Concurrent Programming - Exercícios 1

Labeled Transition Systems

1. What are the values of x after the execution of the program? How many diferent executions there are?
$x \leftarrow 10 ;((x \leftarrow 2 x ; x \leftarrow x-1 ; x \leftarrow x+2) \| x \leftarrow x-5)$
2. Consider the following LTS

(a) Define the LTS as a triple $\left(S, \longrightarrow, s_{0}\right)$ and determine Act.
(b) Draw the reflexive closure of the binary relation \xrightarrow{a}.
(c) Draw the symmetric closure of the binary relation \xrightarrow{a}.
(d) Draw the transitive closure of the binary relation \xrightarrow{a}.
3. Let the LTS

(a) Define the LTS as a triple (S, \longrightarrow, s) and the set Act.
(b) Compute Post (s_{1}) and $\operatorname{Act}\left(s_{2}\right)$
(c) Determine Reach $\left(s_{2}\right)$.
4. Let $\operatorname{Post}^{0}(s)=\{s\}$ and $\operatorname{Post}^{n+1}(s)=\operatorname{Post}\left(\operatorname{Post}^{n}(s)\right)$, show that

$$
\operatorname{Reach}(s)=\bigcup_{n} \operatorname{Post}^{n}(s) .
$$

5. For each of the following machines build a LTS that models its behaviour.
(a) A machine that given a coin produce coffee
(b) A machine that given a coin produce coffee or tea
(c) A machine that given a coin one can push a button that allows to choose between coffee or tea
(d) A machine as in the previous case but that after producing two beverages stops.
(e) A machine that given a coin produce coffee but may also not give coffee and return to the initial state
6. Solve theproblems of LTSs in PseuCo.com
7. Two LTS $T S=\left(S, \longrightarrow, s_{0}\right)$ and $T S^{\prime}=\left(S^{\prime}, \longrightarrow{ }^{\prime}, s_{0}^{\prime}\right)$ are isomorphic, $T S \sim T S^{\prime}$, it there exists a bijection f,

$$
f: \operatorname{Reach}(T S) \rightarrow \operatorname{Reach}\left(T S^{\prime}\right)
$$

with

- $f\left(s_{0}\right)=s_{0}^{\prime}$
- for all $s_{1}, s_{2} \in \operatorname{Reach}(T S)$ and for all $\alpha \in \operatorname{Act}$

$$
s_{1} \xrightarrow{\alpha} s_{2} \text { iff } f\left(s_{1}\right) \xrightarrow{\alpha}{ }^{\prime} f\left(s_{2}\right)
$$

(a) Show that the LTS isomorphism is a equivalence relation
(b) Show that a LTS that is finitely branching and that has a finite number of states is isomorphic to a finite-state LTS.

