
A Small Ride Towards Lock-Freedom

Miguel Areias
CRACS & INESC-TEC LA

Faculty of Sciences, University of Porto, Portugal

A Small Ride Towards Lock-Freedom Miguel Areias

Presentation Outline

ä Toy Example - Transportation Problem

ä Concurrent Computing, Progress and Lock-Freedom

ä Toy Example - Lock-Free Hash Map

ä Questions & (Possible) Answers

1 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Specifications

ä Consider the problem of transporting the citizens of a city from multiples
origins to multiple destinations. Specifications:

© One task is one transportation of one citizen from a place A to a place B.
© One flow is the execution of one or more tasks. It can be in one of two

states: stopped or running.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Specifications

ä Consider the problem of transporting the citizens of a city from multiples
origins to multiple destinations. Specifications:

© One task is one transportation of one citizen from a place A to a place B.
© One flow is the execution of one or more tasks. It can be in one of two

states: stopped or running.
© A cold and severe entity called environment, controls almost everything

about the city. For the flows, it can control their state, but it cannot control
how they are implemented.

2 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Environment

ä What do we know about the environment.

© It tries to be fair with flows. Tries to give them all of the necessary resources
(good roads, gas, ...).

© But, if the flows start demanding for more resources than the ones available,
then huge traffic jams can occur.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Environment

ä What do we know about the environment.

© It tries to be fair with flows. Tries to give them all of the necessary resources
(good roads, gas, ...).

© But, if the flows start demanding for more resources than the ones available,
then huge traffic jams can occur.

© Thus, to avoid problems it uses the police to control the flows. The police
can interrupt flows with almost arbitrary “traffic stops”. Once a “traffic
stop” is complete, flows can resume their execution.

ä How can we implement the flows?

3 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Coarse granularity.

ä Join all tasks in a single heavy flow
F.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Coarse granularity.

ä Join all tasks in a single heavy flow
F.

ä Flow management is simple:

© F executes all tasks. Traverses all
origins/destinations in the tasks
until they are all completed.

© No need to define extra policies.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Coarse granularity.

ä Join all tasks in a single heavy flow
F.

ä Flow management is simple:

© F executes all tasks. Traverses all
origins/destinations in the tasks
until they are all completed.

© No need to define extra policies.

ä One stoppage can potentially affect all tasks (e.g. one traffic stop).

4 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Middle granularity.

ä Join some tasks in light flows.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Middle granularity.

ä Join some tasks in light flows.

ä Flow management is more complex:

© Different flows can have different
origins/destinations.

© Must define extra policies:
∗ join tasks by some criteria;
∗ manage several flows;
∗ ...

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Middle granularity.

ä Join some tasks in light flows.

ä Flow management is more complex:

© Different flows can have different
origins/destinations.

© Must define extra policies:
∗ join tasks by some criteria;
∗ manage several flows;
∗ ...

ä One stoppage affects only the tasks within a flow.

5 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Fine granularity.

ä Join some tasks in even lighter
flows.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Fine granularity.

ä Join some tasks in even lighter
flows.

ä Flow management is more complex:

© Different flows can have different
origins/destinations.

© ...

ä One stoppage affects only the tasks within a flow.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

ä Fine granularity.

ä Join some tasks in even lighter
flows.

ä Flow management is more complex:

© Different flows can have different
origins/destinations.

© ...

ä One stoppage affects only the tasks within a flow.

ä So...the key idea is that, once you start using multiple flows, regardless of
the granularity, you enter in a new world that has its own particularities
(advantages and disadvantages).

6 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

ä In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

ä In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

ä How should we implement the flows? Having multiple flows should be better,
right?

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

ä In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

ä How should we implement the flows? Having multiple flows should be better,
right?

ä Well...It depends. Critical regions are always a problem (e.g. crossroads).

Theory Practice

7 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation and Computing

ä The word thread can be translated as flow of control.

ä If we swap in the toy example:

© the transportation process by an Operating System (OS) process and
© consider that the OS is the environment (e.g., the OS scheduler could be

the Police)

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation and Computing

ä The word thread can be translated as flow of control.

ä If we swap in the toy example:

© the transportation process by an Operating System (OS) process and
© consider that the OS is the environment (e.g., the OS scheduler could be

the Police)

ä then, we could be speaking about parallel/concurrent computing.

8 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Parallel and Concurrent Computing

ä Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

A Small Ride Towards Lock-Freedom Miguel Areias

Parallel and Concurrent Computing

ä Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

ä A process exhibits concurrency (or potential parallelism) when it includes
tasks (contiguous parts of the process) that can be executed in any order
without changing the expected result.

A Small Ride Towards Lock-Freedom Miguel Areias

Parallel and Concurrent Computing

ä Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

ä A process exhibits concurrency (or potential parallelism) when it includes
tasks (contiguous parts of the process) that can be executed in any order
without changing the expected result.

ä How do we know that a concurrent computation will converge towards the
termination?

A Small Ride Towards Lock-Freedom Miguel Areias

Parallel and Concurrent Computing

ä Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

ä A process exhibits concurrency (or potential parallelism) when it includes
tasks (contiguous parts of the process) that can be executed in any order
without changing the expected result.

ä How do we know that a concurrent computation will converge towards the
termination?

© We must check its progress properties.

9 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

ä In 2011, Herlihy and Shavit presented a grand unified explanation for the
progress properties. Progress is seen as the number of steps that threads
take to complete methods within a concurrent object, i.e., the number of
steps that threads take to execute methods between their invocation and
their response.

Time

Thread 1

Thread 2

Method A Method C

Method B

Invocation Response

Invocation Response

10 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

ä Progress models are placed in a two-dimensional periodical table, where the
two axes define the:

© dependency on the operating system (OS) scheduler.
© level of progress provided by the methods.

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

makes progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

11 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

makes progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä For the dependency, a scheduler:

© dependent model, means that the progress of threads relies on the OS
scheduler to satisfy certain properties.

© independent model, means that threads progress as long as they are
scheduled (does not matter how).

12 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

makes progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä For the level of progress, a method provides:

© minimal progress, if a thread calling that method can take an infinite
number of steps without returning.

© maximal progress, if a thread calling that method takes a finite number of
steps to return.

13 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

makes progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä Starvation-Free: a critical region cannot be denied to a thread perpetually.

ä Deadlock-Free: a thread cannot delay other threads perpetually.

ä Both, rely on the assumption that, the OS scheduler allows a thread within a
critical region, to be able to run for sufficient amount of time, such that it
can leave that critical region (blocking dependent).

14 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

makes progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä Obstruction-free (a thread runs within a critical region in a bounded number
of steps) relies on the assumption that the OS scheduler allows a thread to
run in isolation for a sufficient amount of time (non-blocking dependent).

ä Wait-free (a thread is able to make progress in a finite number of steps)
provides maximal progress and has no requirements on the OS scheduler
(non-blocking independent).

15 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

makes progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä Lock-free provides minimal progress and has no requirements on the OS
scheduler (non-blocking independent).

ä Lock-free guarantees then that, on every instant of the execution of methods
(between their invocation and their response), at least one thread is doing
progress on its work.

16 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

ä Lock-Free objects allow greater concurrency than lock-based objects since
semantically consistent (non-interfering) methods may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as:
∗ deadlocks - threads delaying each other perpetually.
∗ convoying - a thread holding a lock is descheduled by an interrupt.
∗ kill-intolerant - a thread is not immune to the dead of other threads

during the execution.

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

ä Lock-Free objects allow greater concurrency than lock-based objects since
semantically consistent (non-interfering) methods may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as:
∗ deadlocks - threads delaying each other perpetually.
∗ convoying - a thread holding a lock is descheduled by an interrupt.
∗ kill-intolerant - a thread is not immune to the dead of other threads

during the execution.
∗ priority inversion - a thread with high priority is preempted by a thread

with lower priority.
∗ contention - a thread waiting for a lock that is being held by another

thread.

17 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

ä They are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

© Atomic operations cannot be interrupted (intrinsically thread safe).

18 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

ä At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation, that nowadays can be found in many common
hardware architectures.

© CAS(Memory Reference, Expected Value, New Value).

19 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Toy Example - Hash Maps

ä Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

A small phone book as a hash map.

20 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Hash Maps

ä Some of the most usual methods are:

© User-level (externally activated by users) : search, insert and remove.
© Kernel-level (internally activated by thresholds): expansion (key collision)

(and compression, which will not be discussed in this talk).

Key collisions resolved using a separate chaining mechanism.

21 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Concurrent Hash Maps

ä Allow the concurrent execution of multiple methods.

© Each method runs independently, but at the engine level, all methods
share the underlying data structures that support the hash map.

Thread 1

Inserting
pair

(K1,C1)

Thread 2

Expanding
Buckets

Thread 3

Searching
Key
(K3)

Thread 4

Removing
pair

(K4,C4)

Concurrent
Hash Map

22 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Hash Trie Structure

ä Hash buckets refer to a chaining mechanism that supports key collisions.

ä Chain nodes store pairs (Key, Content, (Next On Chain, State)). For the
sake of simplicity we will present only (Key, (Next On Chain, State)). State
can be valid (V) or invalid (I).

.
.
.

S

.
.
.

S

.
.
.

S

.
.
.

S

2
entries

w

K1 V

K5 V

K3 V

K4 V

K2 V

Hi

Hi+1

Hi+1

Hi+2

23 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Searching for K3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

2
entries

3

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Searching for K3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

2
entries

3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

0 1 1

2
entries

3

BkBn

24 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Internals

ä To support concurrency, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Internals

ä To support concurrency, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

Hash Level

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi Hi

V

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Internals

ä To support concurrency, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

Hash Level

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi Hi

V

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.
Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

25 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk K1

K4 K2

Prev

V

V V VBn

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk K1

K4 K2

Prev

V

V V VBn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

26 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Performance Analysis

ä Hardware: 32 (2 x 16) core AMD with 32 GB of main memory.

ä Software: Linux Fedora 20 with Oracle’s Java Development Kit 1.8.

ä Benchmarks: Sets of 106 randomized keys with insert, search and remove
methods (each benchmark had 5 warm up runs and 20 standard runs).

ä LF design: Expanded with 6 valid nodes and had two configurations (8 and
32 hash bucket levels).

27 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Performance Analysis

ä In the next slide, we will be comparing the LF design against other state-of-the-
art hash map designs that support efficiently concurrency: Concurrent Hash
Maps (CH), Concurrent Skip Lists (CS), Non Blocking Hash Maps (NB) and
Concurrent Tries (CT).

ä Podium colors: first place, second place and third place.

28 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Performance Analysis

ä Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CH CS NB CT LF8 LF32 CH CS NB CT LF8 LF32

1st – Insert: 60% Search: 30% Remove: 10%
1 721 2,510 15,342 1,027 873 618
8 150 413 4,030 174 148 142 4.81 6.08 3.81 5.90 5.90 4.35

16 128 247 2,803 115 91 106 5.63 10.16 5.47 8.93 9.59 5.83
24 75 191 2,566 89 72 74 9.61 13.14 5.98 11.54 12.13 8.35
32 72 178 1,870 90 80 67 10.01 14.10 8.20 11.41 10.91 9.22

2nd – Insert: 20% Search: 70% Remove: 10%
1 282 1,890 12,370 764 757 395
8 51 282 8,517 171 157 74 5.53 6.70 1.45 4.47 4.82 5.34

16 39 184 3,623 87 72 82 7.23 10.27 3.41 8.78 10.51 4.82
24 37 143 3,058 73 69 64 7.62 13.22 4.05 10.47 10.97 6.17
32 38 145 2,081 74 69 65 7.42 13.03 5.94 10.32 10.97 6.08

3th – Insert: 25% Search: 50% Remove: 25%
1 279 2,059 12,181 1,087 808 440
8 113 340 3,125 159 127 83 2.47 6.06 3.90 6.84 6.36 5.30

16 64 214 3,482 104 82 70 4.36 9.62 3.50 10.45 9.85 6.29
24 42 180 2,609 87 71 78 6.64 11.44 4.67 12.49 11.38 5.64
32 44 166 1,902 83 77 66 6.34 12.40 6.40 13.10 10.49 6.67

29 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

© Depending on the kind of the problem, one can use a concurrent approach
to solve it faster.

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

© Depending on the kind of the problem, one can use a concurrent approach
to solve it faster.

© Lock-freedom can be consider to be fast. Individual threads do tend to
execute more work, but in face of heavy contention, lock-freedom is
known to improve dramatically the overall throughput.

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

© Depending on the kind of the problem, one can use a concurrent approach
to solve it faster.

© Lock-freedom can be consider to be fast. Individual threads do tend to
execute more work, but in face of heavy contention, lock-freedom is
known to improve dramatically the overall throughput.

© And, as shown before, lock-freedom is also known to avoid important
problems related with concurrency (deadlocks, convoying, kill-tolerant...)

30 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

© Lock-freedom cannot control the environment (nor the police), but it makes
the progress of a concurrent computation independent of it (periodical
table).

31 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä How should we implement the flows? Having multiple flows should be better,
right?

ä Well...It depends. Critical regions are always a problem (e.g. crossroads).

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

ä How should we implement the flows? Having multiple flows should be better,
right?

ä Well...It depends. Critical regions are always a problem (e.g. crossroads).

© Lock-freedom does not avoid critical regions, but by minimizing their
size (atomic instructions), we can argue that we can understand better the
behavior of a concurrent computation.

Theory Practice

32 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Thank You !!!

Special Thanks: Ricardo Rocha (insightful suggestions)
Rita Ribeiro (logistics)
Sérgio Crisóstomo (invitation)

LF design: https://github.com/miar/ffps
FCT grant: SFRH/BPD/108018/2015

33 / 33

	anm0:

