A Small Ride Towards Lock-Freedom

Miguel Areias
CRACS & INESC-TEC LA
Faculty of Sciences, University of Porto, Portugal

TALKS @ [dcc]

[@PORTO

F FACULDADE DE CIEN
C UNIVERSIDADE DO PORTO

A Small Ride Towards Lock-Freedom Miguel Areias

Presentation QOutline

» Toy Example - Transportation Problem

» Concurrent Computing, Progress and Lock-Freedom
» Toy Example - Lock-Free Hash Map

» Questions & (Possible) Answers

[@PORTO
T IRveramibE o rorto
C 1/33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Specifications

» Consider the problem of transporting the citizens of a city from multiples
origins to multiple destinations. Specifications:

¢ One task is one transportation of one citizen from a place A to a place B.
¢ One flow is the execution of one or more tasks. It can be in one of two

states: stopped or running.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Specifications

» Consider the problem of transporting the citizens of a city from multiples
origins to multiple destinations. Specifications:

¢ One task is one transportation of one citizen from a place A to a place B.

¢ One flow is the execution of one or more tasks. It can be in one of two
states: stopped or running.

¢ A cold and severe entity called environment, controls almost everything
about the city. For the flows, it can control their state, but it cannot control
how they are implemented.

[@PORTO
T IRveramibE o rorto
C 2 /33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Environment

» \What do we know about the environment.

¢ It tries to be fair with flows. Tries to give them all of the necessary resources
(good roads, gas, ...).

¢ But, if the flows start demanding for more resources than the ones available,
then huge traffic jams can occur.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Environment

» \What do we know about the environment.

¢ It tries to be fair with flows. Tries to give them all of the necessary resources
(good roads, gas, ...).

¢ But, if the flows start demanding for more resources than the ones available,
then huge traffic jams can occur.

¢ Thus, to avoid problems it uses the police to control the flows. The police
can interrupt flows with almost arbitrary “traffic stops”. Once a “traffic
stop” is complete, flows can resume their execution.

» How can we implement the flows?

[@PORTO
T IRveramibE o rorto
C 3 /33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

» Coarse granularity.

» Join all tasks in a single heavy flow
F.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

» Coarse granularity.

» Join all tasks in a single heavy flow
F.

» Flow management is simple:

¢ F executes all tasks. Traverses all
origins/destinations in the tasks
until they are all completed.

¢ No need to define extra policies.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

» Coarse granularity.

» Join all tasks in a single heavy flow
F.

» Flow management is simple:

¢ F executes all tasks. Traverses all
origins/destinations in the tasks
until they are all completed.

¢ No need to define extra policies.

» One stoppage can potentially affect all tasks (e.g. one traffic stop).

[@PORTO
T IRveramibE o rorto
C 4 /33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

» Middle granularity.

» Join some tasks in light flows.

Miguel Areias

A Small Ride Towards Lock-Freedom

Transportation Problem - Flows

» Middle granularity.
» Join some tasks in light flows.
» Flow management is more complex:

¢ Different flows can have different
origins/destinations.
¢ Must define extra policies:
« join tasks by some criteria;
« manage several flows;
X

Miguel Areias

A Small Ride Towards Lock-Freedom

Transportation Problem - Flows

» Middle granularity.
» Join some tasks in light flows.
» Flow management is more complex:

¢ Different flows can have different
origins/destinations.
¢ Must define extra policies:
« join tasks by some criteria;
« manage several flows;
X

» One stoppage affects only the tasks within a flow.

[@PORTO
F Diveronct 5o vorro
C 5 /33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

» Fine granularity.

» Join some tasks in even lighter
flows.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

» Fine granularity.

» Join some tasks in even lighter
flows.

» Flow management is more complex:

¢ Different flows can have different
origins /destinations.
L 2

» One stoppage affects only the tasks within a flow.

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation Problem - Flows

» Fine granularity.

» Join some tasks in even lighter
flows.

» Flow management is more complex:

¢ Different flows can have different
origins /destinations.
L 2

» One stoppage affects only the tasks within a flow.

» So...the key idea is that, once you start using multiple flows, regardless of
the granularity, you enter in a new world that has its own particularities
(advantages and disadvantages).

[@PORTO

F FACULDADE DE CIENCIAS
C UNIVERSIDADE DO PORTO

6 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

» What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

» What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

» In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

» What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

» In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

» How should we implement the flows? Having multiple flows should be better,
right?

A Small Ride Towards Lock-Freedom Miguel Areias

Some Questions

» What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

» In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

» How should we implement the flows? Having multiple flows should be better,
right?

» Well...It depends. Critical regions are always a problem (e.g. crossroads).

7/ 33

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation and Computing

» The word thread can be translated as flow of control.

» |f we swap in the toy example:

¢ the transportation process by an Operating System (OS) process and
¢ consider that the OS is the environment (e.g., the OS scheduler could be

the Police)

Process

Time

A Small Ride Towards Lock-Freedom Miguel Areias

Transportation and Computing

» The word thread can be translated as flow of control.

» |f we swap in the toy example:

¢ the transportation process by an Operating System (OS) process and
¢ consider that the OS is the environment (e.g., the OS scheduler could be

the Police)

Process

Time

» then, we could be speaking about parallel /concurrent computing.

[@PORTO
T IRveramibE o rorto
C 8 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Parallel and Concurrent Computing

» Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

A Small Ride Towards Lock-Freedom Miguel Areias
Parallel and Concurrent Computing

» Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

» A process exhibits concurrency (or potential parallelism) when it includes
tasks (contiguous parts of the process) that can be executed in any order
without changing the expected result.

CPU1| start() task_one() terminate()
cpu1| start() one()

CPU2 E- terminate()

A Small Ride Towards Lock-Freedom Miguel Areias
Parallel and Concurrent Computing

» Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

» A process exhibits concurrency (or potential parallelism) when it includes
tasks (contiguous parts of the process) that can be executed in any order
without changing the expected result.

CPU1| start() task_one() terminate()
cpu1| start() one()

CPU2 E- terminate()

» How do we know that a concurrent computation will converge towards the
termination?

A Small Ride Towards Lock-Freedom Miguel Areias

Parallel and Concurrent Computing

» Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently.

» A process exhibits concurrency (or potential parallelism) when it includes
tasks (contiguous parts of the process) that can be executed in any order
without changing the expected result.

CPU1| start() task_one() terminate()
cpu1| start() one()

CPU2 E- terminate()

» How do we know that a concurrent computation will converge towards the
termination?

¢ We must check its progress properties.

[@PORTO

CIENCIAS

'F \DE DE
C e, 9 /33

A Small Ride Towards Lock-Freedom

Miguel Areias

Progress

In 2011, Herlihy and Shavit presented a grand unified explanation for the

progress properties. Progress is seen as the number of steps that threads
take to complete methods within a concurrent object, i.e., the number of
steps that threads take to execute methods between their invocation and

their response.

Thread 2

Thread 1

[@PORTO

E DE DE C
C ooooooooooooooooo

| nvocat i on Response

v y

Met hod B

f f

| nvocat i on Response

TI me

10 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

» Progress models are placed in a two-dimensional periodical table, where the
two axes define the:

¢ dependency on the operating system (OS) scheduler.
¢ level of progress provided by the methods.

4 Dependency on the operating system schedul er A
Depecgency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng
Dependent
Progr ess | ndependent Dependent p
A
Byl Ul e Wi t - Free bstruction-Free| Starvation-Free .
Level makes progress Maxi nal
of VS
Progress M ni nal
SOE 17D ST Lock- Free ? Deadl ock- Free
makes progress
Dependent Bl ocki ng
VS Vs
| ndependent Non- Bl ocki ng
. J
[MPORTO

F DDDDDDDDDDDDDDDDDDD
C 11 /33

A Small Ride Towards Lock-Freedom

Dependency on the operating system schedul er
Depe\r)gency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng
Pr ogr ess | ndependent Dependent Dependent
A
=7ery ¢ e Wi t - Free ostruction-Free| Starvation-Free .
Level makes progress Maxi mal
of Vs
Progress M ni mal
SOnE thread Lock- Free ? Deadl ock- Free
makes progress
Dependent Bl ocki ng
VS Vs
| ndependent Non- Bl ocki ng

» For the dependency, a scheduler:

Miguel Areias

¢ dependent model, means that the progress of threads relies on the OS
scheduler to satisfy certain properties.
¢ independent model, means that threads progress as long as they are
scheduled (does not matter how).

PORTO
F~ [icuiomeoeatncis
C ooooooooooooooooo

12 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Dependency on the operating system schedul er

\

Dependency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng

Vs
Dependent
Pr ogr ess | ndependent Dependent p

A
=7ery ¢ e Wi t - Free ostruction-Free| Starvation-Free .
Level makes progress Maxi mal
of Vs
Progress M ni mal
SOnE thread Lock- Free ? Deadl ock- Fr ee
makes progress
Dependent Bl ocki ng
VS Vs
I ndependent Non- Bl ocki ng
\ _/

» For the level of progress, a method provides:

¢ minimal progress, if a thread calling that method can take an infinite
number of steps without returning.

¢ maximal progress, if a thread calling that method takes a finite number of
steps to return.

[@PORTO
T IRveramibE o rorto
C 13 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Dependency on the operating system schedul er

\

Dependency

Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng

e | ndependent Dependent Dependent

Progress

Every thread
Level makes progress
of
Progress Sone t hread
nmakes progress

Wi t - Free Cbstructi on- Free PESCIAEINN6] BN S H-TE

Maxi nal
Vs
M ni nal

Lock- Free : Dead| ock- Fr ee

Dependent Bl ocki ng
VS Vs
| ndependent Non- Bl ocki ng
\ _/

» Starvation-Free: a critical region cannot be denied to a thread perpetually.
» Deadlock-Free: a thread cannot delay other threads perpetually.

» Both, rely on the assumption that, the OS scheduler allows a thread within a
critical region, to be able to run for sufficient amount of time, such that it
can leave that critical region (blocking dependent).

[@PORTO
F Diverdonse sororo
C 14 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Progress

Dependency on the operating system schedul er

\

Dependency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng

VS

Dependent
Pr ogr ess | ndependent Dependent p

A
Every thread : : —

Level makes progr ess Wit - Free (O INNIGNNIENEAII St ar vati on- Free Vaxi el
of VS
Progress M ni mal
Sone thread Lock- Free Deadl ock- Fr ee

makes progress
Dependent Bl ocki ng
Vs Vs
| ndependent Non- Bl ocki ng
\ _/

» Obstruction-free (a thread runs within a critical region in a bounded number
of steps) relies on the assumption that the OS scheduler allows a thread to
run in isolation for a sufficient amount of time (non-blocking dependent).

» Wait-free (a thread is able to make progress in a finite number of steps)
provides maximal progress and has no requirements on the OS scheduler

(non-blocking independent).

[@PORTO
T IRveramibE o rorto
C 15 / 33

A Small Ride Towards Lock-Freedom

Miguel Areias

4 .)
Dependency on the operating system schedul er
Depe\r)gency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng
Progr ess | ndependent Dependent Dependent
A
E7Ery ¢ e Wi t - Free ostruction-Free| Starvation-Free .
Level makes progress Maxi mal
of Vs
Progress M ni mal
SOnE thread Lock- Free ? Deadl ock- Free
makes progress
Dependent Bl ocki ng
VS Vs
| ndependent Non- Bl ocki ng
\ _/

» Lock-free provides minimal progress and has no requirements on the OS

scheduler (non-blocking independent).

» Lock-free guarantees then that, on every instant of the execution of methods
(between their invocation and their response), at least one thread is doing

progress on its work.

PORTO
F~ [icuiomeoeatncis
C ooooooooooooooooo

16 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

» Lock-Free objects allow greater concurrency than lock-based objects since
semantically consistent (non-interfering) methods may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as:
« deadlocks - threads delaying each other perpetually.
* convoying - a thread holding a lock is descheduled by an interrupt.
« kill-intolerant - a thread is not immune to the dead of other threads

during the execution.

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

» Lock-Free objects allow greater concurrency than lock-based objects since
semantically consistent (non-interfering) methods may execute in parallel.

» Lock-Free techniques do not use traditional locking mechanisms.

¢ Avoid problems such as:

« deadlocks - threads delaying each other perpetually.

* convoying - a thread holding a lock is descheduled by an interrupt.

« kill-intolerant - a thread is not immune to the dead of other threads
during the execution.

« priority inversion - a thread with high priority is preempted by a thread
with lower priority.

« contention - a thread waiting for a lock that is being held by another
thread.

[@PORTO

DE CIENCIAS

F UUUUUUUU I;i OOOOOOOOO
C 17 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

» They are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

¢ Atomic operations cannot be interrupted (intrinsically thread safe).

[@PORTO

\DE DE CIENCIAS

F \CULDAI
(N UNIVERSIDADE DO PORTO 18 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Lock-Freedom

» At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation, that nowadays can be found in many common
hardware architectures.

¢ CAS(Memory_Reference, Expected_Value, New_Value).

[@PORTO

F ONVersionoe
C 19 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Toy Example - Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

hash
keys function buckets
oo
: 0l | 521-8976
John Smith
02 | 521-1234
. . 03
Lisa Smith
13
Sandra Dee
T ————u= [5218655
15

A small phone book as a hash map.

[@PORTO
T IRveramibE o rorto
C 20 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Hash Maps

» Some of the most usual methods are:

¢ User-level (externally activated by users) : search, insert and remove.
¢ Kernel-level (internally activated by thresholds): expansion (key collision)
(and compression, which will not be discussed in this talk).

keys buckets entries
000 _ _
=% | Lisa Smith 521-89765
: 001
John Smith
00z
_ _ . John Smith | 521-1234
Lisa Smith
151
Sam Doe E Sandra Dee | 521-9655

154

Sandra Dee
=% | Ted Baker 418-4165

253
254
255

Ted Baker

® Sam Doe 521-5030

i 'r oo | X ‘R-_}i 1' i
' \
T

Key collisions resolved using a separate chaining mechanism.

[@PORTO
T IRveramibE o rorto
C 21 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Concurrent Hash Maps

» Allow the concurrent execution of multiple methods.

¢ Each method runs independently, but at the engine level, all methods
share the underlying data structures that support the hash map.

Thread 1 Thread 3

| nserting Sear chi ng
pair Key
(K1, C1) (K3)

Concurrent
Hash Map

Renovi ng
pair
(K4, C4)

Expandi ng
Bucket s

[@PORTO
T IRveramibE o rorto
C 22 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Hash Trie Structure

» Hash buckets refer to a chaining mechanism that supports key collisions.

» Chain nodes store pairs (Key, Content, (Next_On_Chain, State)). For the
sake of simplicity we will present only (Key, (Next_On_Chain, State)). State

can be valid (V) or invalid (I).

2W
entries

[PORTO
FC UNIVERSIDADE DO PORTO 23 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Searching for K3

—Bm | v v
3
2 NIRRT
entri es
BT K3V v v

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Searching for K3

__Bm__ lﬁi\/ li!\/
23

. | BK__|
entries
BT K3V ‘HQHV' IH!\/

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Internals

» To support concurrency, our design allows threads to:

¢ Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

¢ Maintain consistency, by using CAS on write operations.

2W
entries

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Internals

» To support concurrency, our design allows threads to:

¢ Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

¢ Maintain consistency, by using CAS on write operations.

2W
entries

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design - Internals

» To support concurrency, our design allows threads to:

¢ Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

¢ Maintain consistency, by using CAS on write operations.

W
2" BK T |« B v
entri es

[MPORTO

1AS

F FACULDADE DE CIENC
C UNIVERSIDADE DO PORTO 2 5 / 3 3

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

2W

: Bk
entries

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

2W

: Bk
entries

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

A Small Ride Towards Lock-Freedom Miguel Areias

The LF Design

r

ORTO
FC UNNVERSIDADE

A Small Ride Towards Lock-Freedom Miguel Areias

Performance Analysis

» Hardware: 32 (2 x 16) core AMD with 32 GB of main memory.
» Software: Linux Fedora 20 with Oracle’s Java Development Kit 1.8.

» Benchmarks: Sets of 10° randomized keys with insert, search and remove
methods (each benchmark had 5 warm up runs and 20 standard runs).

» LF design: Expanded with 6 valid nodes and had two configurations (8 and
32 hash bucket levels).

[@PORTO
T IRveramibE o rorto
C 27 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Performance Analysis

» In the next slide, we will be comparing the LF design against other state-of-the-
art hash map designs that support efficiently concurrency: Concurrent Hash
Maps (CH), Concurrent Skip Lists (CS), Non Blocking Hash Maps (NB) and
Concurrent Tries (CT).

» Podium colors: first place, second place and third place.

[@PORTO
T IRveramibE o rorto
C 28 / 33

A Small Ride Towards Lock-Freedom

Miguel Areias

Performance Analysis *‘i" ﬁ

» Execution time (lower is better) Speedup Ratio (higher is better).

Execution Time (L7

Speedup Ratio (Er,/Er,)
CH CS NB CT LFs

NB CT LFg LFs LF.,

Threads
(Tp) CH
1st — Insert 60%
2,510
413
247
191
178

Search 30%

Remove: 10%

15,342

4,030 4.35
2,803 5.83
2,566 8.35
1,870 90 9.22

2nd — Insert 20%

pLiyA 1,890

8 51 282

16 39 184
24 37 143
32 38 145

Search: 70%

Remove: 10%
12,370 764 BAYAGE
3,517 171 kx4 74
3,623 87 72 82
3,058 73 69 64
2,081 74 69 65

3th — Insert: 25%
1 Y748 2 059
8 113 340
16 64 214
24 42 180
32 166
[WPORTO

F~ [icuiomeoeatncis
C ooooooooooooooooo

Search: 50%

Remove: 25%

12,181 1,087
3,125 159 2.47 3.90 5.30
3,482 104 4.36 3.50 6.29
2,609 87 6.64 4.67 5.64
1,902 83 6.34 6.40 6.67

29 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» \What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» \What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

¢ Depending on the kind of the problem, one can use a concurrent approach
to solve it faster.

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» \What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

¢ Depending on the kind of the problem, one can use a concurrent approach
to solve it faster.

¢ Lock-freedom can be consider to be fast. Individual threads do tend to
execute more work, but in face of heavy contention, lock-freedom is
known to improve dramatically the overall throughput.

/\/

THROUGHPUT

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» \What is the best way to run the process? What is the definition of best way?
(fastest, resource efficient, tolerant to problems, ...)

¢ Depending on the kind of the problem, one can use a concurrent approach
to solve it faster.

¢ Lock-freedom can be consider to be fast. Individual threads do tend to
execute more work, but in face of heavy contention, lock-freedom is
known to improve dramatically the overall throughput.

/\/

THROUGHPUT

¢ And, as shown before, lock-freedom is also known to avoid important
problems related with concurrency (deadlocks, convoying, kill-tolerant...)

[@PORTO

1AS

F FACULDADE DE CIENCI
(Y UNIVERSIDADE DO PORTO 30 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» In this process, what can we control? Can we control the environment? (e.g.
can we control the police?)

¢ Lock-freedom cannot control the environment (nor the police), but it makes
the progress of a concurrent computation independent of it (periodical
table).

[MPORTO

F~ [icuiomeoecitncis
C UNIVERSIDADE DO PORTO

31 /33

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» How should we implement the flows? Having multiple flows should be better,
right?

» Well...It depends. Critical regions are always a problem (e.g. crossroads).

A Small Ride Towards Lock-Freedom Miguel Areias

Questions & (Possible) Answers

» How should we implement the flows? Having multiple flows should be better,
right?

» Well...It depends. Critical regions are always a problem (e.g. crossroads).

¢ Lock-freedom does not avoid critical regions, but by minimizing their
size (atomic instructions), we can argue that we can understand better the

behavior of a concurrent computation.

N Practice

[@PORTO
T IRveramibE o rorto
C 32 / 33

A Small Ride Towards Lock-Freedom Miguel Areias

Thank You !!!

Special Thanks: Ricardo Rocha (insightful suggestions)
Rita Ribeiro (logistics)
Sérgio Crisostomo (invitation)

LF design: https://github.com/miar/ffps
FCT grant: SFRH/BPD/108018/2015

TALKS @ [dcc]
£. @rorro FCT

F UNIVERSIDADE DO PORTO = PA s .
INESC Fundacao para a Ciéncia e a Tecnologia

MINISTERIO DA {'fI[:'ZNl‘.].-‘\, TECNOLOGIA E ENSING SUPERIOR

[@PORTO
T IRveramibE o rorto
C 33 /33

	anm0:

