
Enumeration and Generation with a String

Automata Representation 1

Marco Almeida Nelma Moreira ∗ Rogério Reis

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract

The representation of combinatorial objects is decisive for the feasibility of sev-
eral enumerative tasks. In this work, we present a unique string representation for
complete initially-connected deterministic automata (ICDFAs) with n states over
an alphabet of k symbols. For these strings we give a regular expression and show
how they are adequate for exact and random generation, allow an alternative way
for enumeration and lead to an upper bound for the number of ICDFAs. The ex-
act generation algorithm can be used to partition the set of ICDFAs in order to
parallelize the counting of minimal automata, and thus of regular languages. A uni-
form random generator for ICDFAs is presented that uses a table of pre-calculated
values. Based on the same table, an optimal coding for ICDFAs is obtained.

Key words: finite automata, initially connected deterministic finite automata,
exact enumeration, random generation, minimal automata

1 Introduction

The enumeration of languages based on their model representations is use-
ful for several language characterizations, as well as for random generation
and average case analysis. Adequate representations are also a main issue
in symbolic manipulation environments. In this paper, we present a canoni-
cal form for initially connected deterministic finite automata (ICDFAs) with
n states over an alphabet of k symbols and show how it can be used for
counting, exact enumeration, sampling and optimal coding, not only the set

1 Work partially funded by FCT and Program POSI.
∗ Corresponding author.
Email addresses: mfa@ncc.up.pt (Marco Almeida), nam@ncc.up.pt (Nelma

Moreira), rvr@ncc.up.pt (Rogério Reis).

Preprint submitted to Elsevier 9 October 2011



of ICDFAs but, to some extent, the set of regular languages. This canoni-
cal form is based on a usual representation of ICDFAs and was used in the
FAdo project [MR05a,FAdo] to test if two minimal DFAs are isomorphic.
However a precise characterization of these representations as regular lan-
guages of {0, . . . , n − 1}⋆ allows an exact and ordered generator of ICDFAs
and leads to an alternative way to enumerate them. The enumeration of differ-
ent kinds of finite automata was considered by several authors since late 1950s.
For more complete surveys we refer the reader to Domaratzki et al. [DKS02]
and to Domaratzki [Dom06]. Harary and Palmer [HP67,HP73] enumerate iso-
morphic automata with output functions as certain ordered pairs of functions.
Harrison [Har65] considered the enumeration of non-isomorphic DFAs (and
connected DFAs) up to a permutation of alphabetic symbols. With the same
criteria, Narushima [Nar77] enumerated minimal DFAs. Liskovets [Lis69] and
Robinson [Rob85] counted strongly connected DFAs and also non-isomorphic
ICDFAs. The work of Korshunov, surveyed in [Kor78], enumerates minimal
automata and gives estimates of ICDFAs without an initial state.

More recently, several authors examined related problems. Domaratzki et
al. [DKS02] studied the (exact and asymptotic) enumeration of distinct lan-
guages accepted by finite automata with n states. Liskovets [Lis06] and Do-
maratzki [Dom04] gave (exact and asymptotic) enumerations of acyclic DFAs
and of finite languages. Nicaud [Nic00], and Champarnaud and Paranthoën
[CP05] presented a method for randomly generating ICDFAs. Bassino and

Nicaud [BN] showed that the number of ICDFAs is Θ(n2n
{

kn

n

}

), where
{

kn

n

}

is a Stirling number of the second kind.

In this paper we obtain a new formula for the number of non-isomorphic
ICDFAs and we precisely relate our methods to those used by Nicaud and
Champarnaud et al., in the cited works. The exact generation algorithm de-
veloped can be used to partition the set of ICDFAs in order to parallelize
the process of counting minimal automata, and thus counting regular lan-
guages. We also designed a uniform random generator for ICDFAs that uses
a table of pre-calculated values (as usual in combinatorial decomposition ap-
proaches). Based on the same table it is also possible to obtain an optimal
coding for ICDFAs.

The work reported in this paper was already partially presented in Reis
et al. [RMA05] and Almeida et.al [AMR06], and is organized as follows. In the
next section, some definitions and notation are introduced. Section 3 presents
and characterizes canonical strings for non-isomorphic ICDFA∅s. Section 4
gives an upper bound and a new formula for ICDFA∅s’ enumeration and re-
lates our methods to some others in the literature. Section 5 briefly describes
the implementation of a generator and methods for parallelizing the counting
of regular languages. Using a table of pre-calculated values, in Section 6 is
designed a uniform random generator and in Section 7 an optimal coding for

2



ICDFA∅s. Section 8 concludes and addresses some future work.

2 Preliminaries

Given two integers, m and n, let [m,n] be the set {i ∈ Z | m ≤ i ∧ i ≤ n}.
In a similar way, we consider the variants ]n,m], [n,m[ and ]n,m[.

A deterministic finite automaton (DFA) A is a tuple (Q,Σ, δ, q0, F ) where Q
is a finite set of states, Σ the alphabet, i.e., a non-empty finite set of symbols,
δ : Q × Σ → Q is the transition function, q0 the initial state and F ⊆ Q the
set of final states. Let the size of A be |Q|. We assume that the transition
function is total, so we consider only complete DFAs. As we are not interested
in the labels of the states, we can represent them by an integer i ∈ [0, |Q|−1].

A DFA is initially-connected 1 (IDFA) if for each state q ∈ Q there exists
a sequence (q′i)i∈[0,j] of states and a sequence (σi)i∈[0,j[ of symbols, for some
j < |Q|, such that δ(q′m, σm) = q′m+1 for m ∈ [0, j[, q′0 = q0 and q′j = q.
We denote by ICDFA a complete IDFA. The structure of an automaton
(Q,Σ, δ, q0) denotes a DFA without its final state information and is referred
to as a DFA∅. Each structure, if |Q| = n, will be shared by 2n DFAs. We
denote by ICDFA∅ (IDFA∅) the structure of an ICDFA (IDFA).

Two DFAs (Q,Σ, δ, q0, F ) and (Q′,Σ′, δ′, q′0, F
′) are called isomorphic (by

states) if |Σ| = |Σ′| = k, there exist bijections Π1 : Σ→ [0, k[, Π2 : Σ
′ → [0, k[

and a bijection ι : Q→ Q′ such that ι(q0) = q′0 and, for all σ ∈ Σ and q ∈ Q,
ι(δ(q, σ)) = δ′(ι(q),Π−1

2 (Π1(σ))), and ι(F ) = F ′.

The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ | δ(q0, x) ∈ F} with
δ extended to Σ⋆. Two DFA are equivalent if they accept the same language.
Obviously, two isomorphic automata are equivalent, but two non-isomorphic
automata may also be equivalent. A DFA A is minimal if there is no DFA A′,
with fewer states, equivalent to A. Trivially, if a DFA is minimal then it must
be an ICDFA. Minimal DFAs are unique up to isomorphism. Domaratzki et
al. gave some asymptotic estimates and explicit computations of the number of
distinct languages accepted by finite automata with n states over an alphabet
of k symbols. Given n and k, they denote by fk(n) the number of pairwise
non-isomorphic minimal DFAs and by gk(n) the number of distinct languages
accepted by DFAs, where gk(n) =

∑n
i=1 fk(i).

1 Also called accessible.

3



3 String representation for ICDFAs

The method used to represent a DFA has a significant role in the amount
of computer work needed to manipulate that information, and can give an
important insight about this set of objects, both in its characterization and
enumeration.

Let us disregard the set of final states of a DFA. A naive representation of a
DFA∅ can be obtained by the enumeration of its states and for each state the
list of its transitions for each symbol. But this representation is not unique.
To obtain a canonical representation we can consider an order in the alphabet
and an induced order in the states and transitions.

Given a complete DFA∅ (Q,Σ, δ, q0) with |Q| = n and |Σ| = k, consider a
total order over Σ. We can define a canonical order over the set of the states
by traversing the automaton in a breadth-first way choosing at each node the
outgoing edges using the order of Σ. The procedure is as following: let the
first state 0 be the initial state q0, the second state the first one to be referred
to (excepting q0) by a transition from q0, the third state the next referred in
transitions from one of the first two states, and so on...

If we restrict this representation to ICDFA∅s, then this representation is
unique and defines an order over the set of its states. For instance, consider
the following ICDFA∅ and consider the alphabetic order in {a, b, c}.

A C

B D

c
a

b
c

b
a

b

c

a
c

b
a

The states ordering is A,C,B,D and [1, 2, 0, 2, 3, 0, 3, 0, 2, 1, 3, 2] is its string rep-
resentation.

We stress that this kind of representation for the transition table of an automa-
ton is not new in the literature, but is new its characterization and application
to enumeration and generation.

Formally, let Σ be an alphabet with |Σ| = k, and Π : Σ → [0, k[ a bijection.
Given an ICDFA∅ (Q,Σ, δ, q0) with |Q| = n, let ϕ : Q→ [0, n[ be defined by
the following algorithm:

ϕ(q0 ) ← 0
i ← 0
s ← 0

4



do

for j ∈ [0, k[
i f δ(ϕ−1(s),Π−1(j)) /∈ ϕ−1([0, i]) then

ϕ(δ(ϕ−1(s),Π−1(j)) ← i + 1
i ← i + 1

s ← s + 1
while s <= i

Lemma 1 The function ϕ is bijective.

PROOF. That ϕ is injective is trivial, because whenever, in the definition
above, a new extension to ϕ is defined a different value is assigned. Let us
prove that ϕ is surjective. Let q ∈ Q. As (Q,Σ, δ, q0) is an ICDFA∅ there
exist sequences (q′i)i∈[0,j] and (σi)i∈[0,j[ with j < n such that δ(q′m, σm) = q′m+1

for m ∈ [0, j[, q′0 = q0 and q′j = q. We have ϕ(q′0) = 0. For m ∈ [0, j[, if
q′m ∈ ϕ−1([0, n[) then q′m+1 ∈ ϕ−1([0, n[). Then ϕ−1([0, n[) = Q, and thus ϕ is
a bijection.

We have the following with trivial proof.

Lemma 2 The function ϕ defines an isomorphism between (Q,Σ, δ, q0) and
([0, n[,Σ, δ′, 0) with δ′(i, σ) = ϕ(δ(ϕ−1(i), σ)) for i ∈ [0, n[. Moreover the
canonical string that represents this automaton, as described before, is defined
by: (si)i∈[0,kn[ with si ∈ [0, n[ and si = δ′(⌊i/k⌋,Π−1(i mod k)), for i ∈ [0, kn[.

Lemma 3 Let A = (Q,Σ, δ, q0) be an ICDFA∅, with |Q| = n and |Σ| = k,
and let (si)i∈[0,kn[ be its canonical string. Then,

(∃j ∈ [0, kn[) sj = n− 1, (R0)

(∀m ∈ [2, n[)(∀i ∈ [0, kn[)(si = m ⇒ (∃j ∈ [0, i[) sj = m− 1), (R1)

(∀m ∈ [1, n[)(∃j ∈ [0, km[) sj = m. (R2)

PROOF. As R0 is a consequence of R2, we will omit it whenever R2 is
enforced. Rule R1 establishes that a state label (greater than 0) can only
occur after some occurrence of its predecessors. This is a direct consequence
of ϕ definition where the extensions to ϕ are defined in ascending order.

Suppose that R2 does not verify, thus there exists a state r ∈ Q, such that
for m = ϕ(r), m does not occur in the first km symbols of the string (the
m first state descriptions). But m /∈ {si | i ∈ [0,mk[} = {δ′(i, σ) | i ∈
[0,m[, σ ∈ Σ} means that m in not accessible from state 0 in ([0, n[,Σ, δ′, 0),
and this automaton is isomorphic to A (by ϕ). This contradicts the fact that
A is initially connected. Thus R2 is verified.

5



Lemma 4 Every string (si)i∈[0,kn[ with si ∈ [0, n[ satisfying R1 and R2 rep-
resents an ICDFA∅ with n states over an alphabet of k symbols.

PROOF. Let S = {si | i ∈ [0, kn[}. Because of R2, (n− 1) ∈ S, and using
R1, we have S = [0, n[. Thus let us consider the automaton ([0, n[, [0, k[, δ, 0)
where δ(r, σ) = skr+σ. Trivially this defines a DFA∅, it only remains to show
that it is initially connected. Let m be a state of the automaton. Because of
R2 there must exist j < mk such that sj = m. This means that δ(⌊j/k⌋, j
mod k) = m. If j = 0 then we can stop, if not we can repeat the process, the
number of times necessary (not more than m) to get to the initial state and
thus prove that m is accessible from the initial state.

From these lemmas (Lemma 1–4), follows immediately that:

Theorem 5 There is a one-to-one mapping between (si)i∈[0,kn[ with si ∈ [0, n[
satisfying rules R1 and R2, and the non-isomorphic ICDFA∅s with n states,
over an alphabet of k symbols.

For each canonical string representing an ICDFA∅, if we add a sequence of
final states, we obtain a canonical form for ICDFAs.

This canonical representation can be extended to general initially-connected
IDFA∅s, by representing all missing transitions with the value −1. In this
case, rules R1 and R2 remain valid, and we can assume that the transitions
from this state are into itself. Moreover, the enumeration formulae and the
generation algorithms we are going to present can also be extended to IDFA∅s,
and thus to IDFAs.

4 Enumeration of ICDFAs

In order to have an algorithm for the enumeration and generation of ICDFA∅s,
instead of rules R1 and R2 an alternative set of rules were used. For n = 1
there is only one (non-isomorphic) ICDFA∅ for each k ≥ 1, so we assume in
the following that n > 1. In a canonical string for an ICDFA∅, let (fj)j∈[1,n[
be the sequence of indexes of the first occurrence of each state label j. For
explanation purposes, we call those indexes flags.

It is easy to see that (R0,R1) and (R2) correspond, respectively, to (G1) and
(G2):

(∀j ∈ [2, n[)(fj > fj−1), (G1)

(∀m ∈ [1, n[) (fm < km). (G2)

6



This means that f1 ∈ [0, k[, and fj−1 < fj < kj for j ∈ [2, n[. We begin by
counting the number of sequences of flags allowed.

Theorem 6 Given k and n, the number of sequences (fj)j∈[1,n[, Fk,n, is given
by

Fk,n =
k−1
∑

f1=0

2k−1
∑

f2=f1+1

· · ·
k(n−1)−1
∑

fn−1=fn−2+1

1 =

(

kn

n

)

1

(k − 1)n+ 1
= C(k)

n ,

where C(k)
n are the (generalized) Fuss-Catalan numbers.

PROOF. The first equality follows from the definition of the (fj)j∈[1,n[. For
the second, note that C(k)

n enumerates k-ary trees with n internal nodes, T k
n

(see for instance [SF96]). In particular, for k = 2, C(2)
n are exactly the Catalan

numbers that count binary trees with n internal nodes. This sequence appears
in Sloane [Slo03] as A00108 and for k = 3 and k = 4 as sequences A001764

and A002293, respectively. So it suffices to give a bijection between these
trees and the sequences of flags. Recall that a k-ary tree is an external node
or an internal node attached to an ordered sequence of k, k-ary sub-trees.

[2,5,8] [1,2,4]

Fig. 1. Two 3-ary trees with 4 internal nodes and the correspondent sequence of
flags.

Let T k
n be a k-ary tree and let < be a total order over Σ. For each internal

node i of T k
n its outgoing edges can be ordered left-to-right and attached

a unique symbol of Σ according to <. Considering a breadth-first, left-to-
right, traversal of the tree and ignoring the root node (that is considered
the 0-th internal node), we can represent T k

n , uniquely, by a bitmap where a 0
represents an external node and a 1 represents an internal node. As the number
of external nodes are (k−1)n+1, the length of the bitmap is kn. Moreover the
(j+1)-th block of k bits corresponds to the children of the j-th internal node
visited, for j ∈ [0, n[. For example, the bitmaps of the trees in Figure 1 are
[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0] and [0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0], respectively. The
positions of the 1’s in the bitmaps correspond to a sequence of flags, (fi)i∈[1,n[,
i.e., fi corresponds to the number of nodes visited before the i-th internal node
(excluding the root node). It is obvious that (fi)i∈[1,n[ verifies G1. For G2,

7



note that for the each internal node the outdegree of the previous internal
nodes is k. Conversely, given a sequence of flags (fi)i∈[1,n[, we construct the
bitmap such that bfi=1 for i ∈ [1, n[ and bj = 0 for the remaining values, for
j ∈ [0, kn[. As above, for the representation of the (j + 1)-th internal node,
⌊fj/k⌋ gives the parent and fj mod k gives its position between its siblings (in
breadth-first, left-to-right traversal).

To generate all the ICDFA∅s, for each allowed sequence of flags (fj)j∈[1,n[, all
the remaining symbols, si, can be generated according to the following rules:

i < f1 ⇒ si = 0, (G3)

(∀j ∈ [1, n− 2])(fj < i < fj+1 ⇒ si ∈ [0, j]), (G4)

i > fn−1 ⇒ si ∈ [0, n[. (G5)

Before we give a formula for the number of these strings, we recall that
Liskovets [Lis69] and, independently, Robinson [Rob85] gave for the number of

non-isomorphic ICDFA∅s, Bk,n, the formula Bk,n =
bk,n

(n−1)!
where bk,1 = 1 and

bk,n = nkn−
∑

1≤j<n

(

n−1
j−1

)

nk(n−j)bk,j, for n > 1. The total number of transition

functions is nkn and from that they subtract the number of those that have
n−1, n−2,. . . ,1 states not accessible from the initial state. Then, they divide
by (n − 1)!, as the names of the states (except the initial) are irrelevant. On
the other hand, the formula (2) we will derive is a direct positive summation.

First, let us consider the set of strings (si)i∈[0,kn[ with si ∈ [0, n[ and satisfying
only G1 (i.e. R0 and R1). The number of these strings gives an upper bound
for Bk,n. We know that the last k symbols of any string can be chosen from
[0, n[, so there are always nk choices. For the others they belong to the language
An ∩ [0, n[kn−k, where for c > 0,

Ac = L(0⋆
∏

j∈[1,c[

j(0 + · · ·+ j)⋆). (1)

For each m, the words of length m of these languages are related with parti-
tions of [1,m] into c ≥ 1 parts (see Moreira and Reis [MR05b]), and so they

can be enumerated by Stirling numbers of the second kind,
{

m

c

}

[SF96]. In

this case, we have |An ∩ [0, n[kn−k| =
{

k(n−1)+1
n

}

.

Theorem 7 For all n, k ≥ 1, Bk,n ≤
{

k(n−1)+1
n

}

nk ≤ n
{

kn

n

}

.

PROOF. The second inequality follows from the recursive definition of Stir-
ling numbers of the second kind and the following property,

{

n−i

m

}

≤ 1
ni

{

n

m

}

,

for i ∈ [0, n−m].

8



Our bound is slightly tighter than the one given by Bassino and Nicaud [BN],
that is exactly the right member of the second inequality.

Now in order to simultaneously satisfy R1 and R2, we must consider the
sequences of flags. Given a sequence of flags (fj)j∈[1,n[ and considering fn = kn,
the correspondent set of canonical strings can be represented by the regular
expression:



0f1
∏

j∈[1,n[

j(0 + · · ·+ j)fj+1−fj−1



 ,

which is a direct consequence of G1–G5.

Considering the set of sequences of flags (see Theorem 6) the set of canonical
strings can be represented by the regular expression:

k−1
∑

f1=0

2k−1
∑

f2=f1+1

3k−1
∑

f3=f2+1

· · ·
k(n−1)−1
∑

fn−1=fn−2+1



0f1
∏

j∈[1,n[

j(0 + · · ·+ j)fj+1−fj−1



 .

From the above, we have that for each sequence of flags (fj)j∈[1,n] the number
of canonical strings is

∏

j∈[1,n]

jfj−fj−1−1.

Theorem 8 The number of strings (si)i∈[0,kn[ representing ICDFA∅s with n
states over an alphabet of k symbols is given by

Bk,n =
k−1
∑

f1=0

2k−1
∑

f2=f1+1

3k−1
∑

f3=f2+1

· · ·
k(n−1)−1
∑

fn−1=fn−2+1

n
∏

j=1

jfj−fj−1−1, (2)

where fn = kn and f0 = −1.

In Section 7 we give another recursive definition for Bk,n more adequate for
tabulation.

Corollary 9 The number of non-isomorphic ICDFAs with n states over an
alphabet of k symbols is 2nBk,n.

4.1 Analysis of the Nicaud et al. Method

Champarnaud and Paranthoën [CP05], generalizing work of Nicaud [Nic00] for
k = 2, presented a method to generate and enumerate ICDFA∅s, although
not giving an explicit and compact representation for them, as the string rep-
resentation used here. The same method is used by Bassino and Nicaud [BN].
An order < over Σ⋆ is a prefix order if (∀x ∈ Σ⋆)(∀σ ∈ Σ)x < xσ. Let A
be an ICDFA∅ over Σ with k symbols and n states. Given a prefix order in
Σ⋆, each automaton state is ordered according to the first word x ∈ Σ⋆ that

9



reaches it in a simple path from the initial state. The set of these words is a
prefix set P and prefix sets are in bijection with k-ary trees with n internal
nodes, and therefore to the set of sequences of flags, in our representation 2 .
Then it is possible to obtain a valid ICDFA∅ by adding other transitions in a
way that preserves the previous state labelling. For the generation of the sets
P it is used another set of objects that are in bijection with k-ary trees with
n internal nodes and are called generalized tuples. It is defined as

Rk,n = {(x1, . . . , xs) ∈ [1, n]s | ∀i ∈ [2, s], (xi ≥ ⌈
i

k−1
⌉ ∧ xi ≥ xi−1)}

with s = (k − 1)n.

However we can establish a direct bijection between this set and the set of
sequences of flags. Let X = (x1, . . . , xs) be a generalized tuple. From it, we
can build the sequence (1p1 , 2p2 , . . . , npn), where pj = |{xi | xi = j}| for
j ∈ [1, n]. Let f1 = p1, fi = pi + fi−1 +1, for i ∈ [2, n[ and fn = pn + fn−1 + 2.
It is obvious that (fi)i∈[1,n[ satisfies G1. To prove that it satisfies G2, note
that fi = (i − 1) +

∑i
j=1 pj, for i ∈ [1, n[. By induction on i it can be proved

that
∑i

j=1 pj ≤ (k − 1)i + 1, for 1 ≤ i ≤ n. But then we have, fi < ki, as
wanted. In a similar way, we can transform a sequence of flags in a generalized
tuple.

Nicaud et al. compute the number of ICDFA∅s using recursive formulae as-
sociated with generalized tuples, akin the ones we present in Section 6. The
upper bound refered above is obtained, disregarding the first condition in the
definition of the generalized tuples.

5 Generation of Regular Languages

We briefly describe a method to generate all ICDFA∅s, given k and n. We
start with an initial string, and then consecutively iterate over all allowed
strings until the last one is reached. The main procedure is the one that given
a string returns the next legal one. For each k and n, the first canonical string
is 0k−110k−12 · · · 0k−1(n− 1)0k and the last is 12 · · · (n− 1)(n− 1)(k−1)n+1. We
first generate a sequence of flags, according to the rules G1–G2, and then,
for each one, the set of canonical strings in lexicographic order and according
to G3–G5. When a new sequence of flags is generated, the first string has
0s in all other positions (i.e., the lower bounds in rules G3–G5). The last
string for each sequence of flags has the value sl = j for l ∈]fj, fj+1[, with
j ∈ [1, n[. The time complexity of the generator is linear in the number of
automata. Finally, for the generation of ICDFAs we only need to add to the
string representation of an ICDFA∅, a string of n 0’s and 1’s, correspondent

2 This order over the set of states induces a prefix order in Σ⋆, namely a graded
lexicographic order.

10



to one of the 2n possible choices of final states.

To obtain the number of languages accepted by DFAs with n states over
an alphabet of k symbols, we can generate all ICDFAs, determine which of
them are minimal (fk(n)) and calculate the value of gk(n). Obviously, this
is in general an intractable procedure. But for small values of n and k some
experiments can take place. We must have an efficient implementation of a
minimization algorithm, not because of the size of each automaton but because
the number of automata we need to cope with. For that we implemented
Hopcroft’s minimization algorithm [Hop71], using efficient set representations
as described by Almeida and Reis [AR06].

The problem can be parallelized providing that the space search can be safely
partitioned. Using the method presented in Section 5, we can easily gener-
ate slices of ICDFAs and feed them to the minimization algorithm. A slice
is a sequence of ICDFAs. If we have a set of CPUs available, each one can
receive a slice, generate all ICDFA∅s (in that slice), generate all the nec-
essary ICDFAs and feed them to the minimization algorithm. In this way,
we can safely divide the search space and distribute each slice to a different
CPU. Note that this approach relies in the assumption that we have a much
more efficient way to partition the search space than to actually perform the
search (in this case a minimization algorithm). The task of creating the slices
can be taken by a central process that successively generates the next slice
and at the end assembles all the results. With this approach was possible
to obtain some new exact values for the number of non-isomorphic minimal
ICDFAs: f2(7) = 25493886852, f4(4) = 7756763336, f3(5) = 25184560134
and f2(8) = 2567534031190. For the last value, the process took about 8 days
with a 48 CPU computer grid, that corresponds to more than an year of CPU
time. More experimental results were reported in Almeida et al. [AMR06].

6 Uniform Random Generation

The canonical strings for ICDFA∅s permit an easy random generation of
ICDFA∅s, and thus of ICDFAs. To randomly generate an ICDFA for a given
n and k, it is only necessary to: (i) randomly generate a valid sequence of flags
(fi)i∈[1,n[ according to G1 and G2; (ii) followed by the random generation
of the rest of the kn elements of the string following G3–G5 rules; (iii) and
finally the random generation of the set of final states. The uniformity issue
for steps (ii) and (iii) is quite straightforward. For step (iii) it is just necessary
to use a uniform random integer generator for a value i ∈ [0, 2n]. It is enough,
for step (ii) the repeated use of the same number generator for values in the
range [0, i] for 0 ≤ i < n according to G3–G5. Step (i) is the only step that
needs special care. Consider the case n = 5 and k = 2. Because of R1 flag
f1 can only be on positions 0 or 1. But there are 140450 ICDFA∅s with f1 in

11



the first case and only 20225 in the second. Thus the random generation of
flags, to be uniform, must take this into account by making the first case more
probable than the second. We can generate a random ICDFA∅ generating
its representing string from left to right. Supposing that flag fm−1 is already
placed at position i and all the symbols to its left are generated, i.e., the prefix
s0s1 · · · si is already defined, then the process can be described by:

r ← random(1,
∑

j∈]i,mk[

Nm,j)

for j ∈]i,mk[ :

i f r ∈

[

∑

l∈[i,j[

Nm,l,
∑

l∈[i,j]

Nm,l

]

then return j

where random(a,b) is an uniform random generated integer between a and
b, and Nm,j is the number of ICDFA∅s with prefix s0s1 · · · si with the first
occurrence of symbol m in position j, making Nm,i = 0 to simplify the ex-
pressions. The values for Nm,j could be obtained from expressions similar to
Equation (2), and used in a program. But the program would have a expo-
nential time complexity. By expressing Nm,j in a recursive form, we have

Nn−1,j = nnk−1−j with j ∈ [n− 2, (n− 1)k[,

Nm,j =
(m+1)k−j−2

∑

i=0
(m+ 1)iNm+1,j+i+1 with m ∈ [1, n− 2],

j ∈ [m− 1,mk[.

(3)

The second equation, can have an even simpler form:

Nm,mk−1 =
k−1
∑

i=0
(m+ 1)iNm+1,mk+i with m ∈ [1, n− 2],

Nm,i = (m+ 1)Nm,i+1 +Nm+1,i+1 with m ∈ [1, n− 2],

i ∈ [m− 1,mk − 2].

(4)

This evidences the fact that we keep repeating the same computations with
very small variations, and thus, if we use some kind of tabulation of these
values (Nm,j), with the obvious price of memory space, we can create a version
of a uniform random generator, that apart of a constant overhead used for
tabulation of the function refered, has a complexity of O(n2k).

The algorithm is described by the following:

12



g = −1, l← 0
for i ∈ [1, n[ :

f ← generateflag(i, g + 1)
for j ∈]g, f [ :

si ← random(0, i− 1)
l← l + 1

sl ← i , l← l + 1
g ← f

def generateflag(m, l) :

r ← random (0 ,
km−1
∑

i=l

mi−lNm,i )

for i ∈ [l,mk[ :

i f r < mi−lNm,i

then return i

else r ← r −mi−lNm,i

This means that using a C implementation with libgmp the times reported
in Table 1 were observed. It is possible, without unreasonable amounts of

k = 2 k = 3 k = 5 k = 10 k = 15

n = 10 0.10s 0.16s 0.29s 0.61s 1.30s

n = 20 0.31s 0.49s 1.26s 4.90s 12.24s

n = 30 0.54s 1.37s 3.19s 19.91s 62.12s

n = 50 1.61s 3.86s 17.58s 142.00s 947.71s

n = 75 3.96s 12.98s 76.69s 700.20s 2459.34s

n = 100 7.92s 36.33s 215.32s 2219.04s 8091.30s

Table 1
Times for the random generation of 10000 automata (AMD Athlon 64 at 2.5GHz)

RAM to generate random automata for unusually large values of n and k. For
example, with n = 1000 and k = 2 the memory necessary is less than 450MB.
The amount of memory used is so large not only because of the amount of
tabulated values, but because the size of the values is enormous. To understand
that, it is enough to note that the total number of ICDFA∅s for these values
of n and k is greater than 103350, and the values tabulated are only bounded
by this number.

7 Optimal coding of ICDFAs

Given a canonical string for ICDFAs of size n over an alphabet of k symbols,
we can compute its number in the generation order (as described in Section 5)
and vice-versa, i.e., given a number less than Bk,n, we obtain the corresponding
ICDFA∅. This provides an optimal encoding for ICDFAs, as defined by M.
Lothaire [Lot05]. This bijection is accomplished by using the tables defined in
Section 6 that correspond to partial sums of Equation (2). By expanding Nm,j

using Equations (3), we have

Theorem 10 Bk,n =
k−1
∑

l=0
N1,l.

From ICDFAs to Integers Let (si)i∈[0,kn[ be the canonical string of an
ICDFA∅, and let (fj)j∈[1,n[ be the corresponding sequence of flags. From the

13



sequence of flags we obtain the following number,

nf =
∑

j∈[1,n[





∏

m∈[1,j[

(m+ 1)fm+1−fm−1









∑

l∈]fj ,jk[

(jl−fjNj,l)



 , (5)

which is the number of the first ICDFA∅ with flags (fj)j∈[1,n[. Then, we
must add the information provided by the rest of the elements of the string
(si)i∈[0,kn[:

nr =
∑

j∈[1,n[





∏

m∈]j,n[

(m+ 1)fm+1−fm−1









∑

l∈]fj ,fj+1[

sl(j + 1)fj+1−1−l



 . (6)

The number of the canonical string is ns = nf + nr.

From Integers to ICDFAs Given an integer m ∈ [0, Bk,n[ a canonical string
for an ICDFA∅ can be obtained using an inverse method. The flags (fj)j∈[1,n[
are generated from right-to-left, by successive subtractions. The rest of the
string (si)i∈[0,kn[ is generated considering the remainders of integer divisions.
The algorithms are the following, where f0 = 0:

s← 1
for i ∈ [1, n[ :

j ← ik − 1

p← ij−fi−1−1

while j ≥ i− 1 and m ≥ ps×Ni,j :
m← m− ps×Ni,j

j ← j − 1
p← p/i

s← s× ij−fi−1−1

fi ← j

i← kn− 1
j ← n− 1
while m > 0 and j > 0 :

while m > 0 and i > fj :
si ← m mod (j + 1)
m← m/(j + 1)
i← i− 1

i← i− 1
j ← j − 1

8 Conclusion

The methods here presented were implemented and tested to obtain both exact
and approximate values for the density of minimal automata. Our experimen-
tal results corroborate the ones of Champarnaud et al. [CP05], that lead to
the conjecture that for k > 2 almost all ICDFAs are minimal. Of course, one
challenge is to try to understand why this happens. Bassino and Nicaud [BN]
presented a random generator of ICDFAs based on Boltzmann samplers, re-
cently introduced by Duchon et al. [DFLS04]. However the sampler is uniform
for partitions of a set and not for the universe of automata. These partitions
correspond to string representations that verify R1. By considering R2, we
plan to study the possibility to write Boltzmann Samplers for ICDFAs.

We thank the referees for their comments that helped improve this paper.

14



References

[AMR06] M. Almeida, N. Moreira, and R. Reis. Aspects of enumeration and
generation with a string automata representation. In H. Leung and
G. Pighizzini, editors, Proc. of DCFS’06, NMSU-CS-2006-001 in Comp.
Sci. Tech. Report, pages 58–69, 2006. NMSU.

[AR06] M. Almeida and R. Reis. Efficient Representation of Integer Sets. Tech.
Rep. DCC-2006-06, DCC-FC&LIACC, Univ. do Porto, 2006.

[BN] F. Bassino, C. Nicaud. Enumeration and random generation of accessible
automata. Theoret. Comput. Sci, 381(1-3):86–104, 2007.

[CP05] J.-M. Champarnaud, T. Paranthoën. Random generation of DFAs.
Theoret. Comput. Sci, 330(2):221–235, 2005.

[DFLS04] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann
samplers for the random generation of combinatorial structures.
Combinatorics, Probability & Computing, 13(4-5):577–625, 2004.

[DKS02] M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct
languages accepted by finite automata with n states. Journal of
Automata, Languages and Combinatorics, 7(4):469–486, 2002.

[Dom04] M. Domaratzki. Combinatorial interpretations of a generalization of the
Genocchi numbers. Jour. of Int. Sequences, 7(04.3.6), 2004.

[Dom06] M. Domaratzki. Enumeration of formal languages. Bull. EATCS, 89(113-
133), June, 2006.

[Har65] M. A. Harrison. A census of finite automata. Canad. J. Math., 17:100–
113, 1965.

[Hop71] J. Hopcroft. An n logn algorithm for minimizing states in a finite
automaton. In Proc. Inter. Symp. on the Theory of Machines and
Computations, pages 189–196, Haifa, Israel. AP. 1971.

[HP67] F. Harary and E. M. Palmer. Enumeration of finite automata.
Information and Control, 10:499–508, 1967.

[HP73] F. Harary and E. M. Palmer. Graphical Enumeration. AP, 1973.

[Kor78] A. Korshunov. Enumeration of finite automata. Problemy Kibernetiki,
34:5–82, 1978.

[Lis69] V. A. Liskovets. The number of initially connected automata. Kibernetika,
3:16–19, 1969. (Engl.tr:Cybernetics, 4 (1969), 259-262).

[Lis06] V. A. Liskovets. Exact enumeration of acyclic deterministic automata.
Disc. Applied Math., 154(3):537–551, March 2006.

[Lot05] M. Lothaire. Applied Combinatorics on Words. Number 105 in
Encyclopedia of Mathematics and its Applications. CUP, 2005.

15



[MR05a] N. Moreira and R. Reis. Interactive manipulation of regular objects with
FAdo. In Proc. of 2005 Inn. and Tech. in Computer Science Education
(ITiCSE 2005), pages 335–339. ACM, 2005.

[MR05b] N. Moreira and R. Reis. On the density of languages representing finite
set partitions. Jour. of Int. Sequences, 8(05.2.8), 2005.

[Nar77] H. Narushima. Principles of inclusion-exclusion on semilattices and its
applications. PhD thesis, Waseda Univ., Tokyo, 1977.

[Nic00] C. Nicaud. Étude du comportement en moyenne des automates finis et
des langages rationnels. PhD thesis, Université de Paris 7, 2000.

[FAdo] FAdo project. http://www.ncc.up.pt/fado.

[RMA05] R. Reis, N. Moreira, M. Almeida. On the representation of finite
automata. In C. Mereghetti, B. Palano, G. Pighizzini, and D.Wotschke,
editors, Proc. of DCFS’05, number 06-05 in Rap. Tec. DICO, Univ. di
Studi Milano, pages 269–276. IFIP. 2005.

[Rob85] R. W. Robinson. Counting strongly connected finite automata. In Graph
Theory with Applications to Algorithms and Computer Science, pages
671–685. Wiley, 1985.

[SF96] R. Sedgewick and P. Flajolet. Analysis of Algorithms. AW, 1996.

[Slo03] N. Sloane. The On-line Encyclopedia of Integer Sequences, 2003.
http://www.research.att.com/~njas/sequences.

16


