Multithreaded Tabling for
Logic Programming

Miguel Areias

Department of Computer Science,
Faculty of Sciences,
University of Porto, Portugal
miguel-areias@dcc.fc.up.pt

QUADRO
DE REFERENCIA
ESTRATEGICO

FCT

UNIAO EUROPEIA = T .
Fundagdo para a Ciéncia e a Tecnologia
MINISTERIO DA EDUCACAQ E CIENCIA

NACIONA
NACIONAL Fundo Europeu
PORTUGALZO07.2013 de Desenvolvimento Regional

[@@PORTO

F~ Fcusoeot cincy
(N UNIVERSIDADE DO PORTO

Multithreaded Tabling for Logic Programming Miguel Areias

Prolog and SLD Resolution

» Prolog systems are known to have good performances and flexibility, but
they are based on SLD resolution, which limits their potential.

» SLD resolution cannot deal properly with the following situations:

¢ Positive Infinite Cycles (insufficient expressiveness)
¢ Negative Infinite Cycles (inconsistency)
¢ Redundant Computations (inefficiency)

path(X, Z2) :- path(X Y), edge(Y, 2.
pat h(X, Z2) :- edge(X 2).

edge(1, 2).
edge(2,1).

[@@roRTO
FACULDADE DE CIENCIAS
FC UNIVERSIDADE DO PORTO 1 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Tabling in Prolog Systems

» Tabling or memoing is an implementation technique that overcomes some of
the limitations of the standard Prolog resolution:

.- table path/2.

pat h(X, Z2) :- path(X Y), edge(Y, 2.
pat h(X, Z2) :- edge(X 2).

edge(1, 2).
edge(2,1).

Multithreaded Tabling for Logic Programming Miguel Areias

Tabling in Prolog Systems

» Tabling or memoing is an implementation technique that overcomes some of
the limitations of the standard Prolog resolution:

.- table path/2.

pat h(X, Z2) :- path(X Y), edge(Y, 2.
pat h(X, Z2) :- edge(X 2).

edge(1, 2).
edge(2,1).

» |Implementations of Tabling are currently available in systems like:

¢ XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog and
more recently in Picat.

» Multithreading combined with Tabling:

¢ XSB Prolog.
¢ Yap Prolog.

[MPORTO
RO SeaRmaee, 2 /23

Multithreaded Tabling - Overview

» A novel Multithreaded Tabling framework aimed to support concurrent
evaluation of tabled logic programs.

YAP System

Mul tithreadi ng Tabl i ng
(Explicit Control) (Inmplicit Control)

Dat a | Khr?ad Conpi | ed Tabl e
Structures nterrace Code Space
(Posi x)

Pr ol og

. . | nt er nal Prol og C
lHHHHIIHI' lIHHHIiHI' ll!!!!!!!!' ‘l!l!l!l!!' 'll!!!l!!'

Multithreaded Tabling for Logic Programming Miguel Areias

Multithreaded Tabling - Overview

» A novel Multithreaded Tabling framework aimed to support concurrent
evaluation of tabled logic programs.

YAP System

Mul tithreaded Tabli ng

Mul tit hreadi ng Tabl i ng
(Explicit Control) (Implicit Control)

Dat a | Khriad Conpi | ed Tabl e
Structures nterrace Code Space
(Posi x)

Pr ol og

: . | nt er nal Pr ol og C
li%iiillil' 'IIEHHIIHII' ll!!!!!!!!' l!l!l!ll!!' l!l!l!ll!!'

Multithreaded Tabling for Logic Programming Miguel Areias

Multithreaded Tabling - Overview

» A novel Multithreaded Tabling framework aimed to support concurrent
evaluation of tabled logic programs.

YAP System

Mul tithreaded Tabli ng

Mul tit hreadi ng Tabl i ng
(Explicit Control) (Implicit Control)

Concurrent Tabl e Spaces
Dat a I n-l';herr?‘aa?ce Corpi | ed All :
Structures : Code Menory ocation
(Posi x)

Lock-Free Tries

Pr ol og

: . | nt er nal Pr ol og C

[@ProRTO
Fo e 3/23

Multithreaded Tabling for Logic Programming Miguel Areias

Table Space - Example

Table Entry
for pred/2

Subgoal Frane
for pred(VARO, VARL)

Multithreaded Tabling for Logic Programming

Table Space - Example

Table Entry
for pred/2

Subgoal Frane Subgoal Frane
for pred(VARO, VARL) for pred(VARO, 1)

[@PORTO

F~ PAcuonoeoe CIENCIAS
C UNIVERSIDADE DO PORTO

Miguel Areias

423

Multithreaded Tabling for Logic Programming Miguel Areias
YapTab-Mt - Internal Architecture
C NO-SHARING (NS) SUBGOAL-SHARING (SS))C FULL-SHARING (FS))
TO T1 T2 .

} T

Subgoal Subgoal
Trie Tri e
Structure Structure

Subgoal
Frame

Subgoal
Frame
cal |l i

cal | i

Answer Answer
Trie Trie
Struct ure Struct ure

Thread Thread
TO T1

Trie Structure

Subgoal

T0O T1 T2

Subgoal
Frame
cal |l _i

Subgoal
Frame
cal |l _i

Trie Structure

Subgoal

Subgoal Entry call i

T0O T1 T2

' Ty

Subgoal

Subgoal
Frame
call i

Sg_Entry —

Frame
call _i

Sg_Entry

Answer
Trie

Answer Answer
Trie Trie
Struct ure Struct ure

ABSTRACTI ON LAYER

¥

Thread
T2

Struct ure

Thread Thread
Tk-1 Tk

Multithreaded Tabling for Logic Programming

YapTab-Mt - Internal Architecture

(

SUBGOAL-SHARING (SS))

m

Subgoal Trie Structure

Subgoal
Frame
cal |l _i

Subgoal
Frame
cal |l _i

Answer Answer
Trie Trie
St ruct ure Struct ure

AFTER
SUBGOAL’ S
COVPLETI ON

Miguel Areias

ABSTRACTI ON LAYER

Thread Thread Thread Thread Thread Thread
TO T1 T2 . Tk-1 Tk

Multithreaded Tabling for Logic Programming

Miguel Areias

YapTab-Mt - Internal Architecture

(

SUBGOAL-SHARING (SS))

m

Subgoal Trie Structure

Conpl et e

Subgoal
Frame
call _i

Answer
Trie
Struct ure

AFTER
SUBGOAL’ S
COVPLETI ON

[@PORTO

F~ Fcuomoeoe cinc
(N UNIVERSIDADE DO PORTO

ABSTRACTI ON LAYER

Thread Thread Thread Thread Thread Thread
TO T1 T2 . Tk-1 Tk

5/ 23

Multithreaded Tabling for Logic Programming Miguel Areias

Concurrent Memory Allocation

» Local and Global Page Heaps per object type.

» Global and Local Void Heaps for the allocation of objects when Local Page
Heaps run empty.

» Global Page Heaps used for the deallocation of shared objects.

» Allocation/Deallocation of objects is always done via Local Page Heaps, except
for the main thread that performs garbage collection on the Global Page Heaps.

| ocal page | ocal page | ocal page | ocal page gl obal page
thread 1 thread 2 thread 2 thread 1

type X data type X data type Y data voi d type X data
structures structures structures structures

[@@roRTO
Fo men 6 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Concurrent Memory Allocation

» Advantages:

¢ Improve data locality.
¢ Reduce synchronization in allocation of new objects.
¢ Reduce the dependency of the operating system’s memory allocator

performance.
'
//I

1
3]
ol o))
:lu g g - —
—_ %) S S E
ol il xle = o -
folclo o > (=] [
0l - I| = N = 0 = N = x
.= s S o = So |o
g (g cn cn cw |c
n |cn| =] =] =]
'ED.E © «© «
ke =y - - -
o| |8 <] <
ch5>0.] he] ©

| | |

Page Zoom

[@PORTO
C UNIVERSIDADE DO PORTO

7/23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Motivation

» Qur initial approach to deal with concurrency was to use locks:

¢ Lock Type:
« Standard Locks.
« Try-Locks.
¢ Lock Location:
« Field per trie node.
« Global array of lock entries.

» However ... lock-based data structures have their performance restrained by
multiple problems, such as: priority inversion, convoying, contention, mutual
exclusion.

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Motivation

» Qur initial approach to deal with concurrency was to use locks:

¢ Lock Type:
« Standard Locks.
« Try-Locks.
¢ Lock Location:
« Field per trie node.
« Global array of lock entries.

» However ... lock-based data structures have their performance restrained by
multiple problems, such as: priority inversion, convoying, contention, mutual
exclusion.

» Take advantage of the CAS (Compare-and-Swap) operation, to reduce the
granularity of the synchronization.

¢ Nowadays can be found on many of the common architectures.

¢ At the heart of many lock-free objects.

[@@roRTO
Fo men 8 /23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Motivation

» Lock-free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

» Several lock-free models do exist:

¢ Shalev and Shavit Split-Ordered Lists
¢ Prokopec Concurrent Tries
¢ Cliff's Non-Blocking Hash Tables.

» However ... none of the existent models is specifically aimed for an environment
with the characteristics of our tabling framework.

¢ Support for the concurrent deletion of nodes increases the complexity of
the models.

[@@roRTO
FACULDADE DE CIENCIAS
FC UNIVERSIDADE DO PORTO g / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

o] [Mg

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

» A trie level is defined by a parent (P) node and at least one child (K) node.

» Only lookup and insert operations are executed.

» |Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

[MPORTO

F~ PAcuomoeoe CIENCIAS
C UNIVERSIDADE DO PORTO

10 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

» Disadvantages:
¢ False-Sharing effects: concurrency points at bucket entries.
¢ Hash Expansion: all bucket entries are expanded regardless of the number

of nodes within their chains.
¢ Bucket arrays with different sizes: ineffective integration in a page-based

memory allocator.

[MPORTO
11 /23

F~ PAcuonoeoe CIENCIAS
C UNIVERSIDADE DO PORTO

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

» Advantages:

¢ Reduce False-Sharing effects: concurrency points are within chain nodes.
¢ Hash Expansion: Only the saturated buckets entries are expanded. We can
also define an upper-bound for number of nodes within a bucket chain.

¢ All Bucket arrays have the same size.

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

» Advantages:

¢ Reduce False-Sharing effects: concurrency points are within chain nodes.
¢ Hash Expansion: Only the saturated buckets entries are expanded. We can

also define an upper-bound for number of nodes within a bucket chain.
¢ All Bucket arrays have the same size.

» Possible Disadvantage:

¢ The search operation might be slower.

PORTO
FC CNVERSIOADE 50 PORTO 12 / 23

Multithreaded Tabling for Logic Programming

Miguel Areias

Experimental Results - Worst Case Scenarios

NS
UICEAEE Initial Current
Min 1.00 0.53
1 Avg 1.00 0.78
Max | 1.00 1.06
Min 1.07 0.66
8 Avg | 235 0.85
Max | 5.06 1.12
Min 1.02 0.85
16 Avg 5.13 0.98
Max | 11.17 1.16
Min 1.24 0.91
24 Avg 8.42 1.15
Max | 18.33 1.72
Min 1.33 1.05
32 Avg | 12.94 1.51
Max | 26.67 2.52
P(’)RTQ

F~ Fcuomoeoe cinc
(N UNIVERSIDADE DO PORTO

13 / 23

Multithreaded Tabling for Logic Programming

Miguel Areias

Experimental Results - Worst Case Scenarios

NS SS
UICEAEE Initial Current | Initial Current
Min 1.00 0.53 0.99 0.54
1 Avg 1.00 0.78 1.11 0.84
Max | 1.00 1.06 1.40 1.04
Min 1.07 0.66 1.00 0.66
8 Avg 2.35 0.85 2.50 0.92
Max | 5.06 1.12 5.37 1.20
Min 1.02 0.85 1.09 0.82
16 Avg 5.13 0.98 5.01 1.04
Max | 11.17 1.16 11.19 1.31
Min 1.24 0.91 1.22 1.02
24 Avg 8.42 1.15 8.02 1.22
Max | 18.33 1.72 18.50 1.81
Min 1.33 1.05 1.32 1.07
32 Avg | 12.94 1.51 11.43 1.54
Max | 26.67 2.52 25.96 2.52
P(’)RTQ

F~ Fcuomoeoe cinc
(N UNIVERSIDADE DO PORTO

14 / 23

Multithreaded Tabling for Logic Programming

Miguel Areias

Experimental Results - Worst Case Scenarios

Threads s 2o i
Initial Current | Initial Current | Initial Current
Min 1.00 0.53 0.99 0.54 1.05 1.01
1 Avg 1.00 0.78 1.11 0.84 1.39 1.30
Max | 1.00 1.06 1.40 1.04 1.73 1.76
Min 1.07 0.66 1.00 0.66 1.07 1.16
8 Avg 2.35 0.85 2.50 0.92 3.58 1.88
Max | 5.06 1.12 5.37 1.20 7.12 2.82
Min 1.02 0.85 1.09 0.82 1.06 1.17
16 Avg 5.13 0.98 5.01 1.04 4.48 1.97
Max | 11.17 1.16 11.19 1.31 0.30 3.14
Min 1.24 0.91 1.22 1.02 1.27 1.16
24 Avg 8.42 1.15 8.02 1.22 5.13 2.06
Max | 18.33 1.72 18.50 1.81 10.56 3.49
Min 1.33 1.05 1.32 1.07 1.36 1.33
32 Avg | 12.94 1.51 11.43 1.54 5.88 2.24
Max | 26.67 2.52 25.96 2.52 12.32 3.71
P(')RTQ

F~ Fcuomoeoe cinc
(N UNIVERSIDADE DO PORTO

15 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Applications

» Used the Subgoal-Sharing design to scale the execution of two well-know
dynamic programming problems that can be found in many domains:

¢ 0-1 Knapsack: logistics, manufacturing, finance or telecommunications.
¢ Longest Common Subsequence (LCS): sequence alignment, which is a
fundamental technique for biologists to investigate the similarity between

Species.
YAP System

Mul tithreaded Tabli ng

Mul tithreadi ng Tabl i ng

Dat a | 'I;hre;ad + Conpi | ed Tabl e
Structures nterrace Code Space
(Posi x)

Paral l el i zati on
Techni ques

Top- Down

Prol og
: . | nt er nal Pr ol og C
ll%iiillil' 'Ii%iiliil' ll%!!!!!!!' l!l!l!ll!!ll 'II!I!II!!'

[@PORTO
FC UNIVERSIDADE 0O PORTO 16 / 23

Bott om Up

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Top-Down)

» An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

» Thread(s) scheduling:

¢ Threads begin their evaluation in the top query.
¢ Disperse threads through the evaluation tree using random branch orders.

Top- Down Eval uati on Thr ead(s)
KS Thr ead
n, C
r ______t [—C]_ ______ : T0
\ \/
I r}cl EIXC
ai | |
® { } { }
— I'nc EXC 'nc EXC
J) J J J
---C_ -, v___I V___L__'
v \/ y
'nc EXC e e = Thr ead
n n PR n . . . n . . . n PR n Tl

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Top-Down)

» An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

» Thread(s) scheduling:

¢ Threads begin their evaluation in the top query.
¢ Disperse threads through the evaluation tree using random branch orders.

Top- Down Eval uati on Thr ead(s)
Thr ead
1 TO
ai | |
® { } { }

- v v v v v
. I nc EXC Il nc I nc EXC

Multithreaded Tabling for Logic Programming

Miguel Areias

0-1 Knapsack Problem (Top-Down)

» An item is included or excluded from the Knapsack whether it belongs or

not to the best solution of the problem.

» Thread(s) scheduling:

¢ Threads begin their evaluation in the top query.
¢ Disperse threads through the evaluation tree using random branch orders.

Top- Down Eval uati on Thr ead(s)

Thr ead
TO

|
v v v v

Thr ead
T1

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Top-Down)

» An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

» Thread(s) scheduling:

¢ Threads begin their evaluation in the top query.
¢ Disperse threads through the evaluation tree using random branch orders.

Top- Down Eval uati on Thr ead(s)
Thr ead
.1 T0
@i
(0]
~l
n
[MPORTO

F~ Fcuosoeoe cincn
(N UNIVERSIDADE DO PORTO 17 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

» Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

» Thread(s) scheduling:

¢ Divide the complete combination in smaller chunks and evaluate them
in the threads.

Bottom Up Eval uation Thr ead(s)
0 0 0 0 0 0 0 0 Thr ead
. 0 T0
€ i 0
]
=] 0 - ---1-0
| 0 v
; KS
n 0 [n, C]
0 c-wW ... c ... C ThVTiad
Capacity

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

» Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

» Thread(s) scheduling:

¢ Divide the complete combination in smaller chunks and evaluate them
in the threads.

Bottom Up Eval uation Thr ead(s)
0 0 0 0 Thr ead
. 0 T0
€ i 0
]
= 0 o-----1-0
KS
n 0 [n, C]
0 c-wW ... c ... C ThrTiad
Capacity

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

» Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

» Thread(s) scheduling:

¢ Divide the complete combination in smaller chunks and evaluate them
in the threads.

Bottom Up Eval uation Thr ead(s)
0 0 0 0 0 0 0 0 Thr ead
. 0 T0
€ i 0
]
=] 0 - ---1-0
| 0 v
; KS
n 0 [n, C]
0 c-wW ... c ... C ThrTiad
Capacity

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

» Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

» Thread(s) scheduling:

¢ Divide the complete combination in smaller chunks and evaluate them
in the threads.

Bottom Up Eval uation Thr ead(s)
0 0 0 0 0 0 0 0 Thr ead
. 0 T0
€ i 0
]
=] 0 o-1---1-0
| 0 v
; KS
n 0 [n, C]
0 c-wW ... c ... C ThrTiad
Capacity

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

» Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

» Thread(s) scheduling:

¢ Divide the complete combination in smaller chunks and evaluate them
in the threads.

Bottom Up Eval uation Thr ead(s)
0 0 0 0 0 0 0 0 Thr ead
j 0 ! . T0
@ | 0 Consunme =™ Conput e
o \ !_ .
=i [o ---1-o
| 0 v
; KS
n 0 [n, C]
. Thr ead
0 C- C C C
V\d

Capacity

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

» Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

» Thread(s) scheduling:

¢ Divide the complete combination in smaller chunks and evaluate them
in the threads.

Bottom Up Eval uation Thr ead(s)
0 0 i 0 o Lwoal o 0 Thr ead
' 0 Consune Consune TO
8 j 0
(D)
pl 0
ﬁ 0
: KS
n 0] [n, C]
0 c-wW ... c C ThrTiad
Capacity

[MPORTO
RO SR, 18 / 23

Multithreaded Tabling for Logic Programming

Miguel Areias

Experimental Results - 0-1 Knapsack Problem

Seq. # Threads (p) Best
System /Dataset Time | Time (Ty) Speedup (T,/T,) Time
(Tseq) 1 8 16 24 32 | (Tpest)
Top-Down Approaches
YAP Dy | 9,508 12,415 n.c. n.c. n.c. n.c. 9,508
D3y | 9,246 12,177 n.c. n.c. n.c. n.c. 9,246
No Random D5, | 9,480 12,589 n.c. n.c. n.c. n.c. 9,480
YAP Do || 14,330 19,316 196 2.12 204 1.95 9,115
D3, || 14,725 19,332 357 4.17 4.06 3.93 4,639
Random D5y || 14,729 18,857 4.74 6.28 6.44 6.41 2,930
YAP Do | 19,667 24,444 6.78 1235 1544 18.19 1,344
D3y | 19,847 25,609 7.15 1383 17.37 20.47 1,251
Random+Offset Dsq || 19,985 25,429 7.27 13.70 17.35 20.62 1,233
Bottom-Up Approaches
D | 12,614 17,940 7.17 1397 18.31 22.15 0,810
YAP Ds3o | 12,364 17,856 7.23 1378 18.26 21.94 0,814
D5y || 12,653 17,499 725 14.01 18.34 21.76 0,804
Dqg (| 32,297 38,965 0.87 0.66 0.62 0.55 || 32,297
XSB D3y | 32,063 38,007 0.86 0.61 0.56 0.53 | 32,063
D5y | 31,893 38,534 0.84 058 0.57 0.57 | 31,893

[@PORTO

F~ Fcusoeoc cincy
(N UNIVERSIDADE DO PORTO

19 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Conclusions

» \We have presented novel approaches for concurrent:

¢ table spaces: No-Sharing, Subgoal-Sharing and Full-Sharing.

¢ memory allocation, using Global and Local Heaps of Pages per type of
data structure.

¢ tries: Lock-Free Tries and Lock-Free Hash Tries.

Multithreaded Tabling for Logic Programming Miguel Areias

Conclusions

» \We have presented novel approaches for concurrent:

¢ table spaces: No-Sharing, Subgoal-Sharing and Full-Sharing.

¢ memory allocation, using Global and Local Heaps of Pages per type of
data structure.

¢ tries: Lock-Free Tries and Lock-Free Hash Tries.

» Experimental results showed that we able to effectively reduce overheads
when our multithreaded tabling system is exposed to worst case scenarios.

Multithreaded Tabling for Logic Programming Miguel Areias

Conclusions

» \We have presented novel approaches for concurrent:

¢ table spaces: No-Sharing, Subgoal-Sharing and Full-Sharing.

¢ memory allocation, using Global and Local Heaps of Pages per type of
data structure.

¢ tries: Lock-Free Tries and Lock-Free Hash Tries.

» Experimental results showed that we able to effectively reduce overheads
when our multithreaded tabling system is exposed to worst case scenarios.

» Shown the potentially of Subgoal-Sharing design with Answer-Sharing, by
scaling the 0-1 Knapsack and the Longest Common Subsequence problems,
which are two well-known dynamic programming problems.

¢ Top-Down vs Bottom-Up.

[PORTO
RO SeaRmaee, 20 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Further Work

» Further work will include:

¢ Integrate this work in the main repository of Yap (currently in
https://github.com /miar/yap-6.3)
¢ Extend the Full-Sharing design to support mode-directed tabling.

Multithreaded Tabling for Logic Programming Miguel Areias

Further Work

» Further work will include:

¢ Integrate this work in the main repository of Yap (currently in
https://github.com /miar/yap-6.3)

¢ Extend the Full-Sharing design to support mode-directed tabling.

¢ Support a concurrent multithreaded tabling model similar to the XSB's shared
tables (without the usurpation procedure).

¢ Extend the concurrent lock-free trie proposals to support the concurrent
delete operation.

[@roRrTO
FC CNIVERSIDADE 50 PORTO 21 / 23

Multithreaded Tabling for Logic Programming

Publications

Miguel Areias

during PhD

Multithreaded Tabling

g

g

g

Y

. TPLP : . ICLP SEPS JSS
' September ' ' July October * To appear
, 2012 : : 2014 2014 | 2015
PhD begin : - j ; Memory Allocation
January ' ‘5 ' ' :
2011 : ICPADS | : ;
. December . ' .
' 2012 ' g ; ' Lock-Free Tries
1 1 1 (!)
—&—F) —{
: : . PADL HLPP © PP
- ' . January July . January
- : + 2014 -
W . @ ; w ; 2014 . 2015 Linear Tabling
TPLP ' SLATE + ComSis .
Jul Yy : June : October :
2011 , 2012 , 2013 '
PhD related: Others

@ 3 Workshop Proceedings

FACU

[@PORTO
ILDADE DE CIENCIAS

o

iC

@ 1 Workshop Proceeding

22 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Thank You !!!

GIDbﬂI—LDCkS . LDCk_BasedL-::ngest—Cumman—Subsequence
Sub—CnmputatinIFsO c I(N F re e _Trl e S LD'CI(— FI’EEdD rTITI'Y— LUEkS

Standard—LgcksYap—PrC)log ParallelizationUser-Level-Memory-Allocator
Subgoal-Sharing ., Tabling" Compareana."

Compare-And-Swap

Concurrency. . EiisehasrNo-Sharing

Garmaier -Hecden «TTiEs rln
Lock-Free—Hash=Tri€sscheduiing Lﬂgic_pr%[ﬁ'FargmingPFOI()g
%Eglﬂratlve—Prngrammlng Worst-Case-Scenarios _Posix-Compliant
u OrEom- L] Th d
o, 'Multi-Threadingiisss.
Linearizable DynamIC—PrOgrammlng Locking-5Schemes

Synchronization

PORTO
FC CNIVERSIDADE 50 PORTO 23 / 23

