
Concurrent Programming - Exercises 6

Value passing CCS

1. For each process P compute the LTS [[P]]

(a) (a!21.0|a?x.b!(x ∗ 2).0)\{a}
(b) (a!42.0|a?x.Sender[x])\{a}

2. For the following program compute its LTS.

Sender := put?x.send!x.Sending[x]

Sending[x] := receiveAck?.Sender + receiveNAck?.send!x.Sending[x]

Receiver := receive?x.get!x.sendAck!.Receiver +

gargled?.sendNAck!.Receiver

Medium := send?x.(receive!x.Medium+ i.garbled!.Medium)

AckMedium := sendAck?.receiveAck!.AckMedium+

sendNAck?.receivedNAck!.AckMedium

DupMedium := Medium|AckMedium

Protocol := (Sender | Receiver | DupMedium)\
{send, receive, sendAck, receiveAck,

receiveNAck, sendNAck, garbled}

Compute also [[(Protocol|put!1.put!2.put!3.put!4.0)\{put}]]. Restrict the values to rangeR :=
0..9.

3. Given

Fac[n, j] := when(j > 0)i.Fac[n ∗ j, j − 1]

+when(j == 0)println!n.0

Compute [[Fac[1, 5]]].

4. Consider the following vending machine that accepts coins of 1, 2 and 5 euros. If the price of a
coffee has not been paid yet, more coins are required before a coffee is dispensed. Once enough
money has been paid, no more coins are accepted, and a coffee is dispensed.If the last inserted
coin caused the coffee to be overpaid, some change is given. Each coffee cost 5 euros.

Machine[b] := when(b < 5)coin?c.Machine[b+ c] + when(b ≥ 5)coffee!.ReturnMachine[b− 1]

ReturnMachine[b] := when(b > 0)change!.ReturnMachine[b− 1] +Machine[0]

User := coin!2.coin!2.coin!2.coffee?.change?.0

Construct [[(Machine[0]|User)\{coin, change, coffee}]].

5. Given

Cell[rd, wr, x] := rd!x.Cell[rd, wr, x] + wr?y.Cell[rd, wr, y]

Cells := Cell[rdA,wrA, 0]|Cell[rdB,wrB, 0]

Serve := mult?.rdA?x : R.rdB?y : R.IterMult[0, x, y]

IterMult[z, x, y] := when(x > 0)i.IterMult[z + y, x− 1, y]

+when(x == 0)println!z.Serve

Use := wrA!7.wrB!5.mult!.0

Compute [[(Cells|Serve|Use)\{rdA,wrA, rdB,wrB,mult}]].

6. Consider the exercise 9 from Practical 5 with value passing CCS.

Page 2

