
Apoo32: A Virtual Machine for Apoo Assembly

Pedro Vasconcelos
Departamento de Ciência de Computadores

Faculdade of Ciências, Universidade do Porto
pbv@dcc.fc.up.pt

March 23, 2006

1 Introduction

Apoo [1, 2] is an assembly language teaching environment developed at the
Department of Computer Science of the Faculty of Science, University of Porto.
It consists of a very simple assembly language with a reduced instruction set
plus a graphical user interface for editing, executing and debugging assembly
programs. Because the emphasis of Apoo is on programming at the assembly
level, no machine code translation is used: Apoo programs are executed as
mnemonics.

This document describes Apoo32, a virtual machine code for Apoo programs.
We develop this extension with three teaching objectives:

• as an introduction to computer architecture of machine languages e.g.
instruction sets, addressing modes, memory segments, etc.;

• as an introduction to virtual machines and byte-code interpreters;

• as a reference design for student’s projects, e.g. virtual machine inter-
preters or language compilers.

The machine is named “Apoo32” because the constant 32 pops up in many
of the architectural constraints: there are 32 registers, each register is 32-bits
long and data and instruction words are 32-bits long.

2 Apoo32 Architecture

2.1 Programmer level architecture

The Apoo32 programming model has 32 general purpose registers named R0 to
R31, each register holding a 32-bit value. Two other special 32-bit registers are
used: a program counter and a stack pointer ; these are manipulated by specific
instructions.

1

Data Address Read Write
50000 always 0 write ASCII char
50001 read an integer write an integer
50010 always 0 write CR char

Table 1: Memory-mapped I/O

The instruction set follows a load-store architecture, i.e. all arithmetic and
logic operations are done in registers. There are only four addressing modes:
immediate (literal), register, direct memory, and indirect memory (through a
register). Instructions have zero, one or two operands.

The Apoo32 run-time environment distinguishes three memory areas: the
code segment, the (static) data segment and the run-time stack. Each memory
segment is a contiguous array of 32-bit words. Addresses for code and data
segment are disjoint and start at zero; the only addressable datum is the single
word. The stack is not randomly addressable; instead instructions push, pop,
jsr and rtn address the top of the stack via through the stack pointer. The stack
pointer cannot be moved or otherwise directly manipulated by the programmer.

2.2 Memory-Mapped Input/Output

Apoo32 machine includes a rudimentary memory-mapped input/output inter-
face. Table 1 lists the default functionality.

2.3 Instruction encoding

Apoo32 instructions are one or two 32-bits words long, named word 0 and 1.
The first word is divided into three sub-fields: the opcode and two (optional)
operands. When used, the second word represents a single 32-bit field.

Table 2 describes the encoding for each assembly mnemonic. Fields within
a word are represented by a range of bits e.g. [7:0]. Bits are numbered from 0 to
31, with 0 being the least-significant and 31 the most-significant. Entries with
‘–’ represent ignored or unused fields.

2.3.1 Opcode

The opcode is encoded in the lower 8-bits of the first instruction word. Only
opcodes 0x0–0x17 are defined. This means that the encoding can easily be
extended to accommodate a larger instruction set.

2.3.2 Register Operands

Fields arg0 and arg1 in the first word encode one or two register arguments.
Each register number 0 to 31 is encoded in 5 bits.

2

Word 0 Word 1
arg1 arg0 opcode

Mnemonic [20:16] [12:8] [7:0] [31:0]

halt – – 0x0 –
load Addr Ri – Ri 0x1 Addr
loadn Imm Ri – Ri 0x2 Imm
loadi Ri Rj Rj Ri 0x3 –

store Ri Addr – Ri 0x4 Addr
storer Ri Rj Rj Ri 0x5 –
storei Ri Rj Rj Ri 0x6 –
add Ri Rj Rj Ri 0x7 –
sub Ri Rj Rj Ri 0x8 –
mul Ri Rj Rj Ri 0x9 –
div Ri Rj Rj Ri 0xa –
mod Ri Rj Rj Ri 0xb –

zero Ri – Ri 0xc –
inc Ri – Ri 0xd –
dec Ri – Ri 0xe –

jump Addr – – 0xf Addr
jnzero Ri Addr – Ri 0x10 Addr
jzero Ri Addr – Ri 0x11 Addr
jpos Ri Addr – Ri 0x12 Addr
jneg Ri Addr – Ri 0x13 Addr

jsr Addr – – 0x14 Addr
rtn – – 0x15 –

push Ri – Ri 0x16 –
pop Ri – Ri 0x17 –

Table 2: Apoo32 instruction encoding

3

Register fields are aligned with byte boundaries in the word; this allows
easier reading of machine code in hexadecimal form (see examples following).
Only a total of 18 bits of the first word are used. Thus the encoding could be
extended to accommodate extra registers or addressing modes.

2.3.3 Immediate Operands

For instructions with an immediate value or memory or program address, a
second 32-bit word is used to encoded its value. Program address are absolute
i.e. not relative to the program counter.

2.4 Examples

Example 1 To encode the mnemonic add R2 R3:

opcode add = 0x7
arg0 R2 = 0x2
arg1 R3 = 0x3
word 0 = opcode|(arg0<<8)|(arg1<<16)

= 0x30207

This instruction is one word long.

Example 2 To encode the mnemonic store R15 0x1000:

opcode store = 0x4
arg0 R15 = 0xf

arg1 not used
word 0 = opcode|(arg0<<8)

= 0xf04
word 1 = 0x1000

This instruction is two words long.

3 Apoo32 Assembler

A prototype Apoo32 assembler is available under the Gnu Public License in
source code and compiled binary forms at http://www.ncc.fc.up.pt/apoo.
The assembler itself is written in the functional language Haskell, making it
very concise, easy to understand and modify.1 The assembler is invoked on a
source file with Apoo mnemonics, labels and optional comments:

$ apooas file.apoo

The output is written to a C-language file file.apoo.c:
1The source code is about 300-lines long, split into 200-lines for the assembler itself (includ-

ing code data structures and label resolution) and 100-lines for the Apoo mnemonic parser.

4

N: const 20
load N R1
loadn 0 R2
jump cond

loop: add R1 R2
dec R1

cond: jpos R1 loop
halt

Table 3: Sample Apoo assembly source file

/* Apoo32 Assembler v1.0. Copyleft Pedro Vasconcelos, 2006 */
/* This file has been generated automatically; do not edit */

int Apoo_data[] = {0x14};
int Apoo_data_size = 1;
int Apoo_code[] = {0x101,0x0,0x202,0x0,0xf,0x8,0x20107,

0x10e,0x112,0x6,0x0};
int Apoo_code_size = 11;

Table 4: Sample Apoo32 assembler output

int Apoo_data[] = { /* data segment values */ };
int Apoo_code[] = { /* code segment values */ };
int Apoo_data_size = .. ; /* number of words in data segment */
int Apoo_code_size = .. ; /* number of words in code segment */

We choose the C language for the output format because:

• it allows for easy portability across platforms with different binary formats;

• it avoids the need to introduce students to yet another data format;

• it allows easy integration with student’s assignment projects e.g. virtual
machine interpreters: the interface between the assembler and the inter-
preter is done by declaring the the data and code segments as external C
symbols.

Example 3 Tables 3 and 4 displays a sample input file and output byte-code
of the assembler.

Example 4 No presentation of a toy programming language is complete with-
out an “Hello world” example (Tables 5 and 6).

5

putc: equ 50000
txt: string "Hello world!\n"

main program
loadn txt R0
jsr puts
halt

subroutine to print string at R0
puts: jump cond
loop: store R1 putc # output char

inc R0
cond: loadi R0 R1

jnzero R1 loop
rtn

Table 5: “Hello world” example

/* Apoo32 Assembler v1.0. Copyleft Pedro Vasconcelos, 2006 */
/* This file has been generated automatically; do not edit */

int Apoo_data[] = {0x48,0x65,0x6c,0x6c,0x6f,0x20,0x77,0x6f,
0x72,0x6c,0x64,0x21,0xa,0x0};

int Apoo_data_size = 14;
int Apoo_code[] = {0x2,0x0,0x14,0x5,0x0,0xf,0xa,0x104,0xc350,

0xd,0x10003,0x110,0x7,0x15};
int Apoo_code_size = 14;

Table 6: “Hello world” data and byte-code

6

References

[1] Rogério Reis and Nelma Moreira. Apoo: an environment for a first course
in assembly language programming. Technical Report DCC-98-9, DCC-FC
& LIACC, Universidade do Porto, 1998.

[2] Rogério Reis and Nelma Moreira. Apoo: an environment for a first course
in assembly language programming. SIGCSE Bulletin (ACM Special Interest
Group on Computer Science Education), 33(2), December 2001.

7

