Nome: Armando Manuel Ferreira da Silva Martins

1. Considera a seguinte especificação de um contador:

$$C_0 := inc.C_1$$

 $C_n := inc.C_{n+1} + dec.C_{n-1}$, para $n \ge 1$

- (a) Calcula $[C_0]_{\Gamma}$ indicando um desenho do respectivo diagrama.
- (b) Considera o processo C := inc.(C|dec.0) e determina também $[\![C]\!]_{\Gamma}$
- (c) Mostra que a seguinte relação é uma bisimulação.

$$\mathcal{R} = \{ (C | \prod_{i=1}^{k} P_i, C_n) \mid k \ge 0 \land (P_i = 0 \lor P_i = dec.0)$$
 \(\tau \text{ o n\text{umero de } is com } P_i = dec.0 \text{ \neq n} \}

Nota: Supõe $(C|\prod_{i=1}^k P_i, C_n) \in \mathcal{R}$. mostra que

- 1. se $C \mid \prod_{i=1}^{k} P_i \xrightarrow{\alpha} P$ existe Q tal que $C_n \xrightarrow{\alpha} Q$ e $(P,Q) \in \mathcal{R}$. 2. se $C_n \xrightarrow{\alpha} Q$ existe P tal que $C \mid \prod_{i=1}^{k} P_i \xrightarrow{\alpha} P$ e $(P,Q) \in \mathcal{R}$.
- (d) Concluí que $C \sim C_0$.
- 2. Considera o algoritmo de Hyman para a exclusão mútua. As variáveis b_i são booleanas e k é inteira. Para o processo P_i , j, i = 1, 2 e $i \neq j$.

```
while true do
    noncricital actions
    b_i \leftarrow \mathbf{true};
    while k \neq j do
          while b_i do
               skip;
         k \leftarrow i;
    critical actions;
    b_i \leftarrow \mathbf{false};
```

- (a) Implementa o algoritmo directamente em CCS explicando sucintamente os processos usados e qual o processo que corresponde ao algoritmo (que deverá ter o nome Hyman). Assinala a zona crítica com as ações enter_i e exits_i para i = 1, 2.
- (b) Fornece um ficheiro correspondente para o pseuco.com e testa para verificar (traços aleatórios) que realmente a exclusão mútua ocorre (ou não). Qual o problema caso não?
- (c) Supõe que se modela a entrada e a saída da zona crítica por

```
MutexSpec := enter1.exit1.MutexSpec + enter2.exit2.MutexSpec
```

Será verdade que $Hyman \approx MutexSpec$?

- (d) Implementa o algoritmo na linguagem Pseuco e testa também a exclusão mútua usando traços aleatórios.
- 3. Considera o problema do Jantar dos Filósofos, como descrito em "The Little Book of Semaphores", Cap.
 - (a) Estuda e tenta resolver os puzzles propostos nesse capítulo. Caso queiras podes apresentar as tuas soluções se diferentes das indicadas
 - (b) Implementa a(s) soluções #1 e # 2 indicadas usando a linguagem Pseuco.
 - (c) Justifica a verificação das propriedades pretendidas usando a ferramenta.