
Multithreaded Tabling for

Logic Programming

Miguel Areias

Department of Computer Science,
Faculty of Sciences,

University of Porto, Portugal
miguel-areias@dcc.fc.up.pt

Multithreaded Tabling for Logic Programming Miguel Areias

Prolog and SLD Resolution

ä Prolog systems are known to have good performances and flexibility, but
they are based on SLD resolution, which limits their potential.

ä SLD resolution cannot deal properly with the following situations:

© Positive Infinite Cycles (insufficient expressiveness)
© Negative Infinite Cycles (inconsistency)
© Redundant Computations (inefficiency)

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(1,2).
edge(2,1).

1 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Tabling in Prolog Systems

ä Tabling or memoing is an implementation technique that overcomes some of
the limitations of the standard Prolog resolution:

:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(1,2).
edge(2,1).

Multithreaded Tabling for Logic Programming Miguel Areias

Tabling in Prolog Systems

ä Tabling or memoing is an implementation technique that overcomes some of
the limitations of the standard Prolog resolution:

:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(1,2).
edge(2,1).

ä Implementations of Tabling are currently available in systems like:

© XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog and
more recently in Picat.

ä Multithreading combined with Tabling:

© XSB Prolog.
© Yap Prolog.

2 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Multithreaded Tabling - Overview

ä A novel Multithreaded Tabling framework aimed to support concurrent
evaluation of tabled logic programs.

Prolog

Compiler Engine

Multithreading
(Explicit Control)

Data
Structures

Thread
Interface
(Posix)

Tabling
(Implicit Control)

Compiled
Code

Table
Space

YAP System

Multithreaded Tabling

Prolog
Libraries

Internal
Database

C
Libraries

Multithreaded Tabling for Logic Programming Miguel Areias

Multithreaded Tabling - Overview

ä A novel Multithreaded Tabling framework aimed to support concurrent
evaluation of tabled logic programs.

Prolog

Compiler Engine

Multithreading
(Explicit Control)

Data
Structures

Thread
Interface
(Posix)

Tabling
(Implicit Control)

Compiled
Code

Table
Space

YAP System

Multithreaded Tabling

Prolog
Libraries

Internal
Database

C
Libraries

Prolog

Compiler Engine

Multithreading
(Explicit Control)

Data
Structures

Thread
Interface
(Posix)

Tabling
(Implicit Control)

Compiled
Code

Table
Space

YAP System

Multithreaded Tabling

Prolog
Libraries

Internal
Database

C
Libraries

Multithreaded Tabling for Logic Programming Miguel Areias

Multithreaded Tabling - Overview

ä A novel Multithreaded Tabling framework aimed to support concurrent
evaluation of tabled logic programs.

Prolog

Compiler Engine

Multithreading
(Explicit Control)

Data
Structures

Thread
Interface
(Posix)

Tabling
(Implicit Control)

Compiled
Code

Table
Space

YAP System

Multithreaded Tabling

Prolog
Libraries

Internal
Database

C
Libraries

Prolog

Compiler Engine

Multithreading
(Explicit Control)

Data
Structures

Thread
Interface
(Posix)

Tabling
(Implicit Control)

Compiled
Code

Table
Space

YAP System

Multithreaded Tabling

Prolog
Libraries

Internal
Database

C
Libraries

Prolog

Compiler Engine

Multithreading
(Explicit Control)

Data
Structures

Thread
Interface
(Posix)

Tabling
(Implicit Control)

Compiled
Code

Table
Space

YAP System

Multithreaded Tabling

Prolog
Libraries

Internal
Database

C
Libraries

Concurrent Table Spaces

Lock-Free Tries

Memory Allocation

3 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Table Space - Example

Table Entry
for pred/2

VAR0

1

1 2

Answer Trie

Subgoal Trie

Subgoal Frame
for pred(VAR0,VAR1)

VAR1

Multithreaded Tabling for Logic Programming Miguel Areias

Table Space - Example

Table Entry
for pred/2

VAR0

1

1 2

Answer Trie

Subgoal Trie

Subgoal Frame
for pred(VAR0,VAR1)

VAR1

Table Entry
for pred/2

VAR0

1 1

1 2

Answer Trie Answer Trie

Subgoal Trie

Subgoal Frame
for pred(VAR0,VAR1)

Subgoal Frame
for pred(VAR0,1)

VAR1 1

4 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

YapTab-Mt - Internal Architecture

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

Multithreaded Tabling for Logic Programming Miguel Areias

YapTab-Mt - Internal Architecture

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

SUBGOAL-SHARING (SS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

ANSWER
SHARING

AFTER
SUBGOAL’S
COMPLETION

Multithreaded Tabling for Logic Programming Miguel Areias

YapTab-Mt - Internal Architecture

NO-SHARING (NS)

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 . . .T2

SUBGOAL-SHARING (SS) FULL-SHARING (FS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Subgoal Entry call_i

T0 T1 . . .T2

Answer
Trie

Structure

Sg_Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

Sg_Entry

ABSTRACTION LAYER

SUBGOAL-SHARING (SS)

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

T0 T1 . . .T2

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

ANSWER
SHARING

AFTER
SUBGOAL’S
COMPLETION

SUBGOAL-SHARING (SS)

Table Entry

Subgoal Trie Structure

Table Entry

Thread
T0

Thread
T1

Thread
T2

Thread
. . .

Thread
Tk - 1

Thread
Tk

ABSTRACTION LAYER

ANSWER
SHARING

AFTER
SUBGOAL’S
COMPLETION

Subgoal
Frame
call_i

Answer
Trie

Structure

Complete

5 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Concurrent Memory Allocation

ä Local and Global Page Heaps per object type.

ä Global and Local Void Heaps for the allocation of objects when Local Page
Heaps run empty.

ä Global Page Heaps used for the deallocation of shared objects.

ä Allocation/Deallocation of objects is always done via Local Page Heaps, except
for the main thread that performs garbage collection on the Global Page Heaps.

Memory
Pages

local page
thread 1

type X data
structures

local page
thread 2

type X data
structures

local page
thread 2

type Y data
structures

local page
thread 1

void

global page

type X data
structures

6 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Concurrent Memory Allocation

ä Advantages:

© Improve data locality.
© Reduce synchronization in allocation of new objects.
© Reduce the dependency of the operating system’s memory allocator

performance.

PgEnt_first

P
g
H
d
_
s
t
r
s
_
i
n
_
u
s
e

P
g
H
d
_
f
i
r
s
t
_
s
t
r

P
g
H
d
_
n
e
x
t

P
g
H
d
_
p
r
e
v
i
o
u
s

n
e
x
t

n
e
x
t

n
e
x
t

u
n
u
s
e
d

d
a
t
a

s
t
r
u
c
t
u
r
e

u
n
u
s
e
d

d
a
t
a

s
t
r
u
c
t
u
r
e

u
n
u
s
e
d

d
a
t
a

s
t
r
u
c
t
u
r
e

Page Zoom

Page Entry

7 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Motivation

ä Our initial approach to deal with concurrency was to use locks:

© Lock Type:
∗ Standard Locks.
∗ Try-Locks.

© Lock Location:
∗ Field per trie node.
∗ Global array of lock entries.

ä However ... lock-based data structures have their performance restrained by
multiple problems, such as: priority inversion, convoying, contention, mutual
exclusion.

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Motivation

ä Our initial approach to deal with concurrency was to use locks:

© Lock Type:
∗ Standard Locks.
∗ Try-Locks.

© Lock Location:
∗ Field per trie node.
∗ Global array of lock entries.

ä However ... lock-based data structures have their performance restrained by
multiple problems, such as: priority inversion, convoying, contention, mutual
exclusion.

ä Take advantage of the CAS (Compare-and-Swap) operation, to reduce the
granularity of the synchronization.

© Nowadays can be found on many of the common architectures.
© At the heart of many lock-free objects.

8 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Motivation

ä Lock-free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Several lock-free models do exist:

© Shalev and Shavit Split-Ordered Lists
© Prokopec Concurrent Tries
© Cliff’s Non-Blocking Hash Tables.

ä However ... none of the existent models is specifically aimed for an environment
with the characteristics of our tabling framework.

© Support for the concurrent deletion of nodes increases the complexity of
the models.

9 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Hash
System

P

(d)

.
.
.

K3K2K1

S

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - Internals

ä A trie level is defined by a parent (P) node and at least one child (K) node.

ä Only lookup and insert operations are executed.

ä Insertion of new nodes is done in a chain, until a threshold is achieved and
afterwards a hashing system is included in the trie level.

Trie Level

(a)

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

Hash
System

P

(d)

.
.
.

K3K2K1

S

Trie Level

(a) (b)

K1 K2

P

K1

P

(c)

K1

P

K3K2

.
.
.

P K2K1

(d)

K4K3

S

10 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

.
.
.

P SS

K3 K4

K2K1

K4HN

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

.
.
.

P SS

K3 K4

K2K1

K4HN

.
.
.

P SS

K3 K4

K2K1

K4HN

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

.
.
.

P SS

K3 K4

K2K1

K4HN

.
.
.

P SS

K3 K4

K2K1

K4HN

.
.
.

P
K1

SS

.
.
.

S2*S

HN K3 K4

K1

K5 K2

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

.
.
.

P SS

K3 K4

K2K1

K4HN

.
.
.

P SS

K3 K4

K2K1

K4HN

.
.
.

P
K1

SS

.
.
.

S2*S

HN K3 K4

K1

K5 K2

.
.
.

P SS

.
.
.

S2*S

HN

...

...

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Tries - The First Approach

.
.
.

P SS

K3 K4

K2K1

K4HN

.
.
.

P SS

K3 K4

K2K1

K4HN

.
.
.

P
K1

SS

.
.
.

S2*S

HN K3 K4

K1

K5 K2

.
.
.

P SS

.
.
.

S2*S

HN

...

...

.
.
.

P SS

.
.
.

S2*S

HN

.
.
.

S2*S

.
.
.

S4*S

...

...
ä Disadvantages:

© False-Sharing effects: concurrency points at bucket entries.
© Hash Expansion: all bucket entries are expanded regardless of the number

of nodes within their chains.
© Bucket arrays with different sizes: ineffective integration in a page-based

memory allocator.

11 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

.
.
.

P SS

K3 K4

K2K1

K4

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

.
.
.

P SS

K3 K4

K2K1

K4

P

.
.
.

P
K1

K2

SS

.
.
.

SS

K3 K4

K1

K5 K2

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

.
.
.

P SS

K3 K4

K2K1

K4

P

.
.
.

P
K1

K2

SS

.
.
.

SS

K3 K4

K1

K5 K2

P

.
.
.

P SS

.
.
.

SS

.
.
.

SS

...

...

.
.
.

SS

...

...

...

ä Advantages:

© Reduce False-Sharing effects: concurrency points are within chain nodes.
© Hash Expansion: Only the saturated buckets entries are expanded. We can

also define an upper-bound for number of nodes within a bucket chain.
© All Bucket arrays have the same size.

Multithreaded Tabling for Logic Programming Miguel Areias

Lock-Free Hash Tries - The Second Approach

.
.
.

P SS

K3 K4

K2K1

K4

P

.
.
.

P
K1

K2

SS

.
.
.

SS

K3 K4

K1

K5 K2

P

.
.
.

P SS

.
.
.

SS

.
.
.

SS

...

...

.
.
.

SS

...

...

...

ä Advantages:

© Reduce False-Sharing effects: concurrency points are within chain nodes.
© Hash Expansion: Only the saturated buckets entries are expanded. We can

also define an upper-bound for number of nodes within a bucket chain.
© All Bucket arrays have the same size.

ä Possible Disadvantage:

© The search operation might be slower.

12 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Experimental Results - Worst Case Scenarios

Threads
NS

Initial Current

1
Min 1.00 0.53
Avg 1.00 0.78
Max 1.00 1.06

8
Min 1.07 0.66
Avg 2.35 0.85
Max 5.06 1.12

16
Min 1.02 0.85
Avg 5.13 0.98
Max 11.17 1.16

24
Min 1.24 0.91
Avg 8.42 1.15
Max 18.33 1.72

32
Min 1.33 1.05
Avg 12.94 1.51
Max 26.67 2.52

13 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Experimental Results - Worst Case Scenarios

Threads
NS SS

Initial Current Initial Current

1
Min 1.00 0.53 0.99 0.54
Avg 1.00 0.78 1.11 0.84
Max 1.00 1.06 1.40 1.04

8
Min 1.07 0.66 1.00 0.66
Avg 2.35 0.85 2.50 0.92
Max 5.06 1.12 5.37 1.20

16
Min 1.02 0.85 1.09 0.82
Avg 5.13 0.98 5.01 1.04
Max 11.17 1.16 11.19 1.31

24
Min 1.24 0.91 1.22 1.02
Avg 8.42 1.15 8.02 1.22
Max 18.33 1.72 18.50 1.81

32
Min 1.33 1.05 1.32 1.07
Avg 12.94 1.51 11.43 1.54
Max 26.67 2.52 25.96 2.52

14 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Experimental Results - Worst Case Scenarios

Threads
NS SS FS

Initial Current Initial Current Initial Current

1
Min 1.00 0.53 0.99 0.54 1.05 1.01
Avg 1.00 0.78 1.11 0.84 1.39 1.30
Max 1.00 1.06 1.40 1.04 1.73 1.76

8
Min 1.07 0.66 1.00 0.66 1.07 1.16
Avg 2.35 0.85 2.50 0.92 3.58 1.88
Max 5.06 1.12 5.37 1.20 7.12 2.82

16
Min 1.02 0.85 1.09 0.82 1.06 1.17
Avg 5.13 0.98 5.01 1.04 4.48 1.97
Max 11.17 1.16 11.19 1.31 9.30 3.14

24
Min 1.24 0.91 1.22 1.02 1.27 1.16
Avg 8.42 1.15 8.02 1.22 5.13 2.06
Max 18.33 1.72 18.50 1.81 10.56 3.49

32
Min 1.33 1.05 1.32 1.07 1.36 1.33
Avg 12.94 1.51 11.43 1.54 5.88 2.24
Max 26.67 2.52 25.96 2.52 12.32 3.71

15 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Applications

ä Used the Subgoal-Sharing design to scale the execution of two well-know
dynamic programming problems that can be found in many domains:

© 0-1 Knapsack: logistics, manufacturing, finance or telecommunications.
© Longest Common Subsequence (LCS): sequence alignment, which is a

fundamental technique for biologists to investigate the similarity between
species.

Prolog

Compiler Engine

YAP System

Prolog
Libraries

Internal
Database

C
Libraries

Top-Down

Multithreading

Data
Structures

Thread
Interface
(Posix)

Tabling

Compiled
Code

Table
Space

Multithreaded Tabling

Vs

Bottom-Up

Parallelization
Techniques

16 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Random Random

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Top-Down)

ä An item is included or excluded from the Knapsack whether it belongs or
not to the best solution of the problem.

ä Thread(s) scheduling:

© Threads begin their evaluation in the top query.
© Disperse threads through the evaluation tree using random branch orders.

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Random Random1

n

.

.

.

i

j

KS
[n,C]

...

I
t
e
m
s

Incl
i

Inc
j

Exc
j

Exc
i

Inc
j

Exc
j

Inc
n

Exc
n . . .Inc

n.Inc
n

Exc
n

.

.

.

Top-Down Evaluation

Thread
T0

Thread(s)

Thread
T1

Compute Consume

17 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Consume Compute

Multithreaded Tabling for Logic Programming Miguel Areias

0-1 Knapsack Problem (Bottom-Up)

ä Evaluate the combination of all items with all possible capacities for the
Knapsack. After all combinations are evaluated, the best solution of the
problem has the items that belong to the Knapsack.

ä Thread(s) scheduling:

© Divide the complete combination in smaller chunks and evaluate them
in the threads.

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

T2

Thread(s)

T2

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Consume Compute

0 c-wj c ... C... ...

0

n

.

.

.

i

jI
t
e
m
s

.

.

.
0

0

0

0

0

0 0 0 0 0 0 0

Bottom-Up Evaluation

Thread
T0

KS
[n,C]

Capacity

Thread
T1

Thread(s)

Consume Consume

18 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Experimental Results - 0-1 Knapsack Problem

System/Dataset
Seq. # Threads (p) Best
Time Time (T1) Speedup (T1/Tp) Time
(Tseq) 1 8 16 24 32 (Tbest)

Top-Down Approaches

YAP
D10 9,508 12,415 n.c. n.c. n.c. n.c. 9,508
D30 9,246 12,177 n.c. n.c. n.c. n.c. 9,246

No Random D50 9,480 12,589 n.c. n.c. n.c. n.c. 9,480

YAP
D10 14,330 19,316 1.96 2.12 2.04 1.95 9,115
D30 14,725 19,332 3.57 4.17 4.06 3.93 4,639

Random D50 14,729 18,857 4.74 6.28 6.44 6.41 2,930

YAP
D10 19,667 24,444 6.78 12.35 15.44 18.19 1,344
D30 19,847 25,609 7.15 13.83 17.37 20.47 1,251

Random+Offset D50 19,985 25,429 7.27 13.70 17.35 20.62 1,233
Bottom-Up Approaches

YAP
D10 12,614 17,940 7.17 13.97 18.31 22.15 0,810
D30 12,364 17,856 7.23 13.78 18.26 21.94 0,814
D50 12,653 17,499 7.25 14.01 18.34 21.76 0,804

XSB
D10 32,297 38,965 0.87 0.66 0.62 0.55 32,297
D30 32,063 38,007 0.86 0.61 0.56 0.53 32,063
D50 31,893 38,534 0.84 0.58 0.57 0.57 31,893

19 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Conclusions

ä We have presented novel approaches for concurrent:

© table spaces: No-Sharing, Subgoal-Sharing and Full-Sharing.
© memory allocation, using Global and Local Heaps of Pages per type of

data structure.
© tries: Lock-Free Tries and Lock-Free Hash Tries.

Multithreaded Tabling for Logic Programming Miguel Areias

Conclusions

ä We have presented novel approaches for concurrent:

© table spaces: No-Sharing, Subgoal-Sharing and Full-Sharing.
© memory allocation, using Global and Local Heaps of Pages per type of

data structure.
© tries: Lock-Free Tries and Lock-Free Hash Tries.

ä Experimental results showed that we able to effectively reduce overheads
when our multithreaded tabling system is exposed to worst case scenarios.

Multithreaded Tabling for Logic Programming Miguel Areias

Conclusions

ä We have presented novel approaches for concurrent:

© table spaces: No-Sharing, Subgoal-Sharing and Full-Sharing.
© memory allocation, using Global and Local Heaps of Pages per type of

data structure.
© tries: Lock-Free Tries and Lock-Free Hash Tries.

ä Experimental results showed that we able to effectively reduce overheads
when our multithreaded tabling system is exposed to worst case scenarios.

ä Shown the potentially of Subgoal-Sharing design with Answer-Sharing, by
scaling the 0-1 Knapsack and the Longest Common Subsequence problems,
which are two well-known dynamic programming problems.

© Top-Down vs Bottom-Up.

20 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Further Work

ä Further work will include:

© Integrate this work in the main repository of Yap (currently in
https://github.com/miar/yap-6.3)

© Extend the Full-Sharing design to support mode-directed tabling.

Multithreaded Tabling for Logic Programming Miguel Areias

Further Work

ä Further work will include:

© Integrate this work in the main repository of Yap (currently in
https://github.com/miar/yap-6.3)

© Extend the Full-Sharing design to support mode-directed tabling.
© Support a concurrent multithreaded tabling model similar to the XSB’s shared

tables (without the usurpation procedure).
© Extend the concurrent lock-free trie proposals to support the concurrent

delete operation.

21 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Publications during PhD

Multithreaded Tabling

Memory Allocation

Lock-Free Tries

Linear Tabling

TPLP
July
2011

SEPS
October

2014

HLPP
July
2014

ICLP
July
2014

SLATE
June
2012

ICPADS
December

2012

PADL
January

2014

IJPP
January

2015

ComSis
October

2013

TPLP
September

2012

JSS
To appear

2015

PhD related:

3 Journals

2 Book Series

 3 Workshop Proceedings

Others:

2 Journals

0 Book Series

 1 Workshop Proceeding

PhD begin
January

2011

22 / 23

Multithreaded Tabling for Logic Programming Miguel Areias

Thank You !!!

23 / 23

