Concurrent Programming - Exercises 5

Weak bisimilarity and observable congruence

1. Let
Buffer := put?.get?.Buffer
BufferL := put?.pass\.BufferL
BufferR := pass?.get?.BufferR

Show (Buf ferL|Buf ferR)\{pass!,pass?} ~ (Buf fer|Buf fer).

R weak bisimulation

2. Given the weak bisimilarity ~

Show that
(a) = is an equivalence.
(b) ~ is the largest weak bisimulation.

(c) The weak bisimilarity is coarsest than the strong bisimilarity, i.e., ~Caz.
3. Let

CMB := coin?.cof fee!.CMB + coin?.CMB
cSs publ.coinl.cof fee?.C'S
UniBad (CMB|CS)\{coin,cofee}

Is true that Spec ~ Unibad where Spec := pub!.Spec?
4. Show that for any P,Q € CCS and « € Act the following equivalences hold:

ar.P ~ oP
P+T.P T.P
a.(P+7.0Q) ~ a(P+7.0Q)+a.Q

Q

5. Considere the following LTS and show that s % t using a weak bisimulation game.

—-®

a
S1
b
a

G
)

@‘g—@>@ |
@?g)

6. Consider the following protocol Protocol := acc?.del!.Protocol that corresponds to a comunic-
ation channel . Given the implemnetation

Send := acc?.Sending
Sending := send!.Wait
Wait := ack?.Send+ error?.Sending
Rec := trans?.Del
Del = dell.Ack
Ack = ack!.Rec
Med := send?.Medl
Medl := t.Err+trans!.Med
Err := errorl.Med

show that (Send|Med|Rec)\{send,error,trans,ack} ~ Protocol. Check with Pseuco.Com.
7. Show that a.0 + 0 % a.0 + 7.0 and conclude that ~ is not a congruence in CCS.
8. Let ~ be the observable congruence

e Tata
e P|7.Q # 7.(P|Q)
9. Consider the following algorithms MUTFEX for mutual exclusivity.For each one:
(a) Write it in CCS . Use enter; and exits; for i = 1,2 to indicate the critical region.
(b) Text with pseuco.com using random traces
(c¢) Implement also in CAAL.
)

(d) Consider also
MutexSpec = enterl.exitl. MutexSpec + enter2.exit2. MutexSpec

Is true that MUTEX =~ MutexSpec?

i) Peterson algorithm.
For process P;, j,i = 1,2 and ¢ # j.
while true do
noncricital actions
b; < true;
k< js
while b; Ak =j do
skip;
critical actions
b; « false

ii) Hyman algorithm. Variables b; are Boolean and k is an integer. For processes P;, j,i = 1,2
and 7 # j.
while true do

Page 2

noncricital actions
b; + true;
while k # i do
while b; do
skip;
k < 13
critical actions;
b; < false;

iii) Pnueli algorithm.
Variables y; are Boolean and start in false being local. The variable s is shared and has
value 0 or 1 starting in 1. For process P; and ¢ = 0, 1:
while true do
noncricital actions
y; <+ true;
S 13
while —A(yl_i =0V (S #* Z)) do
skip;
critical actions;
y; < false;

Page 3

