On Extending a Fixed Size, Persistent and
Lock-Free

Hash Map Design to Store Sorted Keys

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA
University of Porto, Portugal

e s

= = - RO
: : Al Syvirmrm
) Irﬂhiﬂdﬂﬁa;h¢_ 1S L
" i s
N

The 16th IEE
G 55 T h App

IEEE ISPA

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

¢ If K is unique then K uniquely identifies each content.

¢ Some of the most usual operations are:
+ User-level (externally activated by users): search, insert and remove.

+ Kernel-level (internally activated by thresholds): expansion (and com-
pression, which will not be discussed in this talk).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

¢ If K is unique then K uniquely identifies each content.
¢ Some of the most usual operations are:
+ User-level (externally activated by users): search, insert and remove.
+ Kernel-level (internally activated by thresholds): expansion (and com-
pression, which will not be discussed in this talk).

» Multithreaded hash maps allow the concurrent execution of multiple ope-
rations.

¢ Each operation runs independently, but at the engine level, all operations
share the underlying data structures.

IEEE ISPA 1/21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH|CS|NB|CT
Lock-Free Progress X v v v
Persistent Memory References | X v v X
Fixed-Size Data Structures X X X
Store Sorted Keys X v X X

IEEE ISPA 2/21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH|CS|NB|CT
Lock-Free Progress X v v v
Persistent Memory References [P v v X
Fixed-Size Data Structures X X X
Store Sorted Keys X v X X

» |n this talk we will:

¢ explain why these properties are important in some domains.

IEEE ISPA 3/21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH|CS|NB|CT
Lock-Free Progress X v v v v
Persistent Memory References | X v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v

» |n this talk we will:

¢ explain why these properties are important in some domains.
¢ present our novel design (FP) that supports those four properties.

IEEE ISPA 4 /21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

» However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH CS NB CT FP

Lock-Free Progress X v v v v
Persistent Memory References | X v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v

» |n this talk we will:

¢ explain why these properties are important in some domains.
¢ present our novel design (FP) that supports those four properties.
¢ show a performance analysis comparison (we will skip NB).

IEEE ISPA 5/21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

» Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

¢ Atomic operations cannot be interrupted (intrinsically thread safe).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

» Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

¢ Atomic operations cannot be interrupted (intrinsically thread safe).

» At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation, that nowadays can be found in many common
hardware architectures.

IEEE ISPA 6 /21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

» The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

¢ Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

» The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

¢ Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.
¢ Some hash map designs use disposable memory references.
« Up on expansion, some pairs are copied from the old memory references to
new memory references.
« Pairs are then rehashed using the new memory references.
« When the expansion is complete, the old references are discarded.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

» The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

¢ Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.
¢ Some hash map designs use disposable memory references.
« Up on expansion, some pairs are copied from the old memory references to
new memory references.
« Pairs are then rehashed using the new memory references.
« When the expansion is complete, the old references are discarded.

» The Persistent Memory References property consists in not copying pairs
and not using disposable memory references.

¢ A pair remains always in the same memory references.
¢ The memory references persist with the pair until it is either removed or the
hash map dies.

IEEE ISPA 7/21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

» On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

» The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

» On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

» The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

» In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

¢ Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

» On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

» The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

» In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

¢ Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

» The Fixed-Size Data Structures property allows an efficient usage of Tab-
Malloc (page-based), because it knows beforehand the type of data structures
that the hash map will use.

IEEE ISPA 8 /21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 4: Store Sorted Keys

» |s the process of storing keys in a sequence with is ordered according with
some criteria.

¢ A dictionary is an example of a resource that stores sorted items
(keys/strings) according with their lexicographical order.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 4: Store Sorted Keys

» |s the process of storing keys in a sequence with is ordered according with
some criteria.

¢ A dictionary is an example of a resource that stores sorted items
(keys/strings) according with their lexicographical order.

» According with Donald Knuth (The Art of Computer Programming [2Ed - Vol
3]), “... the order in which items are stored in computer memory often has a
profound influence on the speed and simplicity of algorithms that manipulate
those items.”

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 4: Store Sorted Keys

» |s the process of storing keys in a sequence with is ordered according with
some criteria.

¢ A dictionary is an example of a resource that stores sorted items
(keys/strings) according with their lexicographical order.

» According with Donald Knuth (The Art of Computer Programming [2Ed - Vol
3]), “... the order in which items are stored in computer memory often has a
profound influence on the speed and simplicity of algorithms that manipulate
those items.”

» Some of the advantages of using sorted keys are:

¢ efficient searches. Enables the cut of the search space, in tree-based data
structures.

¢ processing keys in a defined order. Suitable for non-exact match searches,
such as finding all keys in an interval.

IEEE ISPA 9/21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Properties 1, 2, 3 and 4: Real-World Example

» These properties are useful when the internals of a hash map are directly
accessed by an external module.

» For example a Prolog system with a dynamic programming library that stores
uniquely identifiable computations and their answers (hash maps are used
within the Table Space component).

YAP- Prol og (System Snapshot) Lock- Fr ee

Li neari zabl e

Mul tithreaded Dynam c Progranm ng. Modul e

Mul tithreaded Dynam ¢ Progranm ng
Li brary Li brary

W g e e N
Structures (Posi X) Al | ocat or Space Structures

o
o
ot
o
o
ot
o
o
e

Prol og

| nt er nal Prol og c 2 Per si st ent
Conpi | er Engi ne Dat abase Libraries Libraries I M=l S
g Ref er ences

IEEE ISPA 10/ 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Key ldeas

» Combines a hash trie structure (index keys) with a separate chaining mecha-
nism (deal with key collisions).

¢ Keys are sorted in the hash trie structure, but not sorted in the separate
chaining mechanism.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Key ldeas

» Combines a hash trie structure (index keys) with a separate chaining mecha-
nism (deal with key collisions).

¢ Keys are sorted in the hash trie structure, but not sorted in the separate
chaining mechanism.

» On each hash level, a key is inserted in a hash bucket using its high-order bits
(sorting upon insertion).

¢ A hash level is expanded when a key must be inserted in a hash bucket
chain that is full.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Key ldeas

» Combines a hash trie structure (index keys) with a separate chaining mecha-
nism (deal with key collisions).

¢ Keys are sorted in the hash trie structure, but not sorted in the separate
chaining mechanism.

» On each hash level, a key is inserted in a hash bucket using its high-order bits
(sorting upon insertion).

¢ A hash level is expanded when a key must be inserted in a hash bucket
chain that is full.

» Expansion properties:

¢ XOR operations detect the high-order bits where the keys differ.
¢ Keys remain sorted using back expansions to expand keys in shallow levels
and front expansions to expand keys in deep levels.

IEEE ISPA 11 /21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Hash Trie Structure

» Hash buckets refer to a chaining mechanism that supports key collisions.

» Chain nodes store pairs (Key, Content, (Next_On_Chain, State)). For the
sake of simplicity we will present only (Key, (Next_On_Chain, State)). State

can be valid (V) or invalid (I).

2W
entries

IEEE ISPA 12 /21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

B K
K1 K2

By __ Iﬁi\/ ‘HHIV
23

. __Bx__|
entries
Bz __FREY IHHV' Iai\/

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

B

23

. __BXx__|
entries

IEEE ISPA

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Ildentify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

entries

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

2W
entries

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

entries

IEEE ISPA 14 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

P
B

AN & k1 ¥ v

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys

entri es

Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

P
1
_Bx__|

K1 \Y%

P
B

<]

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

P
B

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

<[
<]

IEEE ISPA

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Back Expansion

P
B

AN & k1 ¥ v

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

entri es

The FP Design - Back Expansion

K1 \Y%

P
B

<}

@@
<]

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

entri es

The FP Design - Back Expansion

K1 \Y%

P
B

<}

@@
<]

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Back Expansion

P P
B B

2 k1 ¥ v

@@
<]

IEEE ISPA

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Performance Analysis

» Hardware: 32 (2 % 16) core AMD with 32 GB of main memory.
» Software: Linux Fedora 20 with Oracle’s Java Development Kit 10.0.1.

» Benchmarks: Sets of 3*10° randomized keys with insert, search and remove
operations (each benchmark had 5 warm up runs and 20 standard runs).

» FP design: Expanded with 3 valid nodes and each hash bucket had 16 entries.

» Podium colors: first place, second place and third place.

IEEE ISPA 17 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys

Performance Analysis

Miguel Areias and Ricardo Rocha

TR

» Execution time (lower is better) Speedup Ratio (higher is better

Threads Execution Time (E7,) Speedup Ratio (E7,/ET,)
(Tp) CH CS CT FPNSorted FPSorted CH CS CT FPNSOT‘ted FPSorted
1st — Insert: 100% Remove: 0% Search (existing items): 0% Search (missing items): 0%
1 2,079 3,285 1,304 1,019
8 771 398 697 EIw 3.71 4.41 : 1.46
16 729 348 573 313 608 | 1.60 BRI 5.73 . 1.68
24 JKE 298 588 366 623 | 1.28 BRI 5.59 : 1.64
32 869 276 531 317 765 | 1.34 B 6.19 . 1.33

2nd - Insert: 0% Remove: 100% Search (existing items): 0%

1 : : 2,174 1,067
8 470 . :
16 350 204 pw(\N 5.68
24 424 428 EKNA@ 6.67
32 I 3.81 ENGRIG
3rd — Insert: 0% Remove: 0% Search (existing items): 100%
1 RGN 2715 2,043
8 79 451 359 2.51
16 82 319 228 2.41
24 94 325 196 2.11
32 90 409 230 2.20
IEEE ISPA

Search (missing items): 0%

6.88 . 1.69
9.24 . 3.63
9.58 . 2.49

12.51 . 5.59

Search (missing items): 0%

2.17
1.91
1.88
1.92

18 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Performance Analysis

» Execution time (lower is better) Speedup Ratio (higher is better

Threads Execution Time (Er,) Speedup Ratio (Er,/ErT,)
(Tp) CH CS CT FPNSorted FPSO'r‘ted CH CS CT FPNSorted

TR

FPSorted

4th — Insert: 0% Remove: 0%
1 IKEN 1,874 1,258 815
8 55 301 241 142 : 6.23 5.22
16 N 201 180 107 : 9.32 6.99
24 (I 202 142 113 : 9.28 8.86
32 70 252 161 103 : 744 7.81

5th — Insert: 50% Remove: 0% Search (existing items): 25%
1 3,717 2,736 1,259 786
8 688 493 272 i 1.21 6.90 5.55
16 ‘YOl 341 301 238 WGl 10.90 9.09
24 519 WAL 261 222 I 12.60 10.48
32 395 307 236 135 2.11 [V R

6th — Insert: 20% Remove: 10%

1

8 2.76

16 5.74

24 4.76

32 5.26
IEEE ISPA

Search (existing items): 50% Search (missing items): 50%

2.82
3.00
2.62
3.24

Search (missing items): 25%

1.98
2.24
2.02
1.37

Search (existing items): 35% Search (missing items): 35%

1.84
1.60
1.83
2.66

19 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» In this work, we have presented the FP hash map design:

¢ Supports concurrent search, insert, remove and expand operations.
¢ Combines four properties.

Properties / Designs CH|CS|NB|CT =
Lock-Free Progress X X v |/
Persistent Memory References g v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» In this work, we have presented the FP hash map design:

¢ Supports concurrent search, insert, remove and expand operations.
¢ Combines four properties.

Properties / Designs CH|CS|NB|CT =
Lock-Free Progress X X v |/
Persistent Memory References g v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v

» Experimental results show that the design:

¢ Is quite competitive when compared against other state-of-the-art designs
implemented in Java.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» In this work, we have presented the FP hash map design:

¢ Supports concurrent search, insert, remove and expand operations.
¢ Combines four properties.

Properties / Designs CH|CS|NB|CT =
Lock-Free Progress X X v |/
Persistent Memory References g v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v

» Experimental results show that the design:

¢ Is quite competitive when compared against other state-of-the-art designs
implemented in Java.

» Further work will include the implementation of the design as a library that can
be easily included in big systems (Yap-Prolog).

IEEE ISPA 20/ 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias and Ricardo Rocha
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

FP design: https://github.com/miar/ffps
FCT grant: SFRH/BPD/108018/2015

£

INESC

P O RT O Fundagdo para a Ciéncia e a Tecnologia

MINISTERIO DA CIENCIA, TECNOLOGIA E ENSING SUPERIOR

IEEE ISPA 21 /21

	anm0:

