
Towards a Lock-Free, Fixed-Size

and Persistent Hash Map Design

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA

University of Porto, Portugal

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

ä Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

© If K is unique then K uniquely identifies each content.
© Some of the most usual operations are:
∗ User-level (externally activated by users) : search, insert and remove.
∗ Kernel-level (internally activated by thresholds): expansion (and com-

pression, which will not be discussed in this talk).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

ä Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

© If K is unique then K uniquely identifies each content.
© Some of the most usual operations are:
∗ User-level (externally activated by users) : search, insert and remove.
∗ Kernel-level (internally activated by thresholds): expansion (and com-

pression, which will not be discussed in this talk).

ä Multithreaded hash maps allow the concurrent execution of multiple ope-
rations.

© Each operation runs independently, but at the engine level, all operations
share the underlying data structures.

1 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine
three properties: Lock-Free Progress, Persistent Memory References and
Fixed-Size Data Structures.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3

Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 3 3

2 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine
three properties: Lock-Free Progress, Persistent Memory References and
Fixed-Size Data Structures.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3

Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 3 3

ä In this talk we will:

© explain why these properties are important in some domains.

3 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine
three properties: Lock-Free Progress, Persistent Memory References and
Fixed-Size Data Structures.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3

Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 3 3

ä In this talk we will:

© explain why these properties are important in some domains.
© present a new design (FP) that supports those three properties.

4 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine
three properties: Lock-Free Progress, Persistent Memory References and
Fixed-Size Data Structures.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3

Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 3 3

ä In this talk we will:

© explain why these properties are important in some domains.
© present a new design (FP) that supports those three properties.
© show a performance analysis comparison between all designs.

5 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

ä Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

ä Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

ä Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

© Atomic operations cannot be interrupted (intrinsically thread safe).

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

ä Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

ä Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

© Atomic operations cannot be interrupted (intrinsically thread safe).

ä At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation, that nowadays can be found in many common
hardware architectures.

6 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

ä The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

© Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

ä The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

© Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

© Some hash map designs use disposable memory references.
∗ Up on expansion, some pairs are copied from the old memory references to

new memory references.
∗ Pairs are then rehashed using the new memory references.
∗ When the expansion is complete, the old references are discarded.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

ä The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

© Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

© Some hash map designs use disposable memory references.
∗ Up on expansion, some pairs are copied from the old memory references to

new memory references.
∗ Pairs are then rehashed using the new memory references.
∗ When the expansion is complete, the old references are discarded.

ä The Persistent Memory References property consists in not copying pairs
and not using disposable memory references.

© A pair remains always in the same memory references.
© The memory references persist with the pair until it is either removed or the

hash map dies.

7 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

ä On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

ä The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

ä On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

ä The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

ä In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

© Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

ä On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

ä The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

ä In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

© Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

ä The Fixed-Size Data Structures property allows an efficient usage of Tab-
Malloc (page-based), because it knows beforehand the type of data structures
that the hash map will use.

8 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Properties 1, 2 and 3: Real-World Example

ä These properties are useful when the internals of a hash map are directly
accessed by an external system.

ä For example a Prolog system with a dynamic programming library that stores
uniquely identifiable computations and their answers (hash maps are used
within the Table Space component).

Prolog

Compiler Engine

Multithreaded
Library

Data
Structures

Thread
Interface
(Posix)

YAP-Prolog (System Snapshot)

Multithreaded Dynamic Programming Module

Prolog
Libraries

Internal
Database

C
Libraries

Persistent
Memory

References

Fixed-Size
Data

Structures

Lock-Free
Linearizable

Objects

TabMalloc
Memory

Allocator

Dynamic Programming
Library

Table
Space

9 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Hash Trie Structure

ä Hash buckets refer to a chaining mechanism that supports key collisions.

ä Chain nodes store pairs (Key, Content, (Next On Chain, State)). For the
sake of simplicity we will present only (Key, (Next On Chain, State)). State
can be valid (V) or invalid (I).

.
.
.

S

.
.
.

S

.
.
.

S

.
.
.

S

2
entries

w

K1 V

K5 V

K3 V

K4 V

K2 V

Hi

Hi+1

Hi+1

Hi+2

10 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

2
entries

3

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

2
entries

3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

0 1 1

2
entries

3

BkBn

11 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

Hash Level

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi Hi

V

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

Hash Level

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi Hi

V

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.
Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

12 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk K1

K4 K2

Prev

V

V V VBn

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk K1

K4 K2

Prev

V

V V VBn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

13 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c1 - remove node complete)
(K3 is valid after bypass)

K2 I

Check if
K3 remains
valid after
the bypass

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c1 - remove node complete)
(K3 is valid after bypass)

K2 I

Check if
K3 remains
valid after
the bypass

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c2.1 - remove node incomplete)
(K3 is invalid after bypass)

K2 I K3 VK3 I

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c1 - remove node complete)
(K3 is valid after bypass)

K2 I

Check if
K3 remains
valid after
the bypass

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c2.1 - remove node incomplete)
(K3 is invalid after bypass)

K2 I K3 VK3 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c2.2 - remove node complete)
(Hi is always valid)

K2 I K3 VK3 I

14 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 V

Bm

Bn

K2 V

Check if
K3 remains
valid after
adjustment

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 V

Bm

Bn

K2 V

Check if
K3 remains
valid after
adjustment

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 VK2 V

Bm

Bn

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 V

Bm

Bn

K2 V

Check if
K3 remains
valid after
adjustment

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 VK2 V

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VIK3 VK3 VI

K2 VK2 V

K1 VK2 VK1 V

15 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

ä Hardware: 32 (2 x 16) core AMD with 32 GB of main memory.

ä Software: Linux Fedora 20 with Oracle’s Java Development Kit 1.8.

ä Benchmarks: Sets of 106 randomized keys with insert, search and remove
operations (each benchmark had 5 warm up runs and 20 standard runs).

ä FP design: Expanded with 6 valid nodes and had two configurations (8 and
32 hash bucket levels).

ä Podium colors: first place, second place and third place.

16 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

ä Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CH CS NB CT FP8 FP32 CH CS NB CT FP8 FP32

1st – Insert: 100% Search: 0% Remove: 0%
1 663 3,238 12,968 919 946 542
8 294 550 2,933 207 174 176 2.26 5.89 4.42 4.44 5.44 3.08

16 199 332 2,031 118 117 124 3.33 9.75 6.39 7.79 8.09 4.37
24 201 276 1,717 107 96 153 3.30 11.73 7.55 8.59 9.85 3.54
32 212 270 1,576 97 89 74 3.13 11.99 8.23 9.47 10.63 7.32

2nd – Insert: 0% Search: 100% Remove: 0%
1 155 3,753 225 773 720 379
8 38 535 34 120 118 76 4.08 7.01 6.62 6.44 6.10 4.99

16 27 327 25 78 76 53 5.74 11.48 9.00 9.91 9.47 7.15
24 30 309 22 70 64 53 5.17 12.15 10.23 11.04 11.25 7.15
32 32 315 26 78 69 54 4.84 11.91 8.65 9.91 10.43 7.02

3rd – Insert: 0% Search: 0% Remove: 100%
1 314 4,144 451 1,585 872 582
8 105 595 122 226 172 137 2.99 6.96 3.70 7.01 5.07 4.25

16 62 341 77 156 108 89 5.06 12.15 5.86 10.16 8.07 6.54
24 55 303 66 132 94 130 5.71 13.68 6.83 12.01 9.28 4.48
32 54 306 64 124 101 102 5.81 13.54 7.05 12.78 8.63 5.71

17 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

ä Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CH CS NB CT FP8 FP32 CH CS NB CT FP8 FP32

4th – Insert: 60% Search: 30% Remove: 10%
1 721 2,510 15,342 1,027 873 618
8 150 413 4,030 174 148 142 4.81 6.08 3.81 5.90 5.90 4.35

16 128 247 2,803 115 91 106 5.63 10.16 5.47 8.93 9.59 5.83
24 75 191 2,566 89 72 74 9.61 13.14 5.98 11.54 12.13 8.35
32 72 178 1,870 90 80 67 10.01 14.10 8.20 11.41 10.91 9.22

5th – Insert: 20% Search: 70% Remove: 10%
1 282 1,890 12,370 764 757 395
8 51 282 8,517 171 157 74 5.53 6.70 1.45 4.47 4.82 5.34

16 39 184 3,623 87 72 82 7.23 10.27 3.41 8.78 10.51 4.82
24 37 143 3,058 73 69 64 7.62 13.22 4.05 10.47 10.97 6.17
32 38 145 2,081 74 69 65 7.42 13.03 5.94 10.32 10.97 6.08

6th – Insert: 25% Search: 50% Remove: 25%
1 279 2,059 12,181 1,087 808 440
8 113 340 3,125 159 127 83 2.47 6.06 3.90 6.84 6.36 5.30

16 64 214 3,482 104 82 70 4.36 9.62 3.50 10.45 9.85 6.29
24 42 180 2,609 87 71 78 6.64 11.44 4.67 12.49 11.38 5.64
32 44 166 1,902 83 77 66 6.34 12.40 6.40 13.10 10.49 6.67

18 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

ä In this work, we have presented the FP hash map design:

© Supports concurrent search, insert, remove and expand operations.
© Combines three properties.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3

Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 3 3

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

ä In this work, we have presented the FP hash map design:

© Supports concurrent search, insert, remove and expand operations.
© Combines three properties.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3

Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 3 3

ä Experimental results show that the design:

© Is quite competitive when compared against other state-of-the-art designs
implemented in Java.

© Allows different types of configurations aimed for different performances
in memory usage and execution time.

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

ä In this work, we have presented the FP hash map design:

© Supports concurrent search, insert, remove and expand operations.
© Combines three properties.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3

Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 3 3

ä Experimental results show that the design:

© Is quite competitive when compared against other state-of-the-art designs
implemented in Java.

© Allows different types of configurations aimed for different performances
in memory usage and execution time.

ä Further work will include the implementation of the design as a library that can
be easily included in big systems (Yap-Prolog).

19 / 20

Towards a Lock-Free, Fixed-Size and Persistent Hash Map Design Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias and Ricardo Rocha
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

FP design : https://github.com/miar/ffp
FCT grant: SFRH/BPD/108018/2015

20 / 20

	anm0:

