# Towards an Elastic Lock-Free Hash Trie Design

Miguel Areias and Ricardo Rocha CRACS & INESC-TEC LA University of Porto, Portugal



#### Hash Maps

➤ Hash maps are useful to store information that can be organized as pairs (K, C), where K is an identifier (or a key) and C is the associated content.



A small phone book as a hash map.

#### **Hash Maps**

➤ Hash maps are useful to store information that can be organized as pairs (K, C), where K is an identifier (or a key) and C is the associated content.



A small phone book as a hash map.

- > Some of the most **usual operations** are:
  - ♦ User-level (externally activated by users): search, insert and remove.
  - **Kernel-level** (internally activated by thresholds): **expansion** and **compression**  $\Rightarrow$  **elasticity** (or **elastic hashing**) is the ability to support both operations.

ISPDC 2021 1 / 22

#### **Concurrent Hash Maps**

- ➤ Multithreaded hash maps allow the concurrent execution of multiple operations.
  - ◆ Each operation runs independently, but at the engine level, all operations share the underlying data structures.



ISPDC 2021 2 / 22

There are several hash map designs that already support efficiently multithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non Blocking Hash Maps (NB), Concurrent Tries (CT) and Fixed-size Persistent Lock-free Hash Map (FP).

- ➤ There are several hash map designs that already support efficiently multithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non Blocking Hash Maps (NB), Concurrent Tries (CT) and Fixed-size Persistent Lock-free Hash Map (FP).
- However, to the best of our knowledge, non of the existent designs combine five properties: Lock-Free Progress, Persistent Memory References, Fixed-Size Data Structures, Store Sorted Keys and Elasticity.

| Properties / Designs         | СН | CS       | NB       | CT       | FP       |
|------------------------------|----|----------|----------|----------|----------|
| Lock-Free Progress           | X  | <b>√</b> | <b>√</b> | <b>/</b> | <b>/</b> |
| Persistent Memory References | X  | 1        | 1        | X        | <b>1</b> |
| Fixed-Size Data Structures   | X  | -        | X        | X        | 1        |
| Store Sorted Keys            | X  | 1        | X        | X        | <b>/</b> |
| Elasticity (Elastic Hashing) | X  |          | X        | <b>/</b> | X        |

ISPDC 2021 3 / 22

However, to the best of our knowledge, non of the existent designs combine five properties: Lock-Free Progress, Persistent Memory References, Fixed-Size Data Structures, Store Sorted Keys and Elasticity.

| Properties / Designs         | CH | CS       | NB       | CT       | FP       |
|------------------------------|----|----------|----------|----------|----------|
| Lock-Free Progress           | X  | <b>√</b> | <b>√</b> | <b>/</b> | <b>/</b> |
| Persistent Memory References | X  | 1        | 1        | X        | <b>/</b> |
| Fixed-Size Data Structures   | X  | _        | X        | X        | 1        |
| Store Sorted Keys            | X  | 1        | X        | X        | 1        |
| Elasticity (Elastic Hashing) | X  |          | X        | <b>/</b> | X        |

- ➤ In this talk we will:
  - give a brief overview about the Lock-Free Progress property.

ISPDC 2021 4 / 22

However, to the best of our knowledge, non of the existent designs combine five properties: Lock-Free Progress, Persistent Memory References, Fixed-Size Data Structures, Store Sorted Keys and Elasticity.

| Properties / Designs         | CH | CS       | NB       | CT       | FP       |
|------------------------------|----|----------|----------|----------|----------|
| Lock-Free Progress           | X  | <b>√</b> | <b>√</b> | <b>/</b> | <b>√</b> |
| Persistent Memory References | X  | 1        | 1        | X        | <b>√</b> |
| Fixed-Size Data Structures   | X  | -        | X        | X        | <b>√</b> |
| Store Sorted Keys            | X  | 1        | X        | X        | 1        |
| Elasticity (Elastic Hashing) | X  | -        | X        | <b>√</b> | X        |

- ➤ In this talk we will:
  - give a brief overview about Lock-Free Progress property.
  - present the internals of the FP design.

However, to the best of our knowledge, non of the existent designs combine five properties: Lock-Free Progress, Persistent Memory References, Fixed-Size Data Structures, Store Sorted Keys and Elasticity.

| Properties / Designs         | CH | CS       | NB       | CT       | FP       |
|------------------------------|----|----------|----------|----------|----------|
| Lock-Free Progress           | X  | <b>√</b> | <b>√</b> | <b>/</b> | <b>✓</b> |
| Persistent Memory References | X  | <b>√</b> | 1        | X        | <b>/</b> |
| Fixed-Size Data Structures   | X  |          | X        | X        | 1        |
| Store Sorted Keys            | X  | 1        | X        | X        | 1        |
| Elasticity (Elastic Hashing) | X  |          | X        | <b>/</b> | <b>✓</b> |

- ➤ In this talk we will:
  - give a brief overview about Lock-Free Progress property.
  - present the internals of the FP design.
  - show how to extend the FP design to support Elasticity.

However, to the best of our knowledge, non of the existent designs combine five properties: Lock-Free Progress, Persistent Memory References, Fixed-Size Data Structures, Store Sorted Keys and Elasticity.

| Properties / Designs         | CH | CS       | NB       | CT       | FP       |
|------------------------------|----|----------|----------|----------|----------|
| Lock-Free Progress           | X  | <b>√</b> | <b>√</b> | <b>/</b> | <b>√</b> |
| Persistent Memory References | X  | <b>√</b> | 1        | X        | 1        |
| Fixed-Size Data Structures   | X  | -        | X        | X        | 1        |
| Store Sorted Keys            | X  | <b>√</b> | X        | X        | 1        |
| Elasticity (Elastic Hashing) | X  |          | X        | <b>√</b> | <b>✓</b> |

- ➤ In this talk we will:
  - give a brief overview about Lock-Free Progress property.
  - present the internals of the FP design.
  - show how to extend the FP design to support Elasticity.
  - show a performance analysis comparison (will skip the CH and NB designs).

ISPDC 2021 6 / 22

#### **Lock-Free Progress**

➤ Lock-Free linearizable objects permit a greater concurrency since semantically consistent (non-interfering) operations may execute in parallel.



Lock-free guarantees then that, on every instant of the execution of operations (between their invocation and their response), at least one thread is doing progress on its work.

#### **Lock-Free Progress**

Lock-Free linearizable objects permit a greater concurrency since semantically consistent (non-interfering) operations may execute in parallel.



- ➤ Lock-free guarantees then that, on every instant of the execution of operations (between their invocation and their response), at least one thread is doing progress on its work.
- ➤ At the implementation level, they take advantage of the CAS (Compare-and-Swap) atomic operation (intrinsically thread safe), that nowadays can be found in many common hardware architectures.

ISPDC 2021 7 / 22

#### FP Design - Key Ideas

- ➤ Hash buckets refer to a chaining mechanism that supports key collisions.
- Chain nodes store pairs (Key, Content, (Next\_On\_Chain, State)). For the sake of simplicity we will present only (Key, (Next\_On\_Chain, State)). State can be valid (V) or invalid (I).



ISPDC 2021 8 / 22

## FP Design - Searching for K3





## FP Design - Searching for K3



ISPDC 2021 9 / **22** 

#### **FP Design - Internals**

- ➤ To support multithreading, our design allows threads to:
  - Recover from preemption, by using a previous field (Pi) to traverse the hash buckets backwards.
  - ♦ Identify chains, by using a back-reference on the end of each chain.
  - ♦ Maintain consistency, by using CAS on write operations.



#### **FP Design - Internals**

- ➤ To support multithreading, our design allows threads to:
  - Recover from preemption, by using a previous field (Pi) to traverse the hash buckets backwards.
  - ♦ Identify chains, by using a back-reference on the end of each chain.
  - ♦ Maintain consistency, by using CAS on write operations.



#### **FP Design - Internals**

- ➤ To support multithreading, our design allows threads to:
  - Recover from preemption, by using a previous field (Pi) to traverse the hash buckets backwards.
  - ♦ Identify chains, by using a back-reference on the end of each chain.
  - ♦ Maintain consistency, by using CAS on write operations.



ISPDC 2021 10 / 22















ISPDC 2021 11 / 22











ISPDC 2021 12 / 22













ISPDC 2021











ISPDC 2021 14 / 22

- **Hardware**: 32 (2 \* 16) core AMD with 32 GB of main memory.
- > Software: Linux Fedora 20 with OpenJDK 13.0.1.
- **Benchmarks**: Sets of  $8^8$  (about 17 million) randomized keys with **insert**, **search** and **remove** operations (5 warm up runs and 10 standard runs per benchmark).
- > FP design: expanded with 2 valid nodes and each hash bucket had 8 entries.
- Podium colors: first place, second place and third place.



ISPDC 2021 15 / 22



**Execution time** in milliseconds (**lower** is **better**) and **Speedup Ratio** (**higher** is **better**).

| # Threads                                | Execution Time $(\mathbf{E_{T_p}})$ |        |                      |                       | Speedup Ratio $(E_{T_1}/E_{T_p})$ |       |                      |                             |  |
|------------------------------------------|-------------------------------------|--------|----------------------|-----------------------|-----------------------------------|-------|----------------------|-----------------------------|--|
| $(\mathbf{T_p})$                         | CSL                                 | СТ     | $FP_{\mathrm{Orig}}$ | FP <sub>Elastic</sub> | CS                                | СТ    | $FP_{\mathrm{Orig}}$ | $FP_{\mathrm{Elastic}}^{r}$ |  |
| 1st – Remove: 0% Search: 100% Insert: 0% |                                     |        |                      |                       |                                   |       |                      |                             |  |
| 1                                        | 54,850                              | 14,720 | 25,529               | 9,511                 |                                   |       |                      |                             |  |
| 8                                        | 7,825                               | 2,093  | 3,021                | 1,282                 | 7.01                              | 7.03  | 8.45                 | 7.42                        |  |
| 16                                       | 4,807                               | 1,251  | 1,804                | 859                   | 11.41                             | 11.77 | 14.15                | 11.07                       |  |
| 24                                       | 4,773                               | 990    | 1,448                | 733                   | 11.49                             | 14.87 | 17.63                | 12.98                       |  |
| 32                                       | 4,428                               | 904    | 1,570                | 631                   | 12.39                             | 16.28 | 16.26                | 15.07                       |  |
| 2nd – Remove: 0% Search: 0% Insert: 100% |                                     |        |                      |                       |                                   |       |                      |                             |  |
| 1                                        | 100,033                             | 36,781 | 48,321               | 31,666                |                                   |       |                      |                             |  |
| 8                                        | 16,089                              | 7,119  | 11,048               | 5,537                 | 6.22                              | 5.17  | 4.37                 | 5.72                        |  |
| 16                                       | 9,903                               | 5,341  | 9,983                | 3,871                 | 10.10                             | 6.89  | 4.84                 | 8.18                        |  |
| 24                                       | 9,191                               | 4,980  | 9,083                | 3,691                 | 10.88                             | 7.39  | 5.32                 | 8.58                        |  |
| 32                                       | 8,636                               | 4,838  | 9,177                | 3,923                 | 11.58                             | 7.60  | 5.27                 | 8.07                        |  |

ISPDC 2021 16 / 22



**Execution time** in milliseconds (**lower** is **better**) and **Speedup Ratio** (**higher** is **better**).

| # Threads                                 | Execution Time $(\mathbf{E_{T_p}})$ |        |                      |                       | Speedup Ratio $(E_{T_1}/E_{T_p})$ |       |                      |                              |
|-------------------------------------------|-------------------------------------|--------|----------------------|-----------------------|-----------------------------------|-------|----------------------|------------------------------|
| $\mathbf{T_p}$                            | CSL                                 | СТ     | $FP_{\mathrm{Orig}}$ | FP <sub>Elastic</sub> | CS                                | СТ    | $FP_{\mathrm{Orig}}$ | <b>FP</b> <sub>Elastic</sub> |
| 3rd – Remove: 50% Search: 50% Insert: 0%  |                                     |        |                      |                       |                                   |       |                      |                              |
| 1                                         | 52,188                              | 16,008 | 25,874               | 9,801                 |                                   |       |                      |                              |
| 8                                         | 8,544                               | 2,399  | 3,263                | 1,480                 | 6.11                              | 6.67  | 7.93                 | 6.62                         |
| 16                                        | 5,591                               | 1,524  | 2,023                | 1,108                 | 9.33                              | 10.50 | 12.79                | 8.85                         |
| 24                                        | 5,274                               | 1,280  | 1,415                | 945                   | 9.90                              | 12.51 | 18.29                | 10.37                        |
| 32                                        | 5,188                               | 1,344  | 1,768                | 952                   | 10.06                             | 11.91 | 14.63                | 10.30                        |
| 4th – Remove: 33% Search: 33% Insert: 33% |                                     |        |                      |                       |                                   |       |                      |                              |
| 1                                         | 77,543                              | 23,910 | 35,272               | 24,115                |                                   |       |                      |                              |
| 8                                         | 13,811                              | 4,163  | 4,785                | 3,776                 | 5.61                              | 5.74  | 7.37                 | 6.39                         |
| 16                                        | 9,093                               | 3,038  | 3,131                | 2,518                 | 8.53                              | 7.87  | 11.27                | 9.58                         |
| 24                                        | 7,974                               | 2,681  | 2,918                | 2,484                 | 9.72                              | 8.92  | 12.09                | 9.71                         |
| 32                                        | 8,444                               | 2,552  | 3,038                | 2,428                 | 9.18                              | 9.37  | 11.61                | 9.93                         |

ISPDC 2021



**Execution time** in milliseconds (**lower** is **better**) and **Speedup Ratio** (**higher** is **better**).

| # Threads                                 | Execution Time $(\mathbf{E_{T_p}})$ |         |                      |                       | Speedup Ratio $(\mathbf{E_{T_1}}/\mathbf{E_{T_p}})$ |      |                      |                       |  |
|-------------------------------------------|-------------------------------------|---------|----------------------|-----------------------|-----------------------------------------------------|------|----------------------|-----------------------|--|
| $(\mathbf{T_p})$                          | CSL                                 | СТ      | $FP_{\mathrm{Orig}}$ | FP <sub>Elastic</sub> | CS                                                  | СТ   | $FP_{\mathrm{Orig}}$ | FP <sub>Elastic</sub> |  |
| 5th – Remov                               | ve: 40%                             | Search: | 40%                  | Insert: 20%           | ,<br>)                                              |      |                      |                       |  |
| 1                                         | 76,120                              | 21,843  | 30,589               | 21,690                |                                                     |      |                      |                       |  |
| 8                                         | 12,511                              | 3,515   | 3,980                | 3,156                 | 6.08                                                | 6.21 | 7.69                 | 6.87                  |  |
| 16                                        | 7,875                               | 2,386   | 2,629                | 1,998                 | 9.67                                                | 9.15 | 11.64                | 10.86                 |  |
| 24                                        | 7,906                               | 2,209   | 2,452                | 1,779                 | 9.63                                                | 9.89 | 12.48                | 12.19                 |  |
| 32                                        | 7,027                               | 2,200   | 2,333                | 1,791                 | 10.83                                               | 9.93 | 13.11                | 12.11                 |  |
| 6th – Remove: 20% Search: 40% Insert: 40% |                                     |         |                      |                       |                                                     |      |                      |                       |  |
| 1                                         | 82,145                              | 25,061  | 34,771               | 26,087                |                                                     |      |                      |                       |  |
| 8                                         | 13,898                              | 4,373   | 4,865                | 3,915                 | 5.91                                                | 5.73 | 7.15                 | 6.66                  |  |
| 16                                        | 8,659                               | 3,047   | 3,441                | 3,043                 | 9.49                                                | 8.22 | 10.10                | 8.57                  |  |
| 24                                        | 8,514                               | 2,877   | 3,144                | 2,694                 | 9.65                                                | 8.71 | 11.06                | 9.68                  |  |
| 32                                        | 6,854                               | 2,773   | 3,096                | 2,385                 | 11.98                                               | 9.04 | 11.23                | 10.94                 |  |

ISPDC 2021 18 / 22

- ightharpoonup Within the setup stage, we **inserted all keys** in the set  $I = \{0,...,8^8-1\}$ 
  - ★ (since we used 8 bucket entries per hash level, all chain nodes were located in a hash level with depth 8).

- $\blacktriangleright$  Within the setup stage, we **inserted all keys** in the set  $I = \{0,...,8^8-1\}$ 
  - ★ (since we used 8 bucket entries per hash level, all chain nodes were located in a hash level with depth 8).
- And then, we measured the execution time that both designs took to: remove all keys and search for all keys.



ISPDC 2021 19 / 22

- ➤ Within the setup stage, we **inserted and then removed all keys** in the set **I** 
  - \* (recall that FP<sub>Orig</sub> removes the keys, but keeps its hash hierarchy unchanged. FP<sub>Elastic</sub> removes keys and hashes (except the root hash)).

- ➤ Within the setup stage, we **inserted and then removed all keys** in the set I
  - ★ (recall that FP<sub>Orig</sub> removes the keys, but keeps its hash hierarchy unchanged. FP<sub>Elastic</sub> removes keys and hashes (except the root hash)).
- ➤ And then, we measured the **execution time** that both designs took to: **reinsert all keys** and **search for all keys**.



ISPDC 2021 **20** / **22** 

➤ We have presented a novel, scalable and elastic hash trie design that fully supports the concurrent search, insert, remove, expand and compress operations.

- ➤ We have presented a novel, scalable and **elastic hash trie design** that fully supports the concurrent search, insert, remove, expand and compress operations.
- **Experimental results** show that **elasticity** overheads are largely overcome by its **benefits**.

- ➤ We have presented a novel, scalable and elastic hash trie design that fully supports the concurrent search, insert, remove, expand and compress operations.
- **Experimental results** show that **elasticity** overheads are largely overcome by its **benefits**.
  - ♦ Elasticity effectively improves the search operation, and, by doing so, the design became very competitive, when compared against:
    - \* Other **state-of-the-art** designs implemented in Java.

- ➤ We have presented a novel, scalable and elastic hash trie design that fully supports the concurrent search, insert, remove, expand and compress operations.
- **Experimental results** show that **elasticity** overheads are largely overcome by its **benefits**.
  - ♦ Elasticity effectively improves the search operation, and, by doing so, the design became very competitive, when compared against:
    - \* Other **state-of-the-art** designs implemented in Java.
    - \* The **non-elastic** version of the design.

- ➤ We have presented a novel, scalable and elastic hash trie design that fully supports the concurrent search, insert, remove, expand and compress operations.
- **Experimental results** show that **elasticity** overheads are largely overcome by its **benefits**.
  - ♦ Elasticity effectively improves the search operation, and, by doing so, the design became very competitive, when compared against:
    - \* Other **state-of-the-art** designs implemented in Java.
    - \* The **non-elastic** version of the design.
- ➤ As further work, we plan to use our design as the building block for a novel distributed hash map design.

ISPDC 2021 21 / 22

#### Thank You !!!

Miguel Areias and Ricardo Rocha miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

**FCT** grant: *SFRH/BPD/108018/2015* 







