which is a

fundamental technique for biologists to investigate the similarity between
species.

Lock-Free Tries - Designs and Applications Miguel Areias

Lock-Free Hash Tries - Applications

ä Use Lock-Free Hash Tries with Subgoal-Sharing in the YapTab-Mt frame-
work and extend it to support asynchronous parallelism.

© The key idea is that a thread does not wait for other threads to compute
a sub-problem ...

© ... but is able to use the result of the sub-problem, if another thread has
already computed it.

ä Use the YapTab-Mt to scale the execution of two well-know dynamic
programming problems that can be found in many domains:

© 0-1 Knapsack: logistics, manufacturing, finance or telecommunications.
© Longest Common Subsequence (LCS): sequence alignment, which is a

fundamental technique for biologists to investigate the similarity between
species.

ä Compare parallelization techniques:

© Top-Down vs Bottom-Up.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 23 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

YapTab-Mt - Advantages

ä Abstraction layer for the dynamic programming (tabling) support is provided
with a single instruction:

© :- table predicate/arity.
© Example :- table knapsack/3.

Lock-Free Tries - Designs and Applications Miguel Areias

YapTab-Mt - Advantages

ä Abstraction layer for the dynamic programming (tabling) support is provided
with a single instruction:

© :- table predicate/arity.
© Example :- table knapsack/3.

ä Thread API is POSIX Threads compliant:

© Management - creating, joining , yielding, etc.
© Monitoring - statistics, properties, etc.
© Synchronization - mutex creation, statistics, etc.

Lock-Free Tries - Designs and Applications Miguel Areias

YapTab-Mt - Advantages

ä Abstraction layer for the dynamic programming (tabling) support is provided
with a single instruction:

© :- table predicate/arity.
© Example :- table knapsack/3.

ä Thread API is POSIX Threads compliant:

© Management - creating, joining , yielding, etc.
© Monitoring - statistics, properties, etc.
© Synchronization - mutex creation, statistics, etc.

ä Write complex dynamic programming applications using the Prolog program-
ming language.

© Procedures in Prolog can be written as logical specifications, which are
closer to mathematical notation.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 24 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Internal Table Space Architecture

TABLE SPACE

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

ä Table Entry: stores generic about the
predicates.

© table knapsack/3.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 25 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Internal Table Space Architecture

TABLE SPACE

Answer
Trie

Structure

Table Entry
Table Entry

Subgoal Trie Structure

Subgoal
Frame
call_i

ä Table Entry: stores generic about the
predicates.

© table knapsack/3.

ä Subgoal Trie Structure: stores the identi-
fier of the computations.

© knapsack(item i, capacity c, Profit).

Parallel Computing Course 14/15, DCC-FCUP, Portugal 26 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Internal Table Space Architecture

TABLE SPACE

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry
Table Entry

Subgoal Trie Structure

ä Table Entry: stores generic about the
predicates.

© table knapsack/3.

ä Subgoal Trie Structure: stores the identi-
fier of the computations.

© knapsack(item i, capacity c, Profit).

ä Answer Trie Structure: stores the answers
of the computations.

© knapsack(item i, capacity c, Profit).

Parallel Computing Course 14/15, DCC-FCUP, Portugal 27 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

NO-SHARING (NS) SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

NO-SHARING (NS) SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

. . .

NO-SHARING (NS) SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

T0

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Thread_1
Subgoal
Frame
call_i

Answer
Trie

Structure

Thread_k
Subgoal
Frame
call_i

Answer
Trie

Structure

Answer
Trie

Structure

COMPLETE
Subgoal
Frame
call_i

ABSTRACTION LAYER

Lock-Free Tries - Designs and Applications Miguel Areias

Table Space - Multithreaded Designs

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

NO-SHARING (NS) SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

. . .

NO-SHARING (NS) SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

T0

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Thread_1
Subgoal
Frame
call_i

Answer
Trie

Structure

Thread_k
Subgoal
Frame
call_i

Answer
Trie

Structure

Answer
Trie

Structure

COMPLETE
Subgoal
Frame
call_i

ABSTRACTION LAYER

. . .

NO-SHARING (NS) SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Table Entry

Subgoal Trie Structure

Table Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Answer
Trie

Structure

COMPLETE
Subgoal
Frame
call_i

ABSTRACTION LAYER

Parallel Computing Course 14/15, DCC-FCUP, Portugal 28 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Random Random

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Random Random1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Compute Consume

Parallel Computing Course 14/15, DCC-FCUP, Portugal 29 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Consume Compute

Lock-Free Tries - Designs and Applications Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Consume Compute

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Consume Consume

Parallel Computing Course 14/15, DCC-FCUP, Portugal 30 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - 0-1 Knapsack Problem

System/Dataset
Threads (p)

Time (T1) Speedup (T1/Tp) Best
1 8 16 24 32 Time

Top-Down Approaches

YAPTD1

D10 18,319 1.96 2.10 2.01 1.89 8,723
D30 17,664 3.41 3.96 3.83 3.62 4,461
D50 17,828 4.72 6.12 6.21 6.07 2,871

YAPTD2

D10 23,816 6.78 11.95 14.81 16.79 1,418
D30 25,049 7.39 13.63 16.85 19.35 1,295
D50 24,866 7.38 13.67 16.78 19.23 1,293

Bottom-Up Approaches

YAPBU

D10 17,054 7.25 13.32 17.12 19.60 0,870
D30 17,005 7.22 13.47 17.29 19.64 0,866
D50 16,550 7.16 13.29 17.04 19.60 0,844

XSBBU

D10 37,338 0.81 0.79 0.73 0.54 37,338
D30 38,245 0.82 0.75 0.75 0.56 38,245
D50 39,100 0.82 0.79 0.73 0.54 39,100

Parallel Computing Course 14/15, DCC-FCUP, Portugal 31 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Experimental Results - LCS Problem

System/Dataset
Threads (p)

Time (T1) Speedup (T1/Tp) Best
1 8 16 24 32 Time

Top-Down Approaches

YAPTD1

D10 30,708 1.53 1.45 1.40 1.29 20,071
D30 30,817 1.53 1.46 1.38 1.28 20,142
D50 30,707 1.52 1.44 1.39 1.27 20,202

YAPTD2

D10 42,556 7.25 13.13 16.26 18.32 2,323
D30 42,511 7.21 13.24 16.19 18.34 2,318
D50 42,631 7.21 13.15 16.27 18.33 2,326

Bottom-Up Approaches

YAPBU

D10 27,253 6.97 10.78 14.88 17.91 1,522
D30 27,045 6.88 11.20 14.74 17.92 1,509
D50 27,102 6.97 11.91 14.51 18.07 1,500

XSBBU

D10 68,255 n.a. n.a. n.a. n.a. 68,255
D30 69,700 n.a. n.a. n.a. n.a. 69,700
D50 70,100 n.a. n.a. n.a. n.a. 70,100

Parallel Computing Course 14/15, DCC-FCUP, Portugal 32 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Conclusions

ä We have showed two lock-free approaches for the implementation of con-
current Tries and compared:

© Both of them against our lock-based implementations.
© The Lock-Free Hash Tries version against other lock-free implementati-

ons.

Lock-Free Tries - Designs and Applications Miguel Areias

Conclusions

ä We have showed two lock-free approaches for the implementation of con-
current Tries and compared:

© Both of them against our lock-based implementations.
© The Lock-Free Hash Tries version against other lock-free implementati-

ons.

ä Used the Lock-Free Hash Tries with Subgoal-Sharing in the YapTab-Mt
framework and extend it with asynchronous parallelism.

© The 0-1 Knapsack and the Longest Common Subsequence problems are
two well-know dynamic programming problems.

Lock-Free Tries - Designs and Applications Miguel Areias

Conclusions

ä We have showed two lock-free approaches for the implementation of con-
current Tries and compared:

© Both of them against our lock-based implementations.
© The Lock-Free Hash Tries version against other lock-free implementati-

ons.

ä Used the Lock-Free Hash Tries with Subgoal-Sharing in the YapTab-Mt
framework and extend it with asynchronous parallelism.

© The 0-1 Knapsack and the Longest Common Subsequence problems are
two well-know dynamic programming problems.

© We have discussed how we were able to scale the execution by taking
advantage of the YapTap-Mt framework.
∗ Top-Down vs Bottom-Up.

Lock-Free Tries - Designs and Applications Miguel Areias

Conclusions

ä We have showed two lock-free approaches for the implementation of con-
current Tries and compared:

© Both of them against our lock-based implementations.
© The Lock-Free Hash Tries version against other lock-free implementati-

ons.

ä Used the Lock-Free Hash Tries with Subgoal-Sharing in the YapTab-Mt
framework and extend it with asynchronous parallelism.

© The 0-1 Knapsack and the Longest Common Subsequence problems are
two well-know dynamic programming problems.

© We have discussed how we were able to scale the execution by taking
advantage of the YapTap-Mt framework.
∗ Top-Down vs Bottom-Up.

© The paper On Scaling Dynamic Programming Problems with a Multi-
threaded Tabling System shows the Prolog code and other interesting
details.

Parallel Computing Course 14/15, DCC-FCUP, Portugal 33 / 34

Lock-Free Tries - Designs and Applications Miguel Areias

Thank You !!!

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA

University of Porto, Portugal
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

Yap Prolog: http://www.dcc.fc.up.pt/∼vsc/Yap

Projects SIBILA: http://cracs.fc.up.pt/

FCT Grant: SFRH/BD/69673/2010

Parallel Computing Course 14/15, DCC-FCUP, Portugal 34 / 34

