
Concurrent Programming - Exercises 5

Weak bisimilarity and observable congruence

1. Let

Buffer := put?.get?.Buffer

BufferL := put?.pass!.BufferL

BufferR := pass?.get?.BufferR

Show (BufferL|BufferR)\{pass!, pass?} ≈ (Buffer|Buffer).

2. Given the weak bisimilarity ≈
≈=

!

R weak bisimulation

R

Show that

(a) ≈ is an equivalence.

(b) ≈ is the largest weak bisimulation.

(c) The weak bisimilarity is coarsest than the strong bisimilarity, i.e., ∼⊊≈.

3. Let

CMB := coin?.coffee!.CMB + coin?.CMB

CS := pub!.coin!.coffee?.CS

UniBad := (CMB|CS)\{coin, cofee}

Is true that Spec ≈ Unibad where Spec := pub!.Spec?

4. Show that for any P,Q ∈ CCS and α ∈ Act the following equivalences hold:

α.τ.P ≈ α.P

P + τ.P ≈ τ.P

α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q

.

5. Considere the following LTS and show that s ∕≈ t using a weak bisimulation game.

s

s1

s2

s3

a

a
b

t

t1

t2 t3

t5t4

τ

a
a

a

τ

b

6. Consider the following protocol Protocol := acc?.del!.P rotocol that corresponds to a comunic-
ation channel . Given the implemnetation

Send := acc?.Sending

Sending := send!.Wait

Wait := ack?.Send+ error?.Sending

Rec := trans?.Del

Del := del!.Ack

Ack := ack!.Rec

Med := send?.Med1

Med1 := τ.Err + trans!.Med

Err := error!.Med

show that (Send|Med|Rec)\{send, error, trans, ack} ≈ Protocol. Check with Pseuco.Com.

7. Show that a.0 + 0 ∕≈ a.0 + τ.0 and conclude that ≈ is not a congruence in CCS.

8. Let ≃ be the observable congruence

• τ.a ∕≃ a

• P |τ.Q ∕≃ τ.(P |Q)

9. Consider the following algorithms MUTEX for mutual exclusivity.For each one:

(a) Write it in CCS . Use enteri and exitsi for i = 1, 2 to indicate the critical region.

(b) Text with pseuco.com using random traces

(c) Implement also in CAAL.

(d) Consider also

MutexSpec := enter1.exit1.MutexSpec+ enter2.exit2.MutexSpec

Is true that MUTEX ≈ MutexSpec?

i) Peterson algorithm.

For process Pi, j, i = 1, 2 and i ∕= j.

while true do
noncricital actions
bi ← true;
k ← j;
while bj ∧ k = j do

skip;

critical actions
bi ← false

ii) Hyman algorithm. Variables bi are Boolean and k is an integer. For processes Pi, j, i = 1, 2
and i ∕= j.

while true do

Page 2

noncricital actions
bi ← true;
while k ∕= i do

while bj do
skip;

k ← i;

critical actions;
bi ← false;

iii) Pnueli algorithm.

Variables yi are Boolean and start in false being local. The variable s is shared and has
value 0 or 1 starting in 1. For process Pi and i = 0, 1:

while true do
noncricital actions
yi ← true;
s ← i;
while ¬(y1−i = 0 ∨ (s ∕= i)) do

skip;

critical actions;
yi ← false;

Page 3

