Concurrent Programming - Exercises 5

Weak bisimilarity and observable congruence

1. Let

$$
\begin{aligned}
\text { Buffer } & :=\text { put?.get?.Buffer } \\
\text { BufferL } & :=\text { put?.pass!.BufferL } \\
\text { BufferR } & :=\text { pass?.get?.BufferR }
\end{aligned}
$$

Show (BufferL|BufferR)
{pass!, pass?\} } \approx (Buffer | Buffer) .
2. Given the weak bisimilarity \approx

$$
\approx=\bigcup_{\mathrm{R} \text { weak bisimulation }} R
$$

Show that
(a) \approx is an equivalence.
(b) \approx is the largest weak bisimulation.
(c) The weak bisimilarity is coarsest than the strong bisimilarity, i.e., $\sim \subsetneq \approx$.
3. Let

$$
\begin{aligned}
C M B & :=\text { coin?.coffee!.CMB+coin?.CMB } \\
C S & :=\text { pub!.coin!.coffee?.CS } \\
\text { UniBad } & :=(C M B \mid C S) \backslash\{\text { coin,cofee }\}
\end{aligned}
$$

Is true that Spec \approx Unibad where Spec $:=$ pub!.Spec?
4. Show that for any $P, Q \in C C S$ and $\alpha \in$ Act the following equivalences hold:

$$
\begin{aligned}
\alpha \cdot \tau . P & \approx \alpha \cdot P \\
P+\tau \cdot P & \approx \tau \cdot P \\
\alpha \cdot(P+\tau \cdot Q) & \approx \alpha \cdot(P+\tau \cdot Q)+\alpha \cdot Q
\end{aligned}
$$

5. Considere the following LTS and show that $s \not \approx t$ using a weak bisimulation game.

6. Consider the following protocol Protocol :=acc?.del!.Protocol that corresponds to a comunication channel. Given the implemnetation

$$
\begin{aligned}
\text { Send } & :=\text { acc?.Sending } \\
\text { Sending } & :=\text { send!.Wait } \\
\text { Wait } & :=\text { ack?.Send + error?.Sending } \\
\text { Rec } & :=\text { trans?.Del } \\
\text { Del } & :=\text { del!.Ack } \\
\text { Ack } & :=\text { ack!.Rec } \\
\text { Med } & :=\text { send?.Med } 1 \\
\text { Med } 1 & :=\text { r.Err }+ \text { trans!.Med } \\
\text { Err } & :=\text { error!.Med }
\end{aligned}
$$

show that $(S e n d|M e d| \operatorname{Rec}) \backslash\{$ send, error, trans, ack $\} \approx$ Protocol. Check with Pseuco.Com.
7. Show that $a .0+0 \not \approx a .0+\tau .0$ and conclude that \approx is not a congruence in $C C S$.
8. Let \simeq be the observable congruence

- $\tau . a \nsucceq a$
- $P \mid \tau . Q \not 千 \tau .(P \mid Q)$

9. Consider the following algorithms MUTEX for mutual exclusivity.For each one:
(a) Write it in CCS . Use enter ${ }_{i}$ and exits ${ }_{i}$ for $i=1,2$ to indicate the critical region.
(b) Text with pseuco.com using random traces
(c) Implement also in CAAL.
(d) Consider also

$$
\text { MutexSpec }:=\text { enter1.exit1.MutexSpec + enter2.exit2.MutexSpec }
$$

Is true that MUTEX \approx MutexSpec?
i) Peterson algorithm.

For process $P_{i}, j, i=1,2$ and $i \neq j$.

while true do

noncricital actions
$b_{i} \leftarrow$ true;
$k \leftarrow j ;$
while $b_{j} \wedge k=j$ do
skip;
critical actions
$b_{i} \leftarrow$ false
ii) Hyman algorithm. Variables b_{i} are Boolean and k is an integer. For processes $P_{i}, j, i=1,2$ and $i \neq j$.
while true do

```
noncricital actions
b
while }k\not=i\mathrm{ do
    while }\mp@subsup{b}{j}{}\mathrm{ do
        skip;
    k\leftarrowi;
critical actions;
b
```

iii) Pnueli algorithm.

Variables y_{i} are Boolean and start in false being local. The variable s is shared and has value 0 or 1 starting in 1 . For process P_{i} and $i=0,1$:
while true do
noncricital actions
$y_{i} \leftarrow$ true;
$s \leftarrow i$;
while $\neg\left(y_{1-i}=0 \vee(s \neq i)\right)$ do
skip;
critical actions;
$y_{i} \leftarrow$ false;

