Towards an Elastic Lock-Free
Hash Trie Design

Miguel Areias and Ricardo Rocha
CRACS & INESC-TEC LA
University of Porto, Portugal

-y

g y .
S g
.

L -

20th Internationa(?Symposium.On P aralleluAnidebisiamibutedaGomputing '.&diiﬁ 28730"J'U'I\7I112|uj-

- o Y F
- "oh“! * s ! il L
! e M = B
. - w gy ‘ " .

-,

ISPDC 2021

]mi .——:_ % i L W "

-\l
=i
ety

- p 1!
apoca,
3

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

hash
keys function buckets

0o

- 0l | 521-8976
Jlohn Smith
02 | 521-1234
03
Lisa Smith] -

13
Sandra Dee
T —— /14| 5219655

15

A small phone book as a hash map.

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

hash
keys function buckets

- 0l | 521-8976
Jlohn Smith
02 | 521-1234
03
Lisa Smith] -

13
Sandra Dee
T —— /14| 5219655

15

A small phone book as a hash map.

» Some of the most usual operations are:

¢ User-level (externally activated by users): search, insert and remove.
¢ Kernel-level (internally activated by thresholds): expansion and compressi-
on = elasticity (or elastic hashing) is the ability to support both operations.

ISPDC 2021 1/ 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

» Multithreaded hash maps allow the concurrent execution of multiple ope-
rations.

¢ Each operation runs independently, but at the engine level, all operations
share the underlying data structures.

I nserting Sear chi ng
pai r Key
(K1, C1) (K3)

Concurr ent
Hash Map

Thread 2 Thread 4
Renovi ng
pair
(K4, C4)

Expandi ng
Bucket s

ISPDC 2021 2 /22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB), Concurrent Tries (CT) and Fixed-size Persistent
Lock-free Hash Map (FP).

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB), Concurrent Tries (CT) and Fixed-size Persistent
Lock-free Hash Map (FP).

» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH|CS | NB|CT|FP
Lock-Free Progress X v v v v
Persistent Memory References | X v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v
Elasticity (Elastic Hashing) X X | X

ISPDC 2021 3/22

Towards an Elastic Lock-Free Hash Trie Design

Our Motivation

Miguel Areias and Ricardo Rocha

» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size

Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH | CS|NB |CT|FP
Lock-Free Progress X v v v v
Persistent Memory References | X v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v
Elasticity (Elastic Hashing) X X | X

» |n this talk we will:

¢ give a brief overview about the Lock-Free Progress property.

ISPDC 2021

4 /22

Towards an Elastic Lock-Free Hash Trie Design

Our Motivation

Miguel Areias and Ricardo Rocha

» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size

Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH | CS | NB
Lock-Free Progress X v v v
Persistent Memory References | X v v X
Fixed-Size Data Structures X X X
Store Sorted Keys X v X X
Elasticity (Elastic Hashing) X X v

» |n this talk we will:

¢ give a brief overview about Lock-Free Progress property.

¢ present the internals of the FP design.

ISPDC 2021

5/ 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Our Motivation

» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH|CS|NB|CT
Lock-Free Progress X v v v v
Persistent Memory References | X v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v
Elasticity (Elastic Hashing) X X | v

» |n this talk we will:

¢ give a brief overview about Lock-Free Progress property.
¢ present the internals of the FP design.
¢ show how to extend the FP design to support Elasticity.

Towards an Elastic Lock-Free Hash Trie Design

Our Motivation

Miguel Areias and Ricardo Rocha

» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size

Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH | CS | NB
Lock-Free Progress X v v
Persistent Memory References | X v v
Fixed-Size Data Structures X X
Store Sorted Keys X v X
Elasticity (Elastic Hashing) X X

» |n this talk we will:

(@
H\\\\H

¢ give a brief overview about Lock-Free Progress property.

¢ present the internals of the FP design.
¢ show how to extend the FP design to support Elasticity.

¢ show a performance analysis comparison (will skip the CH and NB designs).

ISPDC 2021

6 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

(Dependency on the operating system schedul er A
Depecgency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng
Pr ogr ess | ndependent Dependent Dependent
Every thread . . .
Level nmakes progr ess ostruction-Free| Starvation-Free Naxi mal
of Vs
Pr ogress M ni mal
Sonre t hread Lock- Free ? Deadl ock- Free
make progress
Dependent Bl ocki ng
Vs Vs
| ndependent Non- Bl ocki ng
. J

» Lock-free guarantees then that, on every instant of the execution of operations
(between their invocation and their response), at least one thread is doing
progress on its work.

Towards an Elastic Lock-Free Hash Trie Design

Lock-Free Progress

Miguel Areias and Ricardo Rocha

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

(Dependency on the operating system schedul er

Dependenc .
P VS Y Non- Bl ocki ng Non- Bl ocki ng

Progr ess | ndependent Dependent

Every thread .
of

bstruction-Free

Bl ocki ng
Dependent

St arvati on- Free

Maxi mal
VS

Progress Sone t hread

Lock- Free
make progress

Deadl ock- Free

| ndependent Non- Bl

.

Dependent Bl ocki ng
Vs Vs

ocki ng

M ni mal

J

» Lock-free guarantees then that, on every instant of the execution of operations
(between their invocation and their response), at least one thread is doing

progress on its work.

» At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation (intrinsically thread safe), that nowadays can
be found in many common hardware architectures.

ISPDC 2021

7/ 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Key ldeas

» Hash buckets refer to a chaining mechanism that supports key collisions.

» Chain nodes store pairs (Key, Content, (Next_On_Chain, State)). For the
sake of simplicity we will present only (Key, (Next_On_Chain, State)). State

can be valid (V) or invalid (I).

2W
entries

ISPDC 2021 8 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Searching for K3

23
entries

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Searching for K3

B

23
entries

ISPDC 2021

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Ildentify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

2W
entries

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

2W
entries

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.

entries

ISPDC 2021 10 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

P
B

Towards an Elastic Lock-Free Hash Trie Design

entri es

P
1
_Bx__|

Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

K1 \Y%

P
B

<}

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

P
B

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

<]

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

<[
<]

ISPDC 2021

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Removal of a Key

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Removal of a Key

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Removal of a Key

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Removal of a Key

P
B

==y @)

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Removal of a Key

P
B

== "m0 @)

ISPDC 2021 12 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Successful Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Successful Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Successful Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Successful Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Successful Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Successful Compression ** NEW **

ISPDC 2021

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Aborting a Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Aborting a Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Aborting a Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Aborting a Compression ** NEW **

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Aborting a Compression ** NEW **

ISPDC 2021

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Performance Analysis

» Hardware: 32 (2 %« 16) core AMD with 32 GB of main memory:.
» Software: Linux Fedora 20 with OpenJDK 13.0.1.

» Benchmarks: Sets of 8% (about 17 million) randomized keys with insert, search
and remove operations (5 warm up runs and 10 standard runs per benchmark).

» FP design: expanded with 2 valid nodes and each hash bucket had 8 entries.

» Podium colors: first place, second place and third place.

ISPDC 2021 15 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Performance Analysis %‘i’ ﬁ

» Execution time in milliseconds (lower is better) and Speedup Ratio (higher
is better).

Threads Execution Time (E,) Speedup Ratio (Et,/ET,)
(Tp) CSL CT FPOrig FPElastic CS CcT FPOrig FPElastic

1st — Remove: 0% Search: 100% Insert: 0%

1 54,850

3 7,825

16 4,807

24 4,773

32 4,428

2nd — Remove: 0% Search: 0% Insert: 100%

1 INONckW 36,781 48,321 31,666

8 N 7,119 11,048 5,537 4.37
16 5,341 3,871 4.84
24 4,980 9,083 3,691 5.32

32 4,838 3,923 5.27

ISPDC 2021 16 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Performance Analysis %‘i’ ﬁ

» Execution time in milliseconds (lower is better) and Speedup Ratio (higher
is better).

Threads Execution Time (Er,) Speedup Ratio (Et,/ET,)
(Tp) CSL CT FPOrig FPElastic CS CcT FPOrig FPElastic
3rd — Remove: 50% Search: 50% Insert: 0%
1 52,188
8 8,544
16 5,591 9.33 10.50
24 5,274
32 5,188 10.06 RN

4th — Remove: 33% Search: 33% Insert: 33%
1 77,543
3 13,811 5.74
16 9,093 8.53 7.87
w | T =

32 8,444 9.37

ISPDC 2021 17 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Performance Analysis %‘i’ ﬁ

» Execution time in milliseconds (lower is better) and Speedup Ratio (higher
is better).

Threads Execution Time (Er,) Speedup Ratio (Et,/ET,)
(Tp) CSL CcT FPOrig FPElastic CS CT FPOrig FPElastic
5th — Remove: 40% Search: 40% Insert: 20%
1 76,120
38 12,511 6.08 Wil 7.69
16 7,875 9.67 11.64
24 7,906 12.48
32 7,027 13.11

6th — Remove: 20% Search: 40% Insert: 40%

1 82,145

8 13,898 5.73
16 8,659 8.22
24 8,514 8.71

32 6,854 9.04

ISPDC 2021 18 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

F P()rig vs F PElastic

» Within the setup stage, we inserted all keys in the set I = {0,...,8% — 1}
(since we used 8 bucket entries per hash level, all chain nodes were located

in a hash level with depth 8).

Towards an Elastic Lock-Free Hash Trie Design

» Within the setup stage, we inserted all keys in the set I = {0,...,8% — 1}

F P()rig vs F PElastic

Miguel Areias and Ricardo Rocha

(since we used 8 bucket entries per hash level, all chain nodes were located
in a hash level with depth 8).

» And then, we measured the execution time that both designs took to: remove
all keys and search for all keys.

ISPDC 2021

80,000
70,000
60,000
50,000

40,000

Execution Time (ms)

20,000
10,000
0

30,000
K

1

—»—FP Orig-Remove all keys
—»—FP Elastic-Remove all keys
---¥----FP Orig-Search all keys
---#--- FP Elastic-Search all keys

*e..

"""" *‘h“"""'K""'"""'*""""""K

4 8 16 24 32
Threads

19 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

F P()rig vs F PElastic

» Within the setup stage, we inserted and then removed all keys in the set I
(recall that FP iz removes the keys, but keeps its hash hierarchy unchanged.

FPE.stic removes keys and hashes (except the root hash)).

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

F P()rig vs F PElastic

» Within the setup stage, we inserted and then removed all keys in the set I
(recall that FP iz removes the keys, but keeps its hash hierarchy unchanged.

FPE.stic removes keys and hashes (except the root hash)).

» And then, we measured the execution time that both designs took to: reinsert
all keys and search for all keys.

ISPDC 2021

Execution Time (ms)

60,000 —»— FP Orig-Reinsert all keys

—»— FP Elastic-Reinsert all keys
---¥----FP Orig-Search all keys
---#--- FP Elastic-Search all keys

50,000

40,000

30,000

xﬁ-
20,000
10,000
Y S S R — R— x
1 4 8 16 24 32
Threads

20 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, scalable and elastic hash trie design that fully
supports the concurrent search, insert, remove, expand and compress operations.

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, scalable and elastic hash trie design that fully
supports the concurrent search, insert, remove, expand and compress operations.

» Experimental results show that elasticity overheads are largely overcome by
its benefits.

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, scalable and elastic hash trie design that fully
supports the concurrent search, insert, remove, expand and compress operations.

» Experimental results show that elasticity overheads are largely overcome by
its benefits.

¢ Elasticity effectively improves the search operation, and, by doing so, the
design became very competitive, when compared against:
« Other state-of-the-art designs implemented in Java.

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, scalable and elastic hash trie design that fully
supports the concurrent search, insert, remove, expand and compress operations.

» Experimental results show that elasticity overheads are largely overcome by
its benefits.

¢ Elasticity effectively improves the search operation, and, by doing so, the
design became very competitive, when compared against:
« Other state-of-the-art designs implemented in Java.
« The non-elastic version of the design.

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Conclusions and Further Work

» We have presented a novel, scalable and elastic hash trie design that fully
supports the concurrent search, insert, remove, expand and compress operations.

» Experimental results show that elasticity overheads are largely overcome by
its benefits.

¢ Elasticity effectively improves the search operation, and, by doing so, the
design became very competitive, when compared against:
« Other state-of-the-art designs implemented in Java.
« The non-elastic version of the design.

» As further work, we plan to use our design as the building block for a novel
distributed hash map design.

ISPDC 2021 21 / 22

Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias and Ricardo Rocha
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

FCT grant: SFRH/BPD/108018/2015

;‘ir’:"’; DAL N

20th Internationa(."s'ymposium O/n P agalil el aANiG satagibutedyComputi D.Cx 2(1; 28 SO"JUI"-II'IIIUJ ﬁapoca -

INESC Fundacao para a Ciéncia e a Tecnologia O O

MINISTERIO DA CIENCIA, TECNOLOGIA E ENSING SUPERIOR

ISPDC 2021 22 / 22

