Towards a Lock-Free, Fixed-Size
and Persistent Hash Map Design

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA
University of Porto, Portugal

e

SBAC-PAIS 201‘7 |

% SBAC-PAD

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

¢ If K is unique then K uniquely identifies each content.

¢ Some of the most usual operations are:
+ User-level (externally activated by users) : search, insert and remove.

+ Kernel-level (internally activated by thresholds): expansion (and com-
pression, which will not be discussed in this talk).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

¢ If K is unique then K uniquely identifies each content.
¢ Some of the most usual operations are:
+ User-level (externally activated by users) : search, insert and remove.
+ Kernel-level (internally activated by thresholds): expansion (and com-
pression, which will not be discussed in this talk).

» Multithreaded hash maps allow the concurrent execution of multiple ope-
rations.

¢ Each operation runs independently, but at the engine level, all operations
share the underlying data structures.

—{GEacran 1/ 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine

three properties: Lock-Free Progress, Persistent Memory References and
Fixed-Size Data Structures.

Properties / Designs CH|CS|NB|CT
Lock-Free Progress X X v v
Persistent Memory References | X v v X
Fixed-Size Data Structures X X v

% SBAC-PAD

2 /20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine

three properties: Lock-Free Progress, Persistent Memory References and
Fixed-Size Data Structures.

Properties / Designs CH|CS|NB|CT
Lock-Free Progress X X v v
Persistent Memory References g v v X
Fixed-Size Data Structures X X v

» |n this talk we will:

¢ explain why these properties are important in some domains.

—{GEacran 3/20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine

three properties: Lock-Free Progress, Persistent Memory References and
Fixed-Size Data Structures.

Properties / Designs CH | CS
Lock-Free Progress
Persistent Memory References
Fixed-Size Data Structures

X
v

NN =
NSNS

\\\H

>x X X

» |n this talk we will:

¢ explain why these properties are important in some domains.
¢ present a new design (FP) that supports those three properties.

o e

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design

Our Motivation

Miguel Areias and Ricardo Rocha

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non

Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine
three properties: Lock-Free Progress, Persistent Memory References and

Fixed-Size Data Structures.

Properties / Designs

CH CS NB CT FP

Lock-Free Progress
Persistent Memory References
Fixed-Size Data Structures

» |n this talk we will:

¢ explain why these properties are important in some domains.
¢ present a new design (FP) that supports those three properties.
¢ show a performance analysis comparison between all designs.

% SBAC-PAD

X
X
X

X
v

v
v
X

v

X
v

v
v
v

5/ 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

» Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

¢ Atomic operations cannot be interrupted (intrinsically thread safe).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

» Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

¢ Atomic operations cannot be interrupted (intrinsically thread safe).

» At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation, that nowadays can be found in many common
hardware architectures.

—{GEacran 6/ 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

» The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

¢ Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

» The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

¢ Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.
¢ Some hash map designs use disposable memory references.
« Up on expansion, some pairs are copied from the old memory references to
new memory references.
« Pairs are then rehashed using the new memory references.
« When the expansion is complete, the old references are discarded.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

» The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

¢ Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.
¢ Some hash map designs use disposable memory references.
« Up on expansion, some pairs are copied from the old memory references to
new memory references.
« Pairs are then rehashed using the new memory references.
« When the expansion is complete, the old references are discarded.

» The Persistent Memory References property consists in not copying pairs
and not using disposable memory references.

¢ A pair remains always in the same memory references.
¢ The memory references persist with the pair until it is either removed or the
hash map dies.

—XGEAcEAD 7/ 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

» On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

» The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

» On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

» The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

» In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

¢ Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

» On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

» The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

» In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

¢ Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

» The Fixed-Size Data Structures property allows an efficient usage of Tab-
Malloc (page-based), because it knows beforehand the type of data structures
that the hash map will use.

—{GeAca 8 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Properties 1, 2 and 3: Real-World Example

» These properties are useful when the internals of a hash map are directly
accessed by an external system.

» For example a Prolog system with a dynamic programming library that stores
uniquely identifiable computations and their answers (hash maps are used
within the Table Space component).

YAP- Prol og (System Snapshot)

Mul tithreaded Dynam c Progranm ng. Mdul e

Mul tithreaded Dynam ¢ Progranm ng
Li brary Li brary

Dat a I nTt-herrefa;ce Tal\k/Jla‘l\r/ru;)lrlyoC el e
Structures (Posi x) Al | ocat or SRS

Prol og

. . I nt er nal Pr ol og C 3

—{GeAca 9 /20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Hash Trie Structure

» Hash buckets refer to a chaining mechanism that supports key collisions.

» Chain nodes store pairs (Key, Content, (Next_On_Chain, State)). For the
sake of simplicity we will present only (Key, (Next_On_Chain, State)). State

can be valid (V) or invalid (I).

2W
entries

G 10/ 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

v v
3
2> B
entri es
—Bn__ e v v

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

v v
3
2> e
entri es
K3 V v v

% SBAC-PAD

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

¢ Ildentify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

2W
entries

Bk

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

Prev| _Prev |

2W
entries

Bk Bk K1 Y

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

W
2" BK T |« B v
entri es

—X(GEACEAD 12 /20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Pr ev Pr ev Pr ev

W
o e ol e [T]
entries

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Pr ev Pr ev Pr ev

W
o e ol e [T]
entries

Pr ev

== gy

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Pr ev

== [

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Pr ev

== [

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Pr ev

== [

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Pr ev

== [

Pr ev

-E_

Bm

= <]

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Pr ev

== [

Pr ev

V
= <]

% SBAC-PAD

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

» The remove operation has two steps:

4 Invalidate node by changing its state from valid to invalid.
¢ Turn the node invisible to all threads. Find two valid data structures
(previous and next) and bypass the invalid node.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

» The remove operation has two steps:

4 Invalidate node by changing its state from valid to invalid.
¢ Turn the node invisible to all threads. Find two valid data structures
(previous and next) and bypass the invalid node.

—=mrmEeE == tmE e

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

» The remove operation has two steps:

4 Invalidate node by changing its state from valid to invalid.
¢ Turn the node invisible to all threads. Find two valid data structures
(previous and next) and bypass the invalid node.

Check i f
K3 remai ns

valid after

t he bypass
== == A

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

» The remove operation has two steps:

4 Invalidate node by changing its state from valid to invalid.
¢ Turn the node invisible to all threads. Find two valid data structures
(previous and next) and bypass the invalid node.

=="mrmEE ==y)

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

» The remove operation has two steps:

4 Invalidate node by changing its state from valid to invalid.
¢ Turn the node invisible to all threads. Find two valid data structures
(previous and next) and bypass the invalid node.

==mmEE == E

—GEAceD 14 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

= <[H]

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

Adj ust only
valid K1 AV

__Bn V

nodes
)

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

Check i f
K3 remai ns
valid after
adj ust nent

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

» The expand operation has two steps:

¢ Find and begin the expansion in the right-most (or deepest) valid node.
¢ Adjust only valid nodes on the new hash level. Leave the invalid nodes
unchanged (it allows threads to recover to valid data structures).

—GEAceD 15 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

» Hardware: 32 (2 x 16) core AMD with 32 GB of main memory.
» Software: Linux Fedora 20 with Oracle’s Java Development Kit 1.8.

» Benchmarks: Sets of 10° randomized keys with insert, search and remove
operations (each benchmark had 5 warm up runs and 20 standard runs).

» FP design: Expanded with 6 valid nodes and had two configurations (8 and
32 hash bucket levels).

» Podium colors: first place, second place and third place.

—(GEAceAD 16 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design

Miguel Areias and Ricardo Rocha

Performance Analysis %‘i’ ﬁ

» Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (Er,) Speedup Ratio (Er,/ErT,)
(Tp) CH CS NB CT FPs FP3, | CH CS NB CT FPsg FPs,
1st — Insert: 100% Search: 0% Remove: 0%
1 3,238 12,968 [PEIE
38 294 550 2,933 207 174 3.08
16 199 332 2,031 118 117 4.37
24 201 276 1,717 107 96 3.54
32 212 270 1,576 97 89 7.32
2nd — Insert: 0% Search: 100% Remove: 0%
1 3,753 773 720
8 535 120 118
16 327 78 76
24 309 70 064
32 315 78 69
3rd — Insert: 0% Search: 0% Remove: 100%
1 4,144 CLYN 1,585 872
8 595 122 226 172 2.99 3.70 4.25
16 341 77 156 108 5.06 5.86 6.54
24 303 66 132 5.71 6.83 4.48
32 306 64 124 5.81 7.05 5.71
—{GEacran 17 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design

Miguel Areias and Ricardo Rocha

TR

Performance Analysis

» Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (E7T,) Speedup Ratio (Er,/ErT,)
(Tp) CH NB CT FP: FPs, CH CS NB CT FPg FPs,
4th — Insert 60% Search 30% Remove: 10%
2,510 15,342 1,027 B 618
413 4,030 148 142 4.35
247 2,803 115 91 106 5.83
191 2,566 72 74 8.35
178 1,870 90 80 67 9.22

5th — Insert 20%

282
8 51
16 39
24 37
32 38

6th — Insert: 25%

1 279
8 113
16 64
24 42
32 44

% SBAC-PAD

Search: 70%

1,890
282
184
143
145

Remove: 10%

12,370 (LW 757 395
8,517 171 pkyg 74
3,623 87 B 82
3,058 Il 69 64
2,081 74 R 65

Search: 50%

2,059
340
214
180
166

Remove: 25%

12,181 1,087

3,125 159 2.47 3.90 5.30
3,482 104 4.36 3.50 6.29
2,609 87 6.64 4.67 5.64
1,902 83 6.34 6.40 6.67

18 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design

Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» In this work, we have presented the FP hash map design:

¢ Supports concurrent search, insert, remove and expand operations.

¢ Combines three properties.

Properties / Designs CH|CS|NB|CT
Lock-Free Progress X v v
Persistent Memory References v v X
X v

>x X X

Fixed-Size Data Structures

\\\H

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» In this work, we have presented the FP hash map design:

¢ Supports concurrent search, insert, remove and expand operations.
¢ Combines three properties.

Properties / Designs CH | CS
Lock-Free Progress
Persistent Memory References
Fixed-Size Data Structures

X
v

2
@)
\X_l

\\\H

>x X X

» Experimental results show that the design:

¢ Is quite competitive when compared against other state-of-the-art designs

implemented in Java.
¢ Allows different types of configurations aimed for different performances

in memory usage and execution time.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» In this work, we have presented the FP hash map design:

¢ Supports concurrent search, insert, remove and expand operations.
¢ Combines three properties.

Properties / Designs CH | CS
Lock-Free Progress
Persistent Memory References
Fixed-Size Data Structures

X
v

x\\5
<x N9

\\\H

>x X X

» Experimental results show that the design:

¢ Is quite competitive when compared against other state-of-the-art designs
implemented in Java.

¢ Allows different types of configurations aimed for different performances
in memory usage and execution time.

» Further work will include the implementation of the design as a library that can
be easily included in big systems (Yap-Prolog).

—XGEAcEAD 19 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias and Ricardo Rocha
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

FP design : https://github.com/miar/fip
FCT grant: SFRH/BPD/108018/2015

FCT

Fundagdo para a Ciéncia e a Tecnologia

MINISTERIO DA CIENCIA, TECNOLOGIA E ENSING SUPERIOR

—XGEAcEAD 20 / 20

	anm0:

