
On Extending a Fixed Size, Persistent and
Lock-Free

Hash Map Design to Store Sorted Keys

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA

University of Porto, Portugal

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

ä Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

© If K is unique then K uniquely identifies each content.
© Some of the most usual operations are:
∗ User-level (externally activated by users): search, insert and remove.
∗ Kernel-level (internally activated by thresholds): expansion (and com-

pression, which will not be discussed in this talk).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

ä Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

© If K is unique then K uniquely identifies each content.
© Some of the most usual operations are:
∗ User-level (externally activated by users): search, insert and remove.
∗ Kernel-level (internally activated by thresholds): expansion (and com-

pression, which will not be discussed in this talk).

ä Multithreaded hash maps allow the concurrent execution of multiple ope-
rations.

© Each operation runs independently, but at the engine level, all operations
share the underlying data structures.

1 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 3 3 3 3
Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 7 3
Store Sorted Keys 7 3 7 7 3

2 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 3 3 3 3
Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 7 3
Store Sorted Keys 7 3 7 7 3

ä In this talk we will:

© explain why these properties are important in some domains.

3 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 3 3 3 3
Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 7 3
Store Sorted Keys 7 3 7 7 3

ä In this talk we will:

© explain why these properties are important in some domains.
© present our novel design (FP) that supports those four properties.

4 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Our Motivation
ä There are several hash map designs that already support efficiently mul-

tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB) and Concurrent Tries (CT).

ä However, to the best of our knowledge, non of the existent designs combine four
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures and Store Sorted Keys.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 3 3 3 3
Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 7 3
Store Sorted Keys 7 3 7 7 3

ä In this talk we will:

© explain why these properties are important in some domains.
© present our novel design (FP) that supports those four properties.
© show a performance analysis comparison (we will skip NB).

5 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

ä Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

ä Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

ä Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

© Atomic operations cannot be interrupted (intrinsically thread safe).

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 1: Lock-Free Progress

ä Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as deadlocks (threads delaying each other perpetual-
ly) and convoying (a thread holding a lock is descheduled by an interrupt).

ä Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

© Atomic operations cannot be interrupted (intrinsically thread safe).

ä At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation, that nowadays can be found in many common
hardware architectures.

6 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

ä The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

© Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

ä The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

© Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

© Some hash map designs use disposable memory references.
∗ Up on expansion, some pairs are copied from the old memory references to

new memory references.
∗ Pairs are then rehashed using the new memory references.
∗ When the expansion is complete, the old references are discarded.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 2: Persistent Memory References

ä The expand operation is crucial for a hash map to maintain an efficient access
to pairs.

© Occurs whenever the internal hashing data structures become saturated
due to multiple key collisions.

© Some hash map designs use disposable memory references.
∗ Up on expansion, some pairs are copied from the old memory references to

new memory references.
∗ Pairs are then rehashed using the new memory references.
∗ When the expansion is complete, the old references are discarded.

ä The Persistent Memory References property consists in not copying pairs
and not using disposable memory references.

© A pair remains always in the same memory references.
© The memory references persist with the pair until it is either removed or the

hash map dies.

7 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

ä On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

ä The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

ä On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

ä The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

ä In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

© Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 3: Fixed-Size Data Structures

ä On the expand operation, some hash map designs duplicate the size of their
internal hashing data structures.

ä The Fixed-Size Data Structures property consists in using always data struc-
tures of the same size.

ä In ICPADS’12 we presented the TabMalloc, a user-level page-based concur-
rent memory allocator.

© Data structures of the same type (and consequently of the same size) are
pre-allocated within pages.

ä The Fixed-Size Data Structures property allows an efficient usage of Tab-
Malloc (page-based), because it knows beforehand the type of data structures
that the hash map will use.

8 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 4: Store Sorted Keys

ä Is the process of storing keys in a sequence with is ordered according with
some criteria.

© A dictionary is an example of a resource that stores sorted items
(keys/strings) according with their lexicographical order.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 4: Store Sorted Keys

ä Is the process of storing keys in a sequence with is ordered according with
some criteria.

© A dictionary is an example of a resource that stores sorted items
(keys/strings) according with their lexicographical order.

ä According with Donald Knuth (The Art of Computer Programming [2Ed - Vol
3]), “... the order in which items are stored in computer memory often has a
profound influence on the speed and simplicity of algorithms that manipulate
those items.”

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Property 4: Store Sorted Keys

ä Is the process of storing keys in a sequence with is ordered according with
some criteria.

© A dictionary is an example of a resource that stores sorted items
(keys/strings) according with their lexicographical order.

ä According with Donald Knuth (The Art of Computer Programming [2Ed - Vol
3]), “... the order in which items are stored in computer memory often has a
profound influence on the speed and simplicity of algorithms that manipulate
those items.”

ä Some of the advantages of using sorted keys are:

© efficient searches. Enables the cut of the search space, in tree-based data
structures.

© processing keys in a defined order. Suitable for non-exact match searches,
such as finding all keys in an interval.

9 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Properties 1, 2, 3 and 4: Real-World Example

ä These properties are useful when the internals of a hash map are directly
accessed by an external module.

ä For example a Prolog system with a dynamic programming library that stores
uniquely identifiable computations and their answers (hash maps are used
within the Table Space component).

Prolog

Compiler Engine

Multithreaded
Library

Data
Structures

Thread
Interface
(Posix)

YAP-Prolog (System Snapshot)

Multithreaded Dynamic Programming Module

Prolog
Libraries

Internal
Database

C
Libraries

Fixed-Size
Data

Structures

Lock-Free
Linearizable

Objects

TabMalloc
Memory

Allocator

Dynamic Programming
Library

Table
Space

Persistent
Memory

References

Store
Sorted
Keys

10 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Key Ideas

ä Combines a hash trie structure (index keys) with a separate chaining mecha-
nism (deal with key collisions).

© Keys are sorted in the hash trie structure, but not sorted in the separate
chaining mechanism.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Key Ideas

ä Combines a hash trie structure (index keys) with a separate chaining mecha-
nism (deal with key collisions).

© Keys are sorted in the hash trie structure, but not sorted in the separate
chaining mechanism.

ä On each hash level, a key is inserted in a hash bucket using its high-order bits
(sorting upon insertion).

© A hash level is expanded when a key must be inserted in a hash bucket
chain that is full.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Key Ideas

ä Combines a hash trie structure (index keys) with a separate chaining mecha-
nism (deal with key collisions).

© Keys are sorted in the hash trie structure, but not sorted in the separate
chaining mechanism.

ä On each hash level, a key is inserted in a hash bucket using its high-order bits
(sorting upon insertion).

© A hash level is expanded when a key must be inserted in a hash bucket
chain that is full.

ä Expansion properties:

© XOR operations detect the high-order bits where the keys differ.
© Keys remain sorted using back expansions to expand keys in shallow levels

and front expansions to expand keys in deep levels.

11 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Hash Trie Structure

ä Hash buckets refer to a chaining mechanism that supports key collisions.

ä Chain nodes store pairs (Key, Content, (Next On Chain, State)). For the
sake of simplicity we will present only (Key, (Next On Chain, State)). State
can be valid (V) or invalid (I).

.
.
.

S

.
.
.

S

.
.
.

S

.
.
.

S

2
entries

w

K3 V

K0 V

K2 V

K1 V

K4 V

Hi

Hj

Hj

Hk

12 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

Hash Level

.
.
.

.
.
.

Bk

.
.
.

K3

Bm

Bx

K4 K5V V VBz

K2 K1 VVBy

Hash

Function
Hash(K3) = K3

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bz
(Hk)

Bx
(Hi)

2
entries

3

K1
i

K2
k

Hi Hk

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

Hash Level

.
.
.

.
.
.

Bk

.
.
.

K3

Bm

Bx

K4 K5V V VBz

K2 K1 VVBy

Hash

Function
Hash(K3) = K3

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bz
(Hk)

Bx
(Hi)

2
entries

3

K1
i

K2
k

Hi Hk Hash Level

.
.
.

.
.
.

Bx

.
.
.

K3

Bm

K4 K5V V VBn

K2 K1 VVBy

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bx
(Hi)

2
entries

3

BkBz

Bz
(Hk)

0 1 1
Hash

Function
Hash(K3) = K3

K1
i

K2
k

Hi Hk

13 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V

Hi

K1
i

PrevPxPi

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V

Hi

K1
i

PrevPxPi
Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

14 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

.
.
.

.
.
.

Bk
.
.
.

K3

Bx K1

K4

V

V VBz K5 V

By K2 V

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Front Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

.
.
.

.
.
.

Bk
.
.
.

K3

Bx K1

K4

V

V VBz K5 V

By K2 V

Hash Level

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

K3 V

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

.
.
.

.
.
.

Bx
.
.
.

K3

Bm

K4 K5V V VBz

K2 K1 VVBy

15 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Back Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Back Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hk

K2
k

PrevPxPk
.
.
.

K3

Bm

K4 K5V V VBz

K2 K1 VVBy

.
.
.

.
.
.

Bx

Hi

K1
i

PrevPxPi

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Back Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hk

K2
k

PrevPxPk
.
.
.

K3

Bm

K4 K5V V VBz

K2 K1 VVBy

.
.
.

.
.
.

Bx

Hi

K1
i

PrevPxPi

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hk

K2
k

PrevPxPk
.
.
.

K3

Bm

K4 K5V V VBz

K2 K1 VVBy

.
.
.

.
.
.

Bx

Hi

K1
i

PrevPxPi
Hj

K0
j

PrevPxPj

.
.
.

Bm

Bz

By

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

The FP Design - Back Expansion

K1 K2 K3

.
.
.

.
.
.

.
.
.V V VBx

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPxPk

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hk

K2
k

PrevPxPk
.
.
.

K3

Bm

K4 K5V V VBz

K2 K1 VVBy

.
.
.

.
.
.

Bx

Hi

K1
i

PrevPxPi

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hk

K2
k

PrevPxPk
.
.
.

K3

Bm

K4 K5V V VBz

K2 K1 VVBy

.
.
.

.
.
.

Bx

Hi

K1
i

PrevPxPi
Hj

K0
j

PrevPxPj

.
.
.

Bm

Bz

By

Hash Level

(a)

.
.
.

Bx

.
.
.

Hi

-
i

PrevPxPi

2
entries

w

(b)

K1

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

Hk

K2
k

PrevPxPk
.
.
.

K3

Bm

K4 K5V V VBz

K2 K1 VVBy

.
.
.

.
.
.

Bx

Hi

K1
i

PrevPxPi
Hj

K0
j

PrevPxPj

.
.
.

Bm

Bz

By K2 VK0 V

16 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Performance Analysis

ä Hardware: 32 (2 ∗ 16) core AMD with 32 GB of main memory.

ä Software: Linux Fedora 20 with Oracle’s Java Development Kit 10.0.1.

ä Benchmarks: Sets of 3∗106 randomized keys with insert, search and remove
operations (each benchmark had 5 warm up runs and 20 standard runs).

ä FP design: Expanded with 3 valid nodes and each hash bucket had 16 entries.

ä Podium colors: first place, second place and third place.

17 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Performance Analysis

ä Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CH CS CT FPNSorted FPSorted CH CS CT FPNSorted FPSorted

1st – Insert: 100% Remove: 0% Search (existing items): 0% Search (missing items): 0%
1 1,166 2,079 3,285 1,304 1,019
8 771 560 745 398 697 1.51 3.71 4.41 3.28 1.46

16 729 348 573 313 608 1.60 5.97 5.73 4.17 1.68
24 913 298 588 366 623 1.28 6.98 5.59 3.56 1.64
32 869 276 531 317 765 1.34 7.53 6.19 4.11 1.33

2nd – Insert: 0% Remove: 100% Search (existing items): 0% Search (missing items): 0%
1 385 2,983 4,178 2,174 1,067
8 105 905 607 470 633 3.67 3.30 6.88 4.63 1.69

16 104 525 452 350 294 3.70 5.68 9.24 6.21 3.63
24 102 447 436 424 428 3.77 6.67 9.58 5.13 2.49
32 101 455 334 343 191 3.81 6.56 12.51 6.34 5.59

3rd – Insert: 0% Remove: 0% Search (existing items): 100% Search (missing items): 0%
1 198 2,715 2,043 977 327
8 79 451 359 196 151 2.51 6.02 5.69 4.98 2.17

16 82 319 228 163 171 2.41 8.51 8.96 5.99 1.91
24 94 325 196 172 174 2.11 8.35 10.42 5.68 1.88
32 90 409 230 162 170 2.20 6.64 8.88 6.03 1.92

18 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Performance Analysis

ä Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CH CS CT FPNSorted FPSorted CH CS CT FPNSorted FPSorted

4th – Insert: 0% Remove: 0% Search (existing items): 50% Search (missing items): 50%
1 135 1,874 1,258 815 288
8 55 301 241 142 102 2.45 6.23 5.22 5.74 2.82

16 59 201 180 107 96 2.29 9.32 6.99 7.62 3.00
24 66 202 142 113 110 2.05 9.28 8.86 7.21 2.62
32 70 252 161 103 89 1.93 7.44 7.81 7.91 3.24

5th – Insert: 50% Remove: 0% Search (existing items): 25% Search (missing items): 25%
1 832 3,717 2,736 1,259 786
8 688 539 493 272 396 1.21 6.90 5.55 4.63 1.98

16 475 341 301 238 351 1.75 10.90 9.09 5.29 2.24
24 519 295 261 222 390 1.60 12.60 10.48 5.67 2.02
32 395 307 236 135 573 2.11 12.11 11.59 9.33 1.37

6th – Insert: 20% Remove: 10% Search (existing items): 35% Search (missing items): 35%
1 505 3,709 2,457 996 497
8 183 566 396 206 270 2.76 6.55 6.20 4.83 1.84

16 88 334 250 145 310 5.74 11.10 9.83 6.87 1.60
24 106 283 247 185 271 4.76 13.11 9.95 5.38 1.83
32 96 298 244 146 187 5.26 12.45 10.07 6.82 2.66

19 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Conclusions and Further Work

ä In this work, we have presented the FP hash map design:

© Supports concurrent search, insert, remove and expand operations.
© Combines four properties.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3
Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 7 3
Store Sorted Keys 7 3 7 7 3

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Conclusions and Further Work

ä In this work, we have presented the FP hash map design:

© Supports concurrent search, insert, remove and expand operations.
© Combines four properties.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3
Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 7 3
Store Sorted Keys 7 3 7 7 3

ä Experimental results show that the design:

© Is quite competitive when compared against other state-of-the-art designs
implemented in Java.

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Conclusions and Further Work

ä In this work, we have presented the FP hash map design:

© Supports concurrent search, insert, remove and expand operations.
© Combines four properties.

Properties / Designs CH CS NB CT FP
Lock-Free Progress 7 7 3 3 3
Persistent Memory References 7 3 3 7 3
Fixed-Size Data Structures 7 - 7 7 3
Store Sorted Keys 7 3 7 7 3

ä Experimental results show that the design:

© Is quite competitive when compared against other state-of-the-art designs
implemented in Java.

ä Further work will include the implementation of the design as a library that can
be easily included in big systems (Yap-Prolog).

20 / 21

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias and Ricardo Rocha
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

FP design: https://github.com/miar/ffps
FCT grant: SFRH/BPD/108018/2015

21 / 21

	anm0:

