
Compiling for the Apoo Virtual Machine
C. Amaral, R. Cruz, M. Florido, N. Moreira, R. Reis

DCC-FC & LIACC, Universidade do Porto, Porto, Portugal

Apoo: a virtual machine

Apoo1 is an environment for programming in
a simple assembly language suitable to teach
the basic concepts of computer architecture,
instructions set and operation without being
obscured by the specific details of a real mi-
croprocessor.
The Apoo virtual machine is a virtual pro-
cessor with a very simple architecture and in-
struction set that mimics almost all the es-
sential features of a modern microprocessor.
The Apoo Interface is a graphical environ-
ment that monitors the state of the machine
during the execution of a program and allows
the writing/editing/execution of programs in
assembly language.

(The Basic) Apoo Virtual Machine

Apoo has a set of general purpose registers, a
data memory area, a program memory area,
a system stack and a program counter regis-
ter. Each register or memory cell can hold
a 32-bits integer. Memory cells are created
as needed by means of two different pseudo-
instructions:

• the mem pseudo-instruction reserves an ar-
ray of cells;

• the
onst pseudo-instruction reserves indi-
vidual cells initializing them with the given
values.

www.n

.up.pt/apoo

Each program memory cell will hold a whole
instruction. The program counter, as usual,
will contain the address of the next instruc-
tion to be executed. Finally, the system stack is
used to implement subroutines and argument
passing.

Apoo Instruction Set

Operation Operand1 Operand2 Meaning
Data to Register Transferload Mem Ri Loads the contents of memory address Mem

into register Ri;loadn Num Ri Loads number Num into register Ri;loadi Ri Rj Loads the contents of memory whose address
is the contents of Ri into Rj (indirect load)

Data to Memory Transferstore Ri Mem Stores the contents of Ri at memory addressMem;storer Ri Rj Stores the contents of Ri into Rjstorei Ri Rj Stores the contents of Ri into memory cell
whose address is the contents of Rj

Data to the System Stack Transferpush Ri Pushes the contents of Ri into the top of the
stackpop Ri Pops the element from the top of the stack intoRi

Two Operand Arithmeticadd Ri Rj Rj=Ri+Rj)sub Ri Rj (Rj=Ri-Rj)mul Ri Rj (Rj=Ri*Rj)div Ri Rj (Rj=Ri/Rj)mod Ri Rj (Rj=Ri%Rj)
One Operand Arithmeticzero Ri Stores 0 in Ri (Ri=0)in
 Ri Increments by 1 the contents of Ri (Ri=Ri+1)de
 Ri Decrements by 1 the contents of Ri (Ri=Ri-1)
Control Transferjump Addr Jumps to instruction at address Addr;jzero Ri Addr Jumps to instruction at address Addr, if the
contents of Ri is zero;jpos Ri Addr Jumps to instruction at address Addr, if the
contents of Ri is positive;jneg Ri Addr Jumps to instruction at address Addr, if the
contents of Ri is negative;jsr Addr Pushes the contents of PC into the stack and
jumps to instruction at address Addrrtn Pops an address from the top of the stack into
the PChalt Stops execution;

Manipulation of activation records

In order to allow the implementation of func-
tions with local information, the Apoo mem-
ory model was modified to allow the manip-
ulation of activation records. The size of the
RAM is now predefined and divided into two
areas: static memory and system stack. The
static memory, begins at address 0 and it is
allocated when an Apoo program is loaded
(corresponding to the memory reserved using
onst and mem). The system stack occupies
the rest of the RAM (growing for higher ad-
dresses). There are two programmable regis-
ters to address the system stack: stack register
(rs) and frame register (rf). The stack registerrs contains the address of the last stack mem-
ory cell (or -1 if no static memory is allocated).
The instructions jsr, rtn, push and popmanip-
ulates the stack in the usual way. The frame
register can be used for the implementation of
local information. It is also used in two special
instructions:

storeo Ri Num stores the contents of register Ri
at memory address (r f) + Num.

loado Num Ri loads the contents of memory
address (r f) + Num into register Ri.

Apoo Interface

The program in execution is the compiled ver-
sion of the following C program for the facto-
rial:int fa
torial(int n) {if (n==0) return 1;return fa
torial(n-1)*n;}int main (){int k, fa
t;s
anf(k); fa
t = fa
torial(k);printf (fa
t);}}

Compilation

The compiler

Here we describe the main course work in
teaching Compilers at the Faculty of Science
of the University of Porto (FCUP). This work
consists of a compiler of a subset of the main-
stream C programming language. The struc-
ture is a typical one. It consists of the usual
phases in the compilation process: lexical
analysis, syntax analysis, semantic analysis,
machine independent code generation, stor-
age allocation and code generation. How-
ever the techniques and tools of our approach
have some novel features with clear advan-
tages with respect to more traditional frame-
works:

1.Code generation: we generate Apoo code.
This enables the student to focus on the rele-
vant part of the code generation phase, and
not on the annoying and tedious specific
characteristics of a real machine code.

2.Haskell: we used the Haskell program-
ming language for the implementation of
our compiler. Due to the high declarative
nature of Haskell the code becomes much
more readable.

3. Tools: Haskell has all the usual compilation
tools. We used Alex for the lexical analy-
sis, and Happy for the parser. This tools re-
lieve the student of many of the tedious and
error-prone aspects of producing compilers.

4.Minimal compiler size and ease of main-
tenance: a declarative approach enables the
production of small compilers and at the
same time with code which is ease to read
and maintain.

Happy Parsing

Here is fragment of a C grammar.
For comands:
omm :: {Comando}
omm : atrib {CmdA $1}| if_
md {CmdC $1}| pro
 {Call $1}|
md_blo
k {CmdB $1}| pre_defs_io {$1}| return_line {$1}return_line :: {Comando}return_line : RETURN ';'{Return Nothing}| RETURN expar ';' {Return (Just $2)}atrib :: {Atribui
ao}atrib : ID '=' expar ';' {Atrib $1 $3}if_
md :: {Condi
ao}if_
md : IF '(' expr_lg ')'
ommELSE
omm {IfElse $3 $5 $7}| IF '(' explg ')'
omm {If $3 $5}
For expressions:expar :: {ExpAr}expar : INTEIRO {Int (snd $1)}| IDENTIF {Var $1}| f_
all {Fn
 $1}| expar '+' expar {Add $1 $3}| expar '-' expar {Sub $1 $3}| expar '/' expar {Div $1 $3}| expar '*' expar {Mul $1 $3}| expar '%' expar {Mod $1 $3}| '-' expar {Sim $2}| '(' expar ')' {$2}f_
all :: {Chamada}f_
all : ID '('explst')' {($1, $3)}explst :: {[ExpAr℄}explst : expar {[$1℄}| explst ',' expar {$3:$1}

Abstract Syntax for a subset of C
data Comando = CmdA Atribui
ao| CmdC Condi
ao| Call Chamada| CmdB Blo
oComandos| S
an Name| Print ExprAr| Return (Maybe ExpAr)deriving(Eq, Show)data Atribui
ao = Atrib Name ExpArderiving(Eq, Show)data Condi
ao = If ExprLg Comando| IfElse ExprLg Comando Comandoderiving(Eq, Show)
data ExpAr = Add ExpAr ExpAr| Sub ExpAr ExpAr| Mul ExpAr ExpAr| Div ExpAr ExpAr| Mod ExpAr ExpAr| Sim ExpAr| Int Int| Var Name| Fn
 Chamadaderiving(Eq, Show)
Compiler top levelmain :: IO ()main = (getContents >>=(interCodeGen.parser.s
anner))>>= (myPrint.theApGen)

Intermediate code generationgenEArICode :: SymTb -> ExpAr -> Int -> IO(Tmp)genEArICode st (Int
) l = return (CONST
)genEArICode st (Var n) l = getOffset st n l >>=\offset -> return (MEM (VAR offset))genEArICode st (Add e1 e2) l = mkBinO st PLUS e1 e2 lgenEArICode st (Sub e1 e2) l = mkBinO st MINUS e1 e2 lgenEArICode st (Mul e1 e2) l = mkBinO st MUL e1 e2 lgenEArICode st (Div e1 e2) l = mkBinO st DIV e1 e2 lgenEArICode st (Mod e1 e2) l = mkBinO st MOD e1 e2 lgenEArICode st (Sim e) l = mkBinO st MINUS (Int 0) e lmkBinO:: SymTb -> BO -> ExpAr -> ExpAr -> Int -> IO(Tmp)mkBinO st op e1 e2 l =genEArICode st e1 l >>=\t1 -> genExpArICode st e2 l >>=\t2 -> return (BINOP op t1 t2)
Code generation for functions inApoo

theApGen :: Atree -> [Instru
tion℄theApGen at = [ApJSR "main",ApHALT℄ ++ (apooGen at "r1")apooGen :: Atree -> LastReg -> [Instru
tion℄apooGen [℄ _ = [℄apooGen (((lbl ,nargs),stmts):ats) lt =(ApBlankLine:(ApLbl lbl):fBody) ++ (apooGen ats lt)whereinsts = apooStmtGen stmts ltfBody = fPrologue ++ insts ++ fEpilogue nargs ltfPrologue = [ApPush "rf",ApStorer "rs" "rf"℄fEpilogue n lt = [ApLoadn n lt,ApSub "rs" lt,ApStorer lt "rs",ApPop "rf",ApRTN℄

Departamento de Ciência de Computadores, Faculdade de Ciências da Universidade do Porto

