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Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

hash
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A small phone book as a hash map.



Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

Hash Maps

» Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

hash
keys function buckets

- 0l | 521-8976
Jlohn Smith
02 | 521-1234
03
Lisa Smith ] -

13
Sandra Dee
T —— /14| 5219655

15

A small phone book as a hash map.

» Some of the most usual operations are:

¢ User-level (externally activated by users): search, insert and remove.
¢ Kernel-level (internally activated by thresholds): expansion and compressi-
on = elasticity (or elastic hashing) is the ability to support both operations.
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Concurrent Hash Maps

» Multithreaded hash maps allow the concurrent execution of multiple ope-
rations.

¢ Each operation runs independently, but at the engine level, all operations
share the underlying data structures.

I nserting Sear chi ng
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Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB), Concurrent Tries (CT) and Fixed-size Persistent
Lock-free Hash Map (FP).
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Our Motivation

» There are several hash map designs that already support efficiently mul-
tithreading: Concurrent Hash Maps (CH), Concurrent Skip Lists (CS), Non
Blocking Hash Maps (NB), Concurrent Tries (CT) and Fixed-size Persistent
Lock-free Hash Map (FP).

» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size
Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH|CS | NB|CT|FP
Lock-Free Progress X v v v v
Persistent Memory References | X v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v
Elasticity (Elastic Hashing) X X | X
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» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size

Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH | CS|NB |CT|FP
Lock-Free Progress X v v v v
Persistent Memory References | X v v X v
Fixed-Size Data Structures X X X v
Store Sorted Keys X v X X v
Elasticity (Elastic Hashing) X X | X

» |n this talk we will:

¢ give a brief overview about the Lock-Free Progress property.
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» However, to the best of our knowledge, non of the existent designs combine five
properties: Lock-Free Progress, Persistent Memory References, Fixed-Size

Data Structures, Store Sorted Keys and Elasticity.

Properties / Designs CH | CS | NB
Lock-Free Progress X v v
Persistent Memory References | X v v
Fixed-Size Data Structures X X
Store Sorted Keys X v X
Elasticity (Elastic Hashing) X X

» |n this talk we will:
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¢ give a brief overview about Lock-Free Progress property.

¢ present the internals of the FP design.
¢ show how to extend the FP design to support Elasticity.

¢ show a performance analysis comparison (will skip the CH and NB designs).
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Lock-Free Progress

» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.

( Dependency on the operating system schedul er A
Depecgency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng
Pr ogr ess | ndependent Dependent Dependent
Every thread . . .
Level nmakes progr ess ostruction-Free| Starvation-Free Naxi mal
of Vs
Pr ogress M ni mal
Sonre t hread Lock- Free ? Deadl ock- Free
make progress
Dependent Bl ocki ng
Vs Vs
| ndependent Non- Bl ocki ng
. J

» Lock-free guarantees then that, on every instant of the execution of operations
(between their invocation and their response), at least one thread is doing
progress on its work.
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» Lock-Free linearizable objects permit a greater concurrency since semanti-
cally consistent (non-interfering) operations may execute in parallel.
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» Lock-free guarantees then that, on every instant of the execution of operations
(between their invocation and their response), at least one thread is doing

progress on its work.

» At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation (intrinsically thread safe), that nowadays can
be found in many common hardware architectures.
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FP Design - Key ldeas

» Hash buckets refer to a chaining mechanism that supports key collisions.

» Chain nodes store pairs (Key, Content, (Next_On_Chain, State)). For the
sake of simplicity we will present only (Key, (Next_On_Chain, State)). State

can be valid (V) or invalid (I).
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FP Design - Searching for K3
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FP Design - Searching for K3
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FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Ildentify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.
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FP Design - Internals

» To support multithreading, our design allows threads to:

¢ Recover from preemption, by using a previous field (Pi) to traverse the
hash buckets backwards.

¢ Identify chains, by using a back-reference on the end of each chain.

4 Maintain consistency, by using CAS on write operations.
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FP Design - Front Expansion

P
B




Towards an Elastic Lock-Free Hash Trie Design

entri es

P
1
_Bx__|

Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

K1 \Y%

P
B

<}




Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

P
B




Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion




Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion




Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion

<]




Towards an Elastic Lock-Free Hash Trie Design Miguel Areias and Ricardo Rocha

FP Design - Front Expansion
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FP Design - Removal of a Key
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FP Design - Removal of a Key
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FP Design - Successful Compression ** NEW **
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FP Design - Aborting a Compression ** NEW **
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Performance Analysis

» Hardware: 32 (2 %« 16) core AMD with 32 GB of main memory:.
» Software: Linux Fedora 20 with OpenJDK 13.0.1.

» Benchmarks: Sets of 8% (about 17 million) randomized keys with insert, search
and remove operations (5 warm up runs and 10 standard runs per benchmark).

» FP design: expanded with 2 valid nodes and each hash bucket had 8 entries.

» Podium colors: first place, second place and third place.
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Performance Analysis %‘i’ ﬁ

» Execution time in milliseconds (lower is better) and Speedup Ratio (higher
is better).

# Threads Execution Time (E,) Speedup Ratio (Et,/ET,)
(Tp) CSL CT FPOrig FPElastic CS CcT FPOrig FPElastic

1st — Remove: 0% Search: 100% Insert: 0%

1 54,850

3 7,825

16 4,807

24 4,773

32 4,428

2nd — Remove: 0% Search: 0% Insert: 100%

1 INONckW 36,781 48,321 31,666

8 N 7,119 11,048 5,537 4.37
16 5,341 3,871 4.84
24 4,980 9,083 3,691 5.32

32 4,838 3,923 5.27
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Performance Analysis %‘i’ ﬁ

» Execution time in milliseconds (lower is better) and Speedup Ratio (higher
is better).

# Threads Execution Time (Er,) Speedup Ratio (Et,/ET,)
(Tp) CSL CT FPOrig FPElastic CS CcT FPOrig FPElastic
3rd — Remove: 50%  Search: 50% Insert: 0%
1 52,188
8 8,544
16 5,591 9.33 10.50
24 5,274
32 5,188 10.06 RN

4th — Remove: 33% Search: 33%  Insert: 33%
1 77,543
3 13,811 5.74
16 9,093 8.53 7.87
w | T =

32 8,444 9.37
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Performance Analysis %‘i’ ﬁ

» Execution time in milliseconds (lower is better) and Speedup Ratio (higher
is better).

# Threads Execution Time (Er,) Speedup Ratio (Et,/ET,)
(Tp) CSL CcT FPOrig FPElastic CS CT FPOrig FPElastic
5th — Remove: 40% Search: 40% Insert: 20%
1 76,120
38 12,511 6.08 Wil 7.69
16 7,875 9.67 11.64
24 7,906 12.48
32 7,027 13.11

6th — Remove: 20% Search: 40% Insert: 40%

1 82,145

8 13,898 5.73
16 8,659 8.22
24 8,514 8.71

32 6,854 9.04
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F P()rig vs F PElastic

» Within the setup stage, we inserted all keys in the set I = {0,...,8% — 1}
(since we used 8 bucket entries per hash level, all chain nodes were located

in a hash level with depth 8).
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» Within the setup stage, we inserted all keys in the set I = {0,...,8% — 1}

F P()rig vs F PElastic

Miguel Areias and Ricardo Rocha

(since we used 8 bucket entries per hash level, all chain nodes were located
in a hash level with depth 8).

» And then, we measured the execution time that both designs took to: remove
all keys and search for all keys.
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F P()rig vs F PElastic

» Within the setup stage, we inserted and then removed all keys in the set I
(recall that FP iz removes the keys, but keeps its hash hierarchy unchanged.

FPE.stic removes keys and hashes (except the root hash)).
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F P()rig vs F PElastic

» Within the setup stage, we inserted and then removed all keys in the set I
(recall that FP iz removes the keys, but keeps its hash hierarchy unchanged.

FPE.stic removes keys and hashes (except the root hash)).

» And then, we measured the execution time that both designs took to: reinsert
all keys and search for all keys.
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Conclusions and Further Work

» We have presented a novel, scalable and elastic hash trie design that fully
supports the concurrent search, insert, remove, expand and compress operations.
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Conclusions and Further Work

» We have presented a novel, scalable and elastic hash trie design that fully
supports the concurrent search, insert, remove, expand and compress operations.

» Experimental results show that elasticity overheads are largely overcome by
its benefits.

¢ Elasticity effectively improves the search operation, and, by doing so, the
design became very competitive, when compared against:
« Other state-of-the-art designs implemented in Java.
« The non-elastic version of the design.

» As further work, we plan to use our design as the building block for a novel
distributed hash map design.
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Thank You !!!

Miguel Areias and Ricardo Rocha
miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt
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